
N. 04664

THE

ana'tomy OF VERTEBRATES.

VOL. III.

LONDON: PELATRED BY
SPOTTISWOODIS AND CO., NELY-STHEBT SQOARE
AND PARLIAMENT STBEET

ANATOMY OF VERTEBRATES.

VOL. III.

М А М М АЈ. S.

RICHARD OWEN, F.R.S.

NUP\&RINTENDENT OF THE SATURAK HLATOMY DEPARTMENTS OF THE EMTIAH MUSEUM, Fomrion akgoctatis on tirg ingttitit on pranct, etc.

LONDON:
LONGMANS, GREEN, AND CO.
1868.

CONTENTS, OR SYSTEMATIC INDEX.

CHAPTER XXVII.

MUSCDLAR SYSTEM OF MAMMALIA.

bection PAGB
192. Diaphragm 1
193. Muscles of Monotremata 2
194. Muscles of Marsupialis 8
195. Muscles of Lissencephala 16
196. Museles of Cetacea 24
197. Muscles of Perissodactyla 26
198. Museles of Artiodactyla 41
199. Muscles of Carnivora 49
200. Muscles of Quadrumana 52
201. Muscles of Bimana 54
202. Locomotion of Mammals 63
A. Swimming 65
B. Moving on Land 66
CHAPTER XXVIII.
NERVOUS SYSTEM OF MAMMALIA.
203. Myelon 73
204. Encephalon, its primary divisions. 79
205. Macromyelon 81
206. Cerebellum 88
207. Mesencephalon 97
208. Prosencephalon 99
A. Lyeucephala. 100
B. Lissencophala 108
C. Gyrencephala 114
D. Archencophala 127
209. Size of Brain 143
210. Membranes of Brain 145
STEURION PAGE
211. Nerves of Mammals 146
212. Sympathetic System 181
213. Organs of Touch 186
214. Organ of Taste 190
215. Organ of Smell 204
216. Organ of Hearing 219
217. Organ of Sight 246
A. Eye-ball 246
B. Appendages 2.58
C. Parallel between Eye and Ear 263
CHAPTER XXIX.
DFNTAL SY:TEM OF MAMBIALA.
218. General Characters of the Tceth 205
219. Teeth of Monophyodonts 271
A. Monotremats 271
B. Brnta 272
C. Cetacea 276
220. Teeth of (non-ungulate) Diphyodonts 283
A. Sirenia. 283
B. Marsupialia 285
C. Rodentia 294
D. Insectivora 301
E. Quadrumana. 313
F. Bimana 322
G. Carnirora 327
221. Teeth of Ungulate Diphyodonts 340
A. Homologies of the Grinding Surface of Molars 340
B. Artiodactyla 343
C. Perissodaetyla 35%
D. Proboscidia 359
222. Homologies of Teeth 366
CHAPTER XXX. almentary canal and appendages qF mammalita.
223. M.outh 383
224. Salivary Glands 396
225. Alimentary Canal of Lyencephala 410
226. Alimentary Canal of Rodentia 420
227. Alimentary Canal of Insectivora 427
228. Alimentary Canal of Cheiroptera 428
229. Alimentary Canal of Quadrumana. 429
230. Alimentary Canal of Bimana 434
231. Alimentary Canel of Carnivorn 442
secrion page
232. Alimentary Canal of Brnta 446
233. Alimentary Canal of Cotacea 452
234. Alimentary Canal of Sirenia. 454
235. Alimentary Canal of Proboscidia 457
236. Alimentary Canal of Porissodactyla 458
237. Alimentary Canal of Artiodactyla. 465
238. Liver of Mammals 478
239. Pancreas of Mammals 402
240. Peritoneum and Appendages of Mammals 500
CHAPTER XXXI.
ABSORBLNT SYSTEM OF MAMMALIA.
241. Lacteals 504
242. Lymphatics 506
243. Absorbent ganglions 508
244. Disposition of Lymphatics 508
246. Mammalian modifications 万ै1
CHAPTER XXXII.
CLICOUAATING SYSTEM OF MAMMALIA.
246. Blood of Mammals 513
217. Heart of Mammals 516
A. Lyencephala. 516
B, Lissencephala 519
C, Cetacea 520
D, Sirenia 521
E. Ungulata 522
I. Carnivora 523
G. Quadrumana 525
H. Bimana 525
248, Aremien of Mammals 532
249. Veins of Mammals 549
2) (0. Spleen of Mammals 5.5
251. Thyroid of Mammaly 563
252, Thymus of Mammala 566
203. Adrenals of Mammals. 668
CHAPTER XXN゙11.
RESPLRATORY SYSTLY OF MAMMAL1A.
2bi, Lunge of Mammals 352
2s5. Laryixx of Mammals 38:

CHAPTER XXXIV. URINARY SYSTEM OF MAMMALIA.

BECTION page
256. A. Kidneys 604
s. Urinary Bladder and Urethra 609
CHAPTER XXXV.
TEGUMENTARY SYSTEM AND APPENDAGES OF MAMMALIA.
257. Derm 610
258. Epiderm and 'rete mucosuma' 613
259. Callosities 616
260. Hair 616
261. Spines 621
262. Scales 622
263. Nails, Claws, and Hoofs 623
264. Horns 624
CHAPTER XXXVI.
PECULIAR GLANDS OF MAMMALIA
265. Opening upon the Head 632
266. Opening upon the Trunk 634
267. Opening upon the Tail 637
268. Opening upon the Limbs 638
CHAPTER XXXVII.
GENERATIVE ORGANS OF MAMMALIA.
A. Male Orguns 641
269. In Monotremata 643
270. In Marsupialia 645
271. In Rodentia 649
272. In Insectivora 655
273. In Bruta 657
274. In Cetacea 658
275. In Sirenia 660
276. In Proboscidia 660
277. In Perissodactyla 661
278. In Artiodactyla 666
279. In Carnivora 668
abction page
280. In Quadrumana 672
281. In Bimana 673
B. Female Organs 676
282. In Monotremata 677
283. In Marsupialia 680
284. In Rodentia 686
285. In Insectivorn 687
288. In Bruta 689
287. In Cotaces 691
288. In Sirenia 692
289. In Proboscidia 692
290. In Perissodactyla 693
291. In Artiodactyla 694
292. In Carmivora 698
293. In Quadrumana 701
294. In Bimana 704
CHAPTER XXXVIII.
generative products and detelopment of mammalia.

- 295. Ovulation 709

296. Oxipont 711
297. Corpus Luteum 712
298. Impregnation 713
299. Development of Monotremata 715
300. Development of Marsupialia 71.8
301. Development of Lissencephalan 723
302. Development of Mutilata 732
303. Development of Ungulata 732
304. Development of Curnivora 742
305. Development of Quadrumana 77^{6}
306. Development of Bimana
751
307. Dovelopment of Mammalian braiu
308. Development of Mammalian skeleton 753
309. Membrana pnpillaris 754
310. Fotal Circulation 755
311. Defnition of Male and Female Organs 757
312. Descent of Testes. 758
CHAPTER XXXIX.
MAMMARY AND MARSUPIAL ORGANS.
313. In Monutremata 760
314. In Marsupialia 768
315. In Lissencephala 775
316. In Mutilata 777
317. In Ungulata 778
SECTION page
318. In Carniyora 780
319. In Quadrumana 780
320. In Bimana 781
321. Adipose Substances 783
CHAPTER XL.
general conclusions.
322. Biological Questions of 1830 786
323. Homology or Teleology? 787
324. Succession of Species, broken or linked? 789
325. Extinction of ditto, cataclysmal or regulated? 797
326. How works the Derivative Law? 799
327. Epigenesis or Evolution? 809
328. Nomogeny or Thaumatogeny? 814
Works repermed to 827
Zoological Index 839
Generat Index 859

ERRATA.

```
Page 26, four lines from bottom, premise '§ 197. Nuseles of Rerissodactyla.'
    "," thirteen lines from bottom, for '(sterno-humeralis); read ' (ceplalo.\umeralis','
    ", 4'9, note ' for "VIn,' reaid "V1","
    ",72, note 'for ' cxxxt'., read' cxxxt,'
    81; note "for "I'".' read' ' XXIV'",
    100, Bixteen lines from top, premise 'A. Xyyencepluala."
    120, fig. 95, for ' XXXXX'.,'reud' 'Xxax",'
    129, note ' for 'TX',' read' 'DX''.
    144, note " for 'LVIM'.,' read ' Lvir"."
    206, to description of fig. 152, add "Hzuman."
    212, wote 'for' 'xCII, 'read' xerim"*
```



```
    " 255, below cut 20, for v','; read 'c\mp@subsup{v}{}{\prime\prime}.
    " 266, note ' 'for ' XXV',', read', XXXIx't',
    ", 368, last line, fof" 'first true molar,' read "first lower true molar.'
    ", 412, note ' for' 'cxam",',' read ' cxxn',
    " 424, note 'for 'cxXD",", Xxm1.,' read 'cxxm'. vol. xiii.'
    ". 427, five lines from top, for'.'$327;' read 'S 227;' and so on to '&399, p. 715,'for
        echich read, '$299,'
        428, ten lines from top, for' 'fig. 359,'read' 'fig, 389.'
    ", $00, 'fg. 354,' for 'cxxrr',' read 'cxucr'".
    n 460, note ' for' cxx1.;'read ' cxxm'."
    " 479, note 'for 'ccxxn",', read' ' cxxn'.
    " 479, note "for " cxn",', read " cxxm'.
    " als, note "for' 'Ib.,'read ' CLXXIX"',
    " 535, note 'for ' XCVM".', read ' XOVI'.'
    536, note "'for ' cxCn",' read ' XxXIv'.'
    542, note ' for' cxLHI'';' read, cNx\times1";
    "536, note 4 for" 'cxcII",'' read " Xxxrv"':
    "622, twelve lines from top, for "fig.489,'read 'fig. 489, i.'
    ", 637, fourteen lines from bottom, for 'glosss." ragd " fossa,'
    " 718, for' $ $00,'read, '$200;' and so on to '$428, 1, 813,',or wehich read '$ 328."
    " 700, nineteen lines from top, for 'Palcotheria,' read 'Sywfacotheria,'
```


ANATOMY OF VERTEBRATES.

$\longrightarrow 01030-$

CHAPTER XXVII.
 MUSCULAR SYSTEM OF MAMMALIA.

The muscular tissue in the present as in the preceding Vertebrate classes presents the two conditions of striped and unstriped elementary fibres: the striped kind, comprising all the voluntary muscles with those of the heart, are red: deeper coloured in Cetacea and Carnivora than in Ungulata: deeper in the pectoral muscles of .Cheiroptera than in those of the legs: paler in the pectorals and other muscles of the fore-legs of the Kangaroo than in the 'psoas ' and those of the hind-legs : palest in some Rodentia.
§ 192. The Diaphragm.-The chief characteristic of mammalian myology is the diaphragm, vol. ii., fig. 139, d, whieh, as sueh, is not more completely developed in Man than in the Monotreme. It is the partition between the thoracic and abdominal cavities, fig. 1 , vaulted and convex toward the thorax, fig. 2, and eonsists of carneous and tendinous parts, the latter cliefly in the expanded or aponeurotic form. The carneous fasciculi are divided into the 'costal' or greater and the 'vextebral' or smaller muscles. The costal portions arise from the ensiform cartilage, and those of the eighth to the twelfth ribs, by fasciculi which interdigitate with those of the 'transversalis abdominis' muscle. Thoy ascend and expand, arching and con-
 verging to be inserted into the external 'ligamentum arcuatum,' vol. 111.
fig. 1, d, and into the aponeurosis called 'centrum tendincum' or 'cordiform tendon,' ih., т. This centre is widely notched toward the spine, and divided anteriorly into three tracts, of which the right is usually the largest. Between the right and middle tracts is the orifice, c, for the inferior vena cava ('postcaval' of Mammals). Behind the tendon, and to the left of the median line, is the orifice, e, for the œsophagus and pneumogastric nerves: the
 aorta, a, passes from the chest to the abdomen between the 'crura' of the lesser muscle. The right 'crus' in Man arises from the three or four upper lumbar vertehræ; the left crus does not descend so low: both muscular bundles expand as they rise, decussate at the oesophageal opening, and are inserted into the posterior concavity ofthe central tendon and internal ligamentum arcuatum, fig. $1, f$.
The diaphragm is most muscular, longest, and most oblique in Cetacea, in which the central tendon is almost obsolete: by rising so far back, it permits the proportional extension of the lungs, which in the Dugong and Manatee act as air-bladders. In the perissodactyle Ungulates, in which the moveahle rihs are numerous and continued to near the pelvis, the diaphragm is also extensive, and much arched toward the thorax.
§193. Muscles of Monotremata.-To give an account of the muscular, as fully as that of the osseous, system of the Marsmalia, would not be attended with the same advantages, even if a detailed myology comported with the scope and extent of the present work. This part of Mammalian anatomy will therefore be limited to the notice of a few select examples. Fig. 3, from Meckel,' shows the more remarkable muscles of the Ornithorhynchus. The animal is dissected from the ventral surface; the great ' panniculus carnosus,' 1 , is reflected from the right side, and the deeper-seated muscles are shown on the left. The panniculus carnosus, which is remarkahle for its thickness, encompasses nearly the whole body, adhering most firmly to the external skin, but separated from the suhjacent muscles, especially where it covers the thorax, ahdomen, the arm,
and tbe thigh, by a copious and lax cellular tissue; and in the female, at the abdominal region, hy the mammary glands. Tbe fibres are chiefly longitudinal, but at the lower part of the neck become transverse. The obtuse posterior end of the muscle is attached by three or four fasciculi to the dorsal aspect of the caudal diapophyses. The legs and the arms protrude through oblique apertures in this muscular tunic; some of the anterior fasciculi are inserted by a short tendon into the pectoral ridge of the humerus; and others, still more anterior, are attached to the cranium, the lower jaw, and lower lip. A strip of fihres, which is cut off at $1^{\prime \prime}$, is attached to the os hyoides; another fasciculus (L^{\prime}) spreads over the cheek-pouch, \mathbf{F}, and assists in emptying tbat rcceptacle of the food.

The trapezius, 9 , is divided into two muscles; the posterior portion is an oblong slender triangle arising by a hroad tendon from the tenth and eleventh vertebre and ribs, and inserted by a short strong tendon behind the extremity of the spine of the scapula; tbe anterior portion arises from the occiput and tendinous raphé connecting it with its fellow of the opposite side, and is inserted into the spine of the scapula, and into the outer half of the clavicle.

The latissimus dorsi, a very long and broad muscle, arises from the spines of all the dorsal and lumbar vertehræ and from the eleven posterior ribs; it is inserted by a broad and strong tendon into the distal half of the ulnar margin of the humcrus, and, with part of the 'panniculus,' in to the fascia attached to the olceranon and spreading over the fore-arm. At its anterior part this muscle may be separated into a superficial and deep stratum. The rhomboideus is a single muscle, but thick and long, inserted into the narrow base of the scapula.

The splenius capitis is united by an intermediate tendon witb the opposite muscle, and is inserted into the mastoid process.

The biventer cervicis and the complexus are distinct throughout their whole course, which extends from the anterior dorsal and posterior cervical spines to the occiput; the complexus is the longest and thickest inuscle, and divides into an external, shorter, and deeper-scated portion, and an internal, longer and superficial prortion.

The sacrolumbalis arises from the dorsal extremity of the ilium, is attached to the ribs, over which it passes in its course to its inscrtion into the transversc processes of the four or five posterior cervical vertebre: it is continued by the 'cervicalis ascendens' to the atlas.

The longissimus dorsi is a mucb thicker and narrower muscle,

"Muscular bystem, ventral aspect. Ontororlyn
and extends from the dorsal aspeet of the saerum along the spine to the third or fourth eervieal vertebra. It is continued forward by the transversalis cervicis and trachelo mastoideus, whieh are blended into a single oblong muscle arising from the anterior dorsal and inserted into the transverse proeesses of the six lower eervical vertebre and the mastoid proeess.

The sterno-mastoid is a double musele on both sides, one portion being superfieial, 8 , the other deep-seated; each arises separately from the episternum, and is separately inserted into the mastoid. The omo-kyoideus, 10, and mylo-hyoideus, 10, bave a common insertion into the hyoid. A muscle, $\mathrm{I}^{\prime \prime}$ arising from the basi-lyal and expanding to be inserted into the lower lip, serves to retraet this part. The sterno-hyoideus, 11 , joins the hyoglossus. The genio-hyoideus, 12, and the stylo-hyoideus, 13, have the normal relations: the biventer maxille, 14, is a short thick musele, inserted near the bend, representing the angle, of the jaw.

The caudal museles are powerfully developed. The oblique fibres of the inferior or deflector muscles are shown at 53 ; they are removed on the other side to expose the anterior caudal nerves, i. The obliquus externus abdominis, 3,3 , arises from all the vertebral ribs, exeept the first, and from the dilated extremity of the ilium; it is inserted by a strong tendon into the outer extremity of the marsupial bone, vi, then expands into an aponeurosis which is attached to the internal margin and base of that bone, and into the symphysis pubis, decussating with the tendinous fibres of the opposite musele: it does not split to form an ' abdominal ring.'

The obliquus internus, 6 , arises from the anterior part of the ilium, expands, and is inserted into the broad eartilages of the seven posterior ribs, \mathbf{v}, v.

The transversus abdominis, 7, is a thieker muscle, and arises from both the ilium and the lumbar diapophyses; its tendon passes behind the recti to blend with that of the opposite musele, and with the aponeurosis of the obliqui externi, in the linea alba.

The pyramitalis, or superficial rectus, 4 , is here, as in the ordinary Marsupials, of very large size; it arises from the whole inner margin of the marsupial bone; its fibres converge toward and are eonfluent at the linea alba with those of its fellow, and it gradually terminates in a point opposite the posterior part of the sternum. It depresses the ribs, shortens the abdomen, and protraets the marsupial bone.

The rectus abdominis, or posterior rectus, 5, arises from the posterior margin of the marsupial bone, and is inserted into the
cartilage of the first rib, the manubrium sterni, and the eoracoid bone.

The diaphragm presents the structure which is characteristic of the true mammiferous animal. The lesser muscle arises from the first lumbar and four last dorsal vertebræ, and expands to be inscrtcd into the contral tendon, which chiefly reeeives the fibres of the greater muscle arising from the eartilages of the eleven inferior pairs of ribs.

The pectoralis, 2, is of very striking dimensions; the origin of the superficial portion extends from the acromion and episternum, along the sternum and linea alba, almost to the pubis; a deeperseatcd portion arises from the six osseous sternal ribs; the fibres of both portions converge to be inserted into the largely-developed pectoral or anterior crest of the proximal half of the humerus.

The pectoralis minor is attached to the coracoid, and the subclavius is likewise inserted, as in some other quadrupeds, into this bone, which is no longer a subordinate process of the scapula in the Monotremes.

The subscapularis is a narrow muscle, and narrower in reality than at first sight it appears to bc, since the supraspinatus, from the inflection of the spine and acromion, arises from the same aspect of the scapula, and appears to form the anterior faseiculus of the subscapularis; its distinct insertion into the anterior tubercle of the head of the humerus points out its true nature.

The infraspinatus, 20 , and the large teres major cover the whole external surface of the scapula.

The deltoid is divided into an anterior and a posterior portion. The antcrior portion, 19, arises from the anterior extremity of the coracoid, and is inserted into the summit of the deltoid crest of the humerus: the posterior part, 21, arises from the anterior and superior apex of the scapula, and is inserted into the lower half of the deltoid crest. There are also two muscles to which the name coraco-brachialis may be applied, a superior one, 22 , and an inferior one, 25.

The biceps brachii ariscs by two heads; one, 23 , arises from the sternal extremity of the coracoid, the other, 24 , also arises from the coracoid; the common tendon is inserted into the middle of the radius.

The other muscles of the anterior extremity adhere closely to the Mammalian type. The extensor carpi radialis, 30, sends three tendons, to be inserted respectively into the second, third, and fourth metacarpal boncs. There is a single common flexor digitorum, as well as extensor digitorum, $2=$.

The extensor digiti minimi, 26 , the indicator, 28 , the extensor
pollicis, 29, the pronator teres, 32, and the fexor carpi radialis, 33, are all remarkable for their strength in the Oruithorhynchus, and are still more powerfully developed in the Echidna.

The most remarkable muscle on the palmar aspect of the fore arm is the flexor carpi ulnaris, which arises by two separate heads, the longer one from the broad olecranon, the shorter one from the internal condyle of the humerus; the common tendon is attached to the os pisiforme and the metacarpals of the fourth and fifth digits.

The psoas magna and iliacus internus form a single muscle, having the usual origins, and inserted by a common tendon into the large internal trocbanter.

The psoas minor is the largest of these muscles. It arises from the sides of five dorsal vertehræ, and its strong tendon is implanted in the remarkably developed ilio-pectineal process. It depresses the pelvis, and with it also the tail and the pelvic extremities.

The ectogluteus is larger than is usually the case with quadrupeds; its insertion extends to the plantar fascia and the bone which supports the spur. The mesogluteus, entogluteus, pectineus, 45, biceps Alexor cruris, gracilis, 34, sartorius, 35, rectus femoris, 36, adductores femoris, +6 , semitendinosus, 17 , semi-membranosus, vastus externus, offer no notable deviations from the usual structure. A strip of fihres, 4°, descends from the gracilis to the sphincter cloace, H. A muscle, called by Meckel'flexor accessorius a caudâ ad tibiam tendens,' 51 , arises from the transverse processes of the anterior caudal vertebre, and converges to he inserted into the tibia. Another peculiar adductor of the leg, which might be termed 'intertibialis,' 52 , is attached by its extremities to both tihir ; its fleshy belly passes across the sphincter cloace, \mathbf{H}, and is connected with a strip of the panniculus carnosus, i.

The gastrocnemius, 48, derives its largest origin from the produced and expanded head of the fibula, and its smaller helly from the internal femoral condyle; its tendon is implanted in the calcancum. The homotopy between the gastrocnemius and fexor carpi ulnaris is strikingly illustrated in the Ornithorhynchus.

The soleus arises from the head of the fibula and from a large proportion of the tibia; it is nowhere blended with the gastrocnemius, but is inserted hy a thick and short tendon into the astragalus.

The abductors of the outer digits of both the hand and foot are well developed for the purpose of expanding the web which connects the toes.

In the figure the following muscles of the leg are shown-viz. 37, tibialis anticus, 38, extensor hallucis longus, :9, peroneus longus,

40, peroneus brevis, 41, extensor digitorum profundus, 42, extensor digitorum sublimis, 42, a portion of the same muscle corresponding with the indicator of the fore leg, and 44, extensor digiti quinti accessorias.
§ 194. Muscles of Marsupialia.-The most common posture of the Kangaroo is often termed the 'erect;' yet the conditions of this posture are very different from those in the human suhject. The trunk, instead of resting upright on two nearly vertical pillars, is here swung upon the femora as upon two springs, which descend from the knec-joints ohliquely hackward to their points of attachment at the pelvis; and the trunk is propped up hehind by the long and powerful tail, vol. ii., fig. 211.

In Man the massive and expanded muscles which find their attachment in the hroad hones of the pelvis, especially at the posterior part, are the chief powers in maintaining the crect posture. But in the Kangaroo the glutcei offer no corresponding predominance of size ; the narrow prismatic ilia could not, in fact, afford them the requisite extent of fixed attachment.

The chief modifications of the muscular system in relation to the erect position of the trunk in the Kangaroo are met with on the anterior part of the hase of the spinal column. The psore parve, for example, present proportions the reverse of those that suggested their name in human anatomy. They form two thick, long, roundcd masses, which take their origin, fleshy, from the sides of the hodies and hase of the diapophyses of the lower dorsal and all the six lumbar vertebre, and from the extremities of the three last.ribs; the fihres converge penniformwise to a strong, round, middle tendon, inserted in the well-marked tubercle or spine of the puhis, already noticed.

The ahdominal muscles include a pyramidalis as remarkahly developed as in the Monotremes. In the Phalanger, fig. 4, the external oblique, hesides the usual origin by digitations from the rihs, also arises from the fascia lumborum; it is inserted fleshy into the summit of the marsupial hone, a, over which its strong inner tendon is spread:" the external ohlique becomes aponeurotic at a line continued from the marsupial hone outward, with a gentle curve, toward the anterior extremity of the ilium; and in the opposite direction, or inward, the carneous fibres of the external ohlique terminate in an aponeurosis along a line parallel with the ohlique outer margin of the pyramidalis; the fascia continued from the latter houndary of the fleshy fibres passes over, or dermad of, that muscle, and mects its fellow at the linea alha; it is homologous
with the anterior layer of the sheatb of tbe rectus in ordinary Manmalia. It is seen refleeted from the pyramidalis, at b, fig. 4. The aponeurosis continued from the external and inferior boundary of the earneous fibres divides as usual into two distinet portions. One, n, corresponding to the internal or mesial pillar of the abdominal ring, spreads its glistening fibres, as above deseribed, over the dermal surfaee of the marsupial bonc, c, to whieh it elosely adheres: tbe other eolumn, d, eontracts as it descends obliquely inward, forms, like ' Poupart's liganent,' the upper

Abdominal muscles, Phatchitwhe vulpinat. boundary of the space through which the psoas and iliaeus museles and femoral vessels and nerves eseape from the pelvis, and is finally inserted, tbiek and strong, into the outer end of the base of the marsupial bone.

This bonc is so eonnected with tbe pubis that its movements are almost limited to direetions forward and backward, or tbose eoncerned with the dilatation and diminution of the abdominal space; the contraction of the abdominal muscles must draw the bones inward so as to compress the eontents of the abdomen, and so far as the connections of the bone permit, whieh is to a very trifling degree, tbe external oblique may draw it outward toward the ilium. In some Marsupials, as the Koala, the triceps adductor femoris sends a slip of fibres to the external angle of the base of the marsupial bonc, and would more directly tend to bend that bone outward.

The upper or anterior fibres of the internal oblique have the usual origin; the lower ones, e, arise fleshy from the outer and anterior spine of the ilium, and for an incb along an aponeurotic ehord extcnded from tbat process to the upper part of the acetabulum: these carneous fibres pass inward and slightly upward, and terminate elose to the outcr margin of tbe rectus, where tbey adluere very strongly to the transversalis, but give off a separate sheet of thin aponeurosis which is lost in the cellular sheath of the posterior rectus.

The fleshy fibres of the transversalis abdominis, f, are closely connccted by dense cellular tissue with those of the internal oblique; they are arranged in finer fasciculi, and have, as usual, a more transverse direction; they terminate along the same line as those of the internal oblique in an aponeurosis, g, which is continued along the inner or central surface of the posterior rectus to the median line. The lower boundary of the fleshy fibres of the transversalis is parallel with the line extended transversely between the anterior extremities of the ilia; a fascia, less compact than an aponeurosis, is continued downward from this margin, and envelopes the cremaster and the constituents of the spermatic chord, as they pass outward and forward beneath the lower edge of the internal oblique.

The pyramidalis, h, arises from the whole inner or mesial margin of the marsupial bone, from which the fibres diverge, the lower ones passing transversely across the interspace of the bones, and meeting at a very fine raphé, or linea alba; while those fibres from the anterior ends of the marsupial bones gradually exchange their transverse direction for one obliquely forward. The breadth of each pyramidalis opposite the upper end of the marsupial bone is more than an inch, the thickness of the muscle one line.

The rectus abdominis, i, comes off from the pubis along the inner part of the strong ligamentous union of the broad base of the marsupial bone, and expands as it ascends until it attains the level of the ensiform cartilage, when it diminishes as it is inserted into the sternal cxtremities of the ribs reaching to the manubrium sterni and first rib in the Dasyures, as in the placental Carnivores. The slight indications of tendinous intersections are confined to the posterior or central superficies of the muscle.

The cremaster, k, in the Phalanger and Opossum, is not a fasciculus of fibres simply detached from the lower margin of the internal ohlique or transversalis, but arises by a narrow though strong aponeurosis from the ilium, within and a little above the lower boundary of the internal oblique, with the fihres of which the course of the cremaster is not parallel; it might be considered as a part of the transversalis, hut it is separated hy the fascia above mentioned from the carneous part of that muscle. Having emerged from beneath the margin of the internal oblique, the cremaster escapes hy the large elliptic ahdominal ring, l_{g} bends round the marsupial hone near its free extremity, and expands upon the tunica vaginalis testis. In the female it has the same origin, course, and size, hat spreads over the mammary glands at
the back of the pouch. If the anterior fascicles of the diverging and embracing fihres be dissected from the posterior ones, the appearance of the cremaster dividing into two layers is produced.

The principal modifications of the muscles of the pectoral extremity are here described as they exist in the Perameles lagotis.

The trapezius has its origin extended from the skull, along the cervical and dorsal spines, to the fascia covering the lumhar portion of the latissimus dorsi : its filhes converge to be inserted along the spine of the scapula, the anterior ones heing directly continued into the pectoralis major, whereby it becomes an extensor of the humcrus and a protractor of the fore extremity.

The latissimus clorsi arises chiefly from the broad aponeurosis covering the muscles of the lumhar region of the spine, and from the spines of the six posterior dorsal vertehre; the fibres gradually converge, the muscle increasing in thickness as it diminishes in breadth, and terminating in a strong flattened tendon one inch Iffore its insertion at the upper third of the humerus. It is connected, as in most hrutes, up to and including the Gorilla, with an accessory extensor (omo-anconeus) ${ }^{1}$ of the antibrachium. This extensor takes its principal origin by fleshy fibres from the terminal half inch of the fleshy part of the latissimus dorsi, and continues fleshy, slightly diminisling in size to its insertion at the apex of the olecranon. To remedy the inconvenience of an origin from a yielding and flexible part, a thin aponeurotic slip, in Perameles, attaches a part of the base of the superadded muscle and the corresponding portion of the latissimus dorsi to the sheath of the teres major, and to the inferior costa of the scapula near its posterior angle. The supraspinatus, a stroug penniform muscle, excceds the infraspinatus in hreadth hy as much as the supra-spinal fossa is hroader than the infra-spinal one: it has a broad and strong insertion into the great outer tuberosity of the humerus. The infraspinatus is inserted into the upper and posterior part of that tuberosity. The deltoides is a comparatively small muscle; it arises from the anterior half of the spine of the scapula and from a fine aponeurosis covering the infraspinatus; its fihres converge to he inserted in the upper part of the deltoid ridge. 1 thin small strip of muscle arises from about the middle of the inferior costa of the scapula, beneath the infraspinatus; its fibres pass forward and join the lower margiu of the small deltoid, thus bracing and enclosing the tendon of the infraspinatus.

[^0]Iu claviculate marsupials the deltoid is larger, and consists of three fasciculi.

The teres major is a strong sub-compressed muscle arising from near the posterior half of the inferior costa of the scapula, and joining, as hefore stated, the tendon of the latissimus.

The triceps extensor has its long portion arising from the anterior third of the inferior costa of the scapula; its second head comes from the posterior part of the proximal third of the humerns; the third portion takes its origin from the whole of the posterior part of the humerus; in addition to these, the olecranon receives the above-descrihed fourth superadded slip from the latissimus dorsi.

The pectaralis major is, as usual in the Marsupial and many higher quadrupeds, a complicated muscle; it consists of an antcrior or superficial and a posterior or deeper portion; the anterior portion receives the strip of fibres hefore mentioncd from the trapezius, there being no clavicle or clavicular ossicle interposed in the $\mathrm{Pe}-$ rameles; its fibres converge, increasing in thickness as they. diminish in hreadth, and are inserted into the anterior and outer part of the strongly developed pectoral ridge. The second and main portion of the pectoralis arises from the whole extent of the sternum; its fibres are twisted ohliquely across each other as they converge to he inserted into the inner part of the pectoral ridge ; some of the internal and posterior fibres of this portion of the twisted pectoral pass ohliquely upward and hehind the anterior fasciculi, and are inserted into the coracoid process, thus representing the pectoralis minor. Beneath this latter portion of the pectoral, a long and slender muscle passes to he inserted into the anterior part of the tuherosity of the humerus; this may likewise be regarded as a dismemherment of the pectoralis major, hut it arises from the fascia of the rectus ahdominis, helow the cartilages of the lower ribs. Thus the strong pectoral ridge of the humerus is acted upon hy muscles having a range of origin from the occiput and cervical vertehræ along the whole extent of the chest to the heginning of the ahdomen.

The biceps is a powerful muscle, although its short head from the coracoid process is suppressed. The long head has the usual origin and relation to the shoulder-joint; its tendon is very thick and short. The flcshy belly joins that of the strong hrachialis intcrnus, situated at the external side of the humerus, whence it takes its principal origin from the short deltoid ridge, closely connected there with the second portion of the triceps, and deriving some fleshy fihres from the lower and outer third of the humerus. The portion of the hiceps arising hy the long head soon resolves
itself into two distinct penniform muscles; the tendon of the outer one joins that of the brachialis, and this conjoined tendon simply bends the fore-arm, while the inner tendon bends and pronates; the latter, which is a direct though partial continuation of the biceps, is inserted into the ordinary tubercle of the radius; whereas the outer tendon is attached to the fore part of the proximal end of the ulna. The muscles which arise from the internal condyle of the humerus are the pronator teres, which has the usual origin, insertion, and relative proportions, and next a large palmaris longus. There are, likewise distinet and strong fasciculi of muscles corresponding to the flexores carpi ulnaris and radialis, and to the flexor sublimis digitorum. The strong ridge continued from the olecranon to the posterior and inner part of the ulna gives oricyin to a great proportion of the oblique fibres of the flexor profundus; but both this and the flexor sublimis terminate in a single thick and strong tendon, which after passing the wrist divides into those corresponding with the perforating and perforated tendons concentrated, in Perameles, upon the three long middle fingers. The pronator quadrutus runs the whole length of the interosseous space, passing from the radius a little obliquely downward to the ulna. The supinator longus, arising as usual from the upper part of the strongly developed ridge above the outer condyle, sends its tendon across the carpal joint, which tendon divides before it crosses, and is inserted by one of its divisions into the base of one of the metacarpal bones of the index finger, and by the other into the adjoining metrearpal bone.

These are the principal muscles of the fore cxtremity which require notice. Their modifications, in respect of number and strength, relate to the act of digging up the soil, which is habitual in the Bandicoots, as it is for the purpose of obtaining food, and not for shelter. It is for this purpose that the three middle digits of the hand arc developed at the cxpense of the other two, which are rudimental; the whole power of the deep and superficial flexors is concentrated upon the fossorial and well-armed fingers ; and, by the single common tendon in which the fleshy fibres of these inuscles terminate, they move them collectively and simultancously. Thus varicty of application, and especially the prehensile faculty, are sacrificed to the acquisition of force for the essential action. In no Marsupial is the hand so craunped as in the Perameles, excepting in the Charopus, where the functional and fossorial fingers are reduced from three to two. It is in relation to this condition, doubtless, that the clavicles are wanting in these gencra, while all other Marsupials possess them. In these
the biceps has the usual two origins : the flexor suhlimis digitorum is distinct from the flexor profundus in Didelphys.

The muscles of the hinder extremity are chiefly remarkahle in the Kangaroo for their prodigious strength and umusual numher : the accessory muscle of the biceps cruris, e.g., arises from a caudal vertebra, and, with that from the ischium, forms two strong fasciculi, onc inserted into the outer femoral condyle, the other into fascia covering the gastrocnemii. The pyriformis is also a double muscle. The sartorius has its insertion so modified that it hecomes an extensor instead of a flexor of the tibia: it is chiefly fixed to the tihial side of the gristly patella, and by fascia into the eapsular ligament of the knee-joint and the anterior proximal tuherosity of the tihia. In a Dasyurc (Das. macrurus) I found that the sartorius had a similar disposition and office. In this ambulatory carnivorous Marsupial the external and middle glutai are so disposed as to extend the thigh, while the internal glutceus inflects and rotates it inward. In a Bandicoot (Perameles lagotis) the sartorius ran nearly parallel with and ${ }^{\circ}$ dermad of the rectus, and was inserted into the upper part of the patella. Besides this sesamoid, which is rarely developed in other Marsupials, I found a thick cartilage attached to its upper part and interposed hetween the common tendon of the recti and vasti, removing that tendon further from the centre of motion, and increasing the power of the extensor muscles of the leg. The rectus femoris has its two origins very distinct, and its homotypy with the hiceps of the upper extremity is ohvious. The gracilis is a very thick and strong muscle. The biceps flexor cruris in the Perameles is a muscle of very great strength; it terminates in a strong and hroad aponeurosis, which extends over the whole anterior part of the tihia, heing attached to the rotular tuherosity of that hone, and terminating helow in the sheath of the tendo Achillis, wherehy this muscle hecomes an extensor of the foot.
All the equipedal Marsupials, whether burrowers as the Womhat, climhers as the Koala, Phalangers, and Opossums, or simply gressorial, as the Dasyuride, have the tibia and fibula so connected together as to allow of a certain degree of rotation upon each other, analogous to the pronatory and supinatory movements of the hones of the antibrachium, and the muscles of the leg present corresponding modifications. None of the analogous carnivorous, pedimanous, or rodent Placentals present this condition of the hind leg. In the Kangaroo, the gastrocnemii almost rival those of Man in the hulk of the fleshy part.

In the Dasyurus macrurus, the plantaris, instead of xising from
the femur, has its fixed point in the fihula, from the head to halfway down the hone, fleshy; its tendon passes ohliquely inward, and glides hehind the inner malleolus to its insertion in the plantar fascia, so that it rotates the tihia inward besides extending the foot. The soleus has an extensive origin from the proximal to near the distal end of the fibula. There are, as usual, three deepseated muscles at the back of the leg. Of these three the muscle homologous with the tibialis posticus is readily recognised; its tendon glides behind the inner malleolus, and is inserted into the inner or tihial cuneiform bone.

The muscle which has the relative position and origins of the flexor longus pollicis, sends its tendon by the usual route to the sole of the foot, where it divides and distributes a flexor tendon to all the toes except the rudimental hallux; it has the same disposition in the Opossums, where the hinder thumh or great toe is fully developed: for this modification, however, the Comparative Anatomist is already prepared by meeting with such common office of the muscle in the first step from Man, viz. in the Orang, Gorilla, and Chimpanzee.

The third deep-seated muscle, being situated internal to the two preceding ones, may be the homologue of the flexor digitorvim communis longus; it nevertheless sends no tendon to the toes nor even to the tarsus, but its fibres pass from the tibia obliquely outward and downward hetween the preceding muscle and the interosseous ligament to the fibula, where they are exelusively inserted so as to

Muscles of log, Phalangista vul! in $z_{\text {. }}$ oppose the plantaris and rotate the foot outward. This muscle closely adheres to the interosseous fascia, and thus resembles in its
attachments the pronator quadratus of the fore limb: it is most developed in the pedimanous climbing Marsupials, where the rotation of the foot is more frequent and extensive.

Fig. 5 shows this modification of the muscles of the hind-foot in the Phalangista vulpina; a, is the expanded tendon of the sartorius; b, gracilis; c, semitendinosus; and d, semimembranosus ; both these muscles are inserted, as in many other quadrupeds, low down the tibia: e, gastrocnemius ; f, plantaris ; \dot{g}, the homologue of the flexor longus pollicis pedis; h, tibialis posticus; this muscle divides and is inserted by two tendons, h^{\prime} and $h^{\prime \prime}$: into the internal and middle cuneiform bones; i, the rotator muscle of the tibia.

In the muscles on the anterior part of the leg, the extensor brevis digitorum has its origin extended into this region, and is attached to the outside of the fibula. There are three peronei; the external one is inserted into the proximal end of the fifth metatarsal: the tendon of the middle peroneus crosses the sole in a groove of the cuboid like the peroneus longus: the internal peroneus is an extensor of the outer or fifth toe. The Perameles layotis, among the saltatorial Marsupials, presents a different condition of the extensors of the foot from that above described. The gastrocnemii, soleus, and plantaris all arise above the kneejoint, and the tendon of the plantaris, after sheathing the tendo Achillis and traversing the long sole, is finally inscrted into the base of the metatarsal bone of the fourth or largest toe; thus this muscle, which is strongly developed, bends both this toe and the knee, while it extends the foot.

In the Kangaroo the flexor of the toes riscs from the outer tuberosity of the tibia, its fleshy part covers the back of the leg beneath the soleus, the tendon passes to the sole and divides into a large tendon for the principal toe, fig. 211 , $i v$, a smaller tendon for the outer toe, v, and a still smaller tendon which goes to the two slender inner toes. Tbe muscle seems to combine the homologues of the flexor hallucis and flexor digitorum, with, perhaps, also that of the tibialis posticus.
§ 195. Muscles of Lissencephala.-The oRodentia closely resemble the Marsupialia in their muscular system; with like modifications according to the absence or presence of clavicles, and to the gradatory, saltatory, scansorial, and fossorial movements of the species respectively. They have not the marsupial modifications of the cremaster and abdominal muscles, nor the rotatory muscle of the tibia; but certain Rodents show peculiarities of the masseter which will be noticed in connection with the organs of mastication.

The Insirfirora afford examples of special muscular developement in the fore part of the trunk and pectoral limbs of the Mole, fig. 6, and in the muscles which act upon the prickly skin of the Hedgrehog, figs. 7 and 8.

The dermal muscles are powerful and extensive in all Inscetivora: in the Mole (Talpa curopaa), fig. 6, the insertion of one of these is scer at a : it assists in retracting the trowel-like

Fifuscles of the fore part and limbs of a Mule (Talpa europaa). ELII.
fore limb; and, when this is the fixed point, draws forward the pelvis and thigh. The muscles of the scapula are singularly dcveloped and modificd: the trapezius operates upon the short base of the clongate bone with great advantage. The anterior portion, d, arising from the occiput, derives further strength from the ossificd 'nuchal ligament,' and is inserted at e : the part answering to tho posterior fibres of the muscle, f, arizes as far back as the lumbar vertebre to be similarly inserted into the basc of the scapuln, antagonising the former. The 'splenius capitis,' h, deriyos fibres from the nuchal style, as well as from certain dorsal and cervieal vertebre: it is inserted into the paroccipital region of the cranium. The sterno-mastoid, g, joined by a 'cleido-mastoid' from the cubical clavicle, is a very powerful muscle which expands to be insortcd into the lateral part of the smperoceipital and fascia covering the mandibular angle. The dettoid, k, coextensive with
tbe scapula, acts tbrough its length with great power upon the well-developed bumeral ridge. Tbe 'teres major,' l, commencing at the tbickened base of the scapula, and deriving fibres from the lower facet of that triedral bone, combines to be inserted into the humerus with part of the latissimus dorsi, m; a strip from which muscle is extended to the olecranon. The triceps, o, arising from both scapula and humcrus, is extremely broad and thick, calling for an cxtended olecranon for adequate inscrtion. Part of the powcrful flexors of the band (\mathcal{f}. digitorum, q, f. carpi ulnaris, r), and part of the extensors, t, are shown in this view. The pectoralis consists of five thick fasciculi, four of whicb rise from the sternum, and one from the clavicle: they converge to be implanted into the great humeral 'crista pectoralis: 'to these is added a fasciculus of whicb the homologue may be traced in - Cetacea and Ungulata, passing transversely from one insertion of the pectoral to the other, and serving to combine both trowels in vigorous fossorial action. Of the muscles of the jaws the 'temporalis' is shown at b, and the 'masseter' at c.

The Hedgebog (Erinaceus) manocuvres its armour of spines by means of powerfully developed and specially arranged cutaneous muscles. By putting any part of the integument on the stretcb, the spines are erected, and their points held firm against the assailant: by the same act of stretching the skin, the proportion

thereof to whicb the prickly armour is restricted can be drawn over the wbole of the exposed surface of the animal, which in this act rolls and squeezes itself into the shape of a ball. In fig. 7, the Hedgebog is dissected as in the ordinary posture, or unrolled. Tbc layer of muscle, $a, a^{\prime}, a^{\prime}$, consists of concentric fasciculi, tbin over the middle of the back, a, and becoming thicker toward the peripbery, $\alpha^{\prime}, \alpha^{\prime}$, which is well dcfined. All the
fibres are closely attaehed to the dcrm, and to the fibrous capsules of the roots of the spines. To the circumferenee of this eircular musele are attached shorter ones at right angles: a pair of these, b, arise from the caudal diapopbyses, pass forward and expand to interblend with the posterior peripbery: a seeond pair, d, witb attachments to the nasal and premaxillary bones, pass baekward over the forehead to the anterior periphery: a third pair, e, arising from the fore part of the sternum, pass forward and outward, diverging, and aseending in front of the sboulder to the antero-lateral part of a. A muscle, c, from faseia cxternal to the mandibular angle, ascends between the auditory meatus and the eyeball, and combines witb d in operating on the fore part of the great orbicular muscle.

When the Hedgehog assumes its offensively defensive position it bends and retracts the head and draws forward the pelvis, eurving the back, as in fig. 8: the converging slips h, c, d, e, pull down the orbieular muscle, which relaxes to slip over the projecting parts: the peripheral part, a^{\prime}, a^{\prime}, having descended below these, contracts, and encloses the bead, limbs, and body, in an orbicular form. In resuming the normal position the sphincter relaxes, the head is rotated forward, the pelvis and tail are drawn back, the limbse begin to extend themselves: the orbicularis, a^{\prime}, a^{\prime}, is pushed up beyond the meridian, and then eontraets, disposing itself, after full extension of the parts beneath, upon the dorsum of the animal, as in fig. 7. Superficial sheets of musclc, extending from the shoulder joint backward, s, and over the abdoninal region, g, concur with the aboye-described in the motions of rolling and unrolling the animal. One of the lateral muscles of the snout is shown at m, the masseter

Orblcutarls dermal muscle, 具edgehog, hatf anrolled. at c.

In the order Bruta the most notable modifieations of the muscular system are met with in the Λ nteaters.

On reflecting the skin from the under part of the head in Myrmecophaga jubata, there is seen a fcehle developement of a panniculus carnosus in the form of thin transverse fasciculi occurring at intervals of from two to three inches, where they underlie the rami of the slender elongated under-jaw. These muscular strips (dermogulares) have their attachments exclusively in the integument, and aid in accommodating its movements to the alternating expansion and contraction of the great gular dilatation near the base of the tonguc. The transverse fasciculi are crosscd by a longitudinal strip of cutaneous muscle (dermolubialis posticus) on each side of the under part of the head and neck; the strip emerges from beneath the fore part of the great subpectoral gland; it diminishes in hreadth and increases in thickness as it extends forward, assuming near the mouth the character of a muscle independent of the skin, where, passing beneath the tendon of the retractor anguli oris, it is inserted into, or blends with, the fibres of an accessory portion of the orbicularis oris.

A shorter longitudinal muscular strip (dermolabialis anticus) arises from the integument below the fore part of the preceding muscle, hecomes free as it advances, and is inserted into the proper orbicularis oris.

The flattened and slightly separated fasciculi of the dermoabdominalis arise from the fascia covering the anterior and infcrior part of the sternum and contiguous sternal ribs; also from a median raphé of the subcutaneous fascia, attached to the linea alba, and extending two-thirds of the way towards the puhis. The anterior two-thirds of the above muscular sheet are joined by a broad layer of similar flattened fasciculi covering the side of the thorax, and the muscle so formed passes obliquely downward and outward, converging to form a thick fleshy band, about two inches broad, which is continued along the inner and upper part of the thigh, and becomes slightly twisted prior to its attachment to the aponeurosis covering the knee-joint.

The posterior portion of the dermo-abdominalis consists of thinner and more scattered flattened fasciculi which pass outward and downward, and, as they diverge from the median line, are lost in the subcutaneous fascia covering the tendinous expansion of the obliquus externus abdominis. Between the dermo-abdominatis and the proper abdominal muscles there is a moderately thick laycr of elastic cellular tissue.

In the dissection of the head of the Great Anteater, three pairs of long and slender muscles are met with, which relate to the novements of the head.

The sternocervicalis arises from the upper and outer angle of the manubrium sterni, close to the inner (mesial) side of the sternomaxillaris, by a thin tendon, which soon becomes fleshy, and the slender muscle gradually contracts to be inserted into the fourth cervical vertebra.

The sternomastoideus arises from the outer angle of the manubrium sterni, by a tendon which, at one inch from its origin, becomes a fleshy flat muscle; this gradually increases in thickness to a rounded form, then contracts, and forms a tendon inserted into the paroccipital.

The sternomaxillaris arises from the inner side, near the upper and outer angle of the manuhrium sterni, and from the manubrial fascia, central of the clavicular fascia, and of the origins of the sternomastoideus and sternocervicalis. Its origin is by a flat short tendon: an aponeurosis passes from one tendon to that of the fellow muscle. The fleshy part forms a long slender band, which passes forward, and, about four inches from its origin, sends off a slender fleshy strip to the ceratohyoideus. It then advances as a slender round fleshy muscle, which degenerates into a subcompressed tendon about half an inch in length, opposite the compressor salivaris. Resuming its fleshy structure, it forms an anterior subcompressed belly, ten inches in length, and from four to five lines in diameter. This gradually contracts, and terminates in a slender tendon three inches long, which expands to be inserted into the outcr and under part of the maxillary ramus, six inches in advance of the angle of the jaw.

To the action of the pair of muscles so inserted is mainly due that characteristic movement of the head of the Great Anteater when it composes itself to sleep, and draws its head downward and backward between the fore-limbs, in contact with the chest. The mouth is small, and susceptible of so slight an opening as not to require for that action the usual modification of this part of the sterno-cleido-mastoideus muscle.

The proper muscles of the jaws consist of the temporalis, the masseter, and the pterygoidei. The clief peculiarities of the muscles in the present species relate to the uuusual developement and movements of the tongue. The mylohyoideus is of unusual cxtent, and is divisible into different portions: two of these represent the normal mylohyoideus, and extend from the symphysis mandibulo backward as far as the ascending ramus of the jaw. A third portion arises fleshy from the inner side of that ramus, whence its fasciculi radiate toward the middle line, in a sorucwhat twisted coursc, the anterior oncs passing beneath the
second or normal part of the mylonyoideus. The fourth portion at its anterior part arises from the angle of the jaw, then from the base of the cranium, and afterward from a strong fascia extended thence backward, between the post-cranial prolongations of the nose and mouth ; the posterior and longest fasciculi come off more outwardly, and radiate to spread over and blend with the gular fasciculi of the sternoglossi, passing outward and downward, and then bending inward to envelope that part of the hyoid apparatus. All the fibres of the fourth portion terminate in a median raphé, which is less marked than in the anterior portion. The fibres of the posterior division of the mylohyoideus, especially those which are attached to the under surface of the posteriorly prolonged nasal canal, form a kind of muscular sheath for the basal part of the muscles of the tongue.

The cerato-hyoideus arises from the cerato-hyal: its fibres converge and form a fasciculus which is inserted into the commissural tendon of the genio-hyoid, and is connected with a strip from the sternomaxillaris. After giving attachment to the foregoing two muscles, and to the anterior constrictor of the pharynx, its extremity is attached to the stylo-hyoideus muscle.

In most mammals the hyoid arch, by the length of the ossified part of the stylohyal and the extent of the ossification of the ceratohyal is almost restricted to hinge-movements forward and backward upon the proximal joints of the stylohyals as a fixed point; so that the basihyal with the tongue cannot be very far protruded or retracted. In the Myrmecophaga jubata the usual place of the stylohyal is occupied by a long and slender muscle, the stylohyoideus, which arises from the petromastoid, and after a course of five inches is inserted into the ceratohyal, here the first bone of the hyoid arch. Supposing the stylohyoideus to contract one-third of its length, it would protract the hyoid arch to the same extent: in which act it combines with the geniohyoideus. The retraction of the hyoid arch is provided for by the sternothyroidic and their continuations, the thyrohyoidei.

The geniohyoideus arises by a single tendon from the symphysis of the jaw, runs back beneath the raphé of the anterior mylohyoideus, slightly expands beneath the raphé of the middle mylohyoideus, then again contracts and again expands, and at about ten inches from its origin becomes diffused into fleshy fibres, which gradually acquire a breadth of six lines, continue back in close connection with the mylohyoideus to the commissural tendon, and there expand, the lateral borders being attached
thereto. Herc a mid-line of separation appears, and the musele bifurcates into two tlat fasciculi, which are inserted into the angles of the basihyal.

The sternothyroidei, fig. $9, p, p$, come off from the sixth, seventh, and eighth sternal bones, and from the seventh and eighth sternal ribs near their articulations therewith. The interthoracic extent of these muscles is six inches. Behind the manubrium the left muscle sends off a small fasciculus of fibres to the right one, and the right reciprocally to the left. Where the decussation takes place there is a tendinous interseetion at the fore part of the muscle. In advance of the interchange of fasciculi the sternothyroidei diverge and emerge from the chest, beyond which cavity they are fleshy throughout their extent, and are inserted into the lower and fore part of the thyroid cartilage.

Sternoglossus, ib. g, i. This remarkable muscle arises fleshy from the lateral border of the dilated xiphoid and last sternal bone, and from its junction with the last two true ribs. Linear tendinous intersections mark the part of the muscle within the chest. Lmerging from beneath the manubrium, it advanees as a flat fleshy musclc. Opposite the hyoid it is perforated by a lingual artery, between four and five inches in advance it is perforated by the lingual ncrve, h, and here its inferior stratum is resolved into flattened fasciculi of fibres which decussate or combine with those of the opposite muscle. About six inches in advance of the basihyal these fasciculi spread over a dilated membranous portion of the buccal cavity, at the lower part.

Muscles of Tongter wrent Autcater.
of which the base of the tongue is situated, and here they converge and blend with corresponding flattened fasciculi, sent off from the lower part of the genioglossi, as these pass backward to the base of the tongue. The main continuation of the sternoglossus, i, forms a rounded slender musele, which raises the buccal nembrane so as to form the back part of the frænum linguæ; penetrates the baek part of the hase of the tongue, and eonstitutes a great proportion of its substanee.

The genioglossas, ib. m, n, n, has a complex origin, by a middle portion, from the short symphysis mandibulx, and by a flattened peuniform series of fibres, form the lower border of the mandibular rami for the extent of four inches belind the symphysis. The symphysial origin is round and slender, and belongs more directly to the proper tongue-musele: the ramal origins seem to be the more special fixed point of the subgular fasciculi. The fibres of the latter origin pass obliquely backward and inward, converging to a middle raphé, to which the symphysial origin elosely adheres. The two origins of the nuscle are blended into one for about three inches beyond the point of attachment, in which extent the muscle forms a noderately thick depressed mass along the middle of the under part of the mouth. It then begins to expand, and to detach from its under surface those subgular fasciculi, which diverge and unite with the corresponding dismemberments of the sternoglossi. The main part of the genioglossus enters, as a single muscle, the fore part of the base of the tongue, carrying into the floor of the mouth a fold of buccal membrane forming the fore part of the frænum lingur.

Beneath the insertions of the geniohyoidei, a pair of more slender museles, epihyoglossi, come off from the median ends of the epihyals. These muscles, after a brief course, expand into a thin layer, resolve themselves into separate fasciculi, and combine an inch in advance of their origin to form a layer about eight lines in breadth below the middle line of the post-lingual part of the mouth, which layer slightly diminishes in size as it approzches the commissure of the sternoglossi, and, with them, penetrates the back part of the frenum lingux.
§ 196. Muscles of Cetacea.-In the Cetacea the muscles of the trunk are chiefly developed : those of the limbs are restrieted to the pectoral pair. Swimming is the principal mode of progression in the muticate orders of Gyrencephala: but the phytophagous Sirenia have the power, in order to feed upon marine or littoral plants, of crawling at the bottom of the sea and shuffling along
the shore by means or aid of their anterior members, which in the true Cetaeea are exclusively natatory organs.

The head, in these, has so little mohility, that its axis can be but slightly altered, without that of the hody altering also. With bones so short, so little mohile, and extensively co-adapted or anchylosed, as the vertebro of the neck, museles proportionately redueed should eorrespond. The cervical muscles are, nevertheless, mueh the same in number as in other Mammals; but their shortness and thinness, principally in those attached to the atlas and the axis, are extreme. The homologue of the 'splenius capitis,' fig. 10, h, is the best developed: it comes off from the anterior dorsal and eervical series of neural spines, and its fihres converge to be inserted into the paroccipital ridge.

The muscles of the back present no other important modifications than their great developement, especially where they are prolonged upon the caudal vertebra. Thus the longissimus dorsi and the sacro-lumbalis are attached anteriorly to the skull, and postcriorly transmit their tendons, the first to the end of the tail, the second to all the transverse processes of this part of the spine, associating its movements, especially in the vertical direction, with those of the back. The levator caude takes its rise above the five or six dorsal vertebra, under the longissimus dorsi, and often in this part hlends with it; it then extends freely as far as the extrennity of the tail, where the two muscles unite together again by their tendons. They are opposed by a depressor caudce, of great thickuess, which proceeds from the thoracic region, attached by tendinous slips to the ribs and the contiguous transverse processes; it is inserted into the hrmal arches of the tail. A muscle passes from the rudimental bones of the pelvis to the hæmapophyses of the anterior portion of the tail. The great recti abdominis and obliqui ascendentes muscles are continued backward from the ahdomen, and attach themselves hehind to the sides of the anterior caudal vertcbra. By this aggregation of muscles the tail of the Cetacca expands to proportions of the trunk, and acquires the prodigious strength which it possesses for propelling the most gigantie of the species, with ease and swiftness, through the water; and, hy means of the horizontal expansion of the caudal fin, it enables them to readily ascend to the surface to respire and again seck protection in the deep abysses of the ocean.

In the great pectoral muscle, part of which is shown in fig. 10, at g, the costal origin is extensive, and the portion which comes off from the short sternum, passing transversely each to its own
humerus, closely resembles the transverse connecting fasciculus in the Mole.
The muscle answering to 'levator scapulx,' b, rises from the paroccipital, as well as from the cervical diapophyses: it expands to be inserted into the fore and upper angle of the scapula

and the fascia covering the 'infraspinatus:' it is a protractor, or forward rotator, of the scapula. The 'rhomboideus,' a, is the raiser of the blade-bone. Two strong muscles attached to the paroccipital and mastoid, pass, onc, e, to the sternum (sternomastoideus), the other to the humeral tuberosity (sterno-humeralis). The ' Iatissimus dorsi,' f, is short and slender, coming off by a few digitations from the ribs, and inserted into the humerus and by an extended aponeurosis into the olecranon. The 'supraspinatus' is small: it is covercd by the 'deltoid,' i. The 'infraspinatus,' c, is a broad and thin shcet of muscle. Behind it is a 'teres major,' k, also of broad and flat form; and a thick and narrow ' teres minor,' l. The 'serratus magnus' does not extend forward beyond the ribs of the dorsal vertebre.

In the Ungulate scries the muscular system has been traced out in both Pcrisso- and Artio-dactyle species, but most completely in the Horse, figs. 11-13. In this sensitive quadruped the dermal muscles are well developed, enabling it to shake the
whole skin, rattling the harness which may be attached thereto, and to vibrate particular portions on which an insect or other irritant may have alighted. This 'panniculus carnosus' is thick upon the neck, whence it passes downward, becoming 'aponeurotic' upon the fore-limh: the sheets upon the sides and fore part of the trunk send a flat tendon to he inserted, with that of the latissimus dorsi, into the humerus: and other fasciculi pass downward over the muscles of the antibrachium, and

Myology of the Marse, $\mathbf{I N}^{\prime \prime}$.
terminate in a fascial expansion over the carpo-metacarpal scg-- ment. The postcrior part of the panniculus spreads over the loins, and, descending, degenerates into an aponeurosis, which forms, in the male, a sheath for the penis: the hinder portion encases the rump and thigh in a strong carnco-aponeurotic covering, which accompanies the fascia lata to the hind leg. On removing the panuiculuș carnosus, the superficial proper
muscles of the trunk and limbs are exposed, as in the side view, fig. 11 .

The 'spinalis dorsi' repeats closely the characters of that muscle in Man. Its continuation, the 'spinalis cervicis,' is in the Horse of great strength and importance: its origin commences from the second dorsal spine, which origin is eontinued for ahout one-third of the way down that spine toward its root: it arises likewise from the third dorsal spine and the ligamentum nuchæ; from these origins it runs forward to be implanted hy strong and distinct tendons into the spines of the anterior cervical vertebre.

The ' longissimus dorsi' is situated immediately external to the spinalis, taking its origin from the common mass of muscle that arises beneath the lumbar fascia, as well as from the spinous processes of the loins and sacrum, whence it runs forward to he inserted by a douhle sct of tendons into the transverse processes of the loins and hack, and also into the posterior ribs near their angles. Its continuation, the ' transversalis colli,' consists of very powerful fasciculi, inserted respeetively into the diapophysial parts of the last five cervical vertehre.

The 'sacro-lumhalis' arises, in conjunction with the latissimus dorsi, from the back of the sacrum, and also by flat tendons from all the rihs, except two or three of the most anterior; and its slips are inserted hy as many distinct tendons into the inferior edge of all the ribs, except two or three of the hindmost, and also into the transverse proeess of the seventh eervical vcrtebra. The continuation of this muscle, the 'cerviealis ascendens,' is chiefly remarkahle for the strength of its tendinous insertions into the middle vertebræ of the neck.

The 'multifidus spinæ,' in the dorsal region, arises by numerous tendons from the metapophyses of the sacral, lumhar, and dorsal vertehre ; each slip running forward to he inserted into the neural spine of the vertehra in front of that from which it derives its origin, the whole forming a thick mass, which fills up the hollow situated hetween the spinous and transverse processes. In the neck a similar disposition exists.

Besides the ' intertransversarii colli,' there is a series of musclcs arising from the prezygapophyses of the first dorsal and five last cervical vertehro, and inserted, severally, into the side of the centrum in advance: they are called hy Stuhhs 'intervertebrales.'

The 'longus colli' arises from the transverse processes of the third, fourth, fifth, and sixth vertehra of the neck, from which origins it runs upward to he inserted hy distinct tendons into the
anterior part of the bodies and transverse processes of the vertebra above them, and into the anternor surface of the atlas.

The museles which raise or straighten the tail are the following:-

The 'sacro-coccygeus superior' arises from the third and succeeding sacral spines, and from those of the anterior caudal vertebre. The fleshy mass formed from these origins gives off numerous slender tendons: the first of these is the shortest, and runs inward to be inserted into the base of the first caudal vertebra, in which the articular apophyses are wanting. The second tendon is inscrted in a similar manner into the succeeding vertebra; the third into the next, and so.on to the end of the tail. Each tendon is lodged in a sort of ligamentous canal, which forms a sheath for it throughout its whole course. When these two muscles act in concert the tail is raised.

The "interspinales superiores" form a continuation of the interspinous series of vertebral muscles; but as the spinous processes of the tail are short, and soon replaced by tubercular rudiments of the neurapophyses, these muscles are here disposed obliquely, being more widely separated posteriorly than they are in front.

The muscles which depress the tail all take their origin in the interior of the pelvis, and are prolonged to a greater or less extent along the inferior aspect of the tail. They form four pairs of series of muscles, called the 'ileo-coceygei,' and 'sacro-coccygei inferiores;• the latter are the more direct antagonists of the sacrococcygei superiores, and their tendons are received into sheaths resembling those upon the upper surface of the tail, and are inserted successively into the base of each caudal vertebra, beginning about the seventh.

The muscles adapted to move the tail laterally are arranged in two sets; the 'ischio-coccygei externi,' a few fibres of which, in the Horse, are connected with the termination of tlie rectum and the 'intertransversales."

The muscles derived from the vertebral ealumn which serveimmediately for the movements of the cranium have nearly the same origins as in the human subject, but are comparatively of much greater strength, owing to the inclined position of the head with respect to that column. They may be divided into such as proeeed, 1st, from the atlas; 2nd, from the axis ; and, 3rd, from the posterior cervical vertebre and ligamentum nuchæ. To the first set belong

The 'rectus posticus minor,' 'rectus anticus,' 'rectus lateralis,' and 'obliquus superior.'

The muscles derived from the axis are the rectus posticus major ' and the 'obliquus inferior.'

The - complexus' commences from the prezygapophyses of the third cervical vertebra, continues its origin from all those of the neck below that point, as well as from those of the first dorsal: also by a strong tendon from the transverse processes of the second and third dorsal vertebre: from these origins it runs forward to be inserted by a strong round tendon into the super-occipital close to its fellow of the opposite side : in this course it is connected by numcrous tendinous processes with the ligamentum nuchx.

Tbe 'trachelo-mastoideus' arises from the oblique processes of the third, fourtb, fifth, sixth, and seventh cervical and first dorsal vertebre, and from the transverse processes of the second and third vertebre of the back ; it runs forward external to the lastnentioned muscles to be inserted by a strong tendon into the paroccipital. Tbe above muscles are overlapped by the "splenius capitis,' which, arising by strong tendinous processes from the spinous processes of the two superior dorsal and two last cervical, and also cxtensively from the ligamentum nuchæ, runs forward to be inserted into the transverse processes of the fifth, fourth, and third cervical vertebre, and into the transverse ridge of the superoccipital.

The muscles of the ribs and sternum present, in the Horse, a disposition little diffcring from that of the corresponding muscles in Man: they are the 'scaleni,' the 'intercostals,' the 'levatores costarum,' the 'serratus posticus,' d, and ' serratus anticus,' l, and the ' triangularis sterni,' the two latter of which must be regarded as depressors of the ribs, and consequently acting the part of muscles of expiration.

The walls of the abdomen are composed of five pairs of muscles, to which the same names are applicable as are bestowed upon them by the anthropotomist; but the rectus abdominis is much more extensively developed. Arising from the os pubis, it passes forward enclosed in its usual sheath to be inserted into the ensiform cartilage and into the cartilaginous terminations of the third, fourth, fifth, sixth, seventh, eigbth, and ninth ribs, and also into the sternum between the cartilages of the third and fourth ribs. Tbere arc even fleshy fibres derived from this muscle prolonged as far forward as the articulation between the first rib and the sternum.

Muscles of the anterior extremity. The 'trapezius' consists
-of that part only which is called the ascending portion in the human subject, and which is inserted into the posterior margin of the spine of the scapula. The 'sterno-mastoid' is present, hut the 'levator anguli scapulæ,' the cleido-mastoid, and the clavicular portions of the trapezius and deltoid are all replaced by the muscular expansion which, taking its origin from the paroccipital and from the transverse processes of some of the superior cervical vertehræ, passes downward in front of the head of the humerus and descends along the inner surface of the fore-arm, into which it is ultimately inserted.

The 'trachelo-acromialis' ariscs from the transverse process of the atlas and of the four following cervical vertebre, descends toward the shoulder-joint, making its appearance externally hetween the two divisions of the trapezius, which it separates; it then spreads out over the acromial portion of the scapula, and descends as far as the middle of the lumerus. This muscle draws the shoulder upward and forward in the Tapir, and is implanted into the aponcurosis which covers the deltoid: while, in the Horse, it has its insertion into the middle portion of the humerus by two aponeurotie tendons, which emhrace the hrachialis internus muscle.

The 'serratus major anticus' arises from the transverse processes of the third, fourth, fifth, and sixth cervical vertehro, and also from the external surfaces of the six superior ribs: its origins extending as far hackward as the insertion of the tcndons of the sacro-lumhalis: from this extensive origin it passes hackward around the chest to be implanted into the hase of the scapula, its insertion occupying nearly lialf of the internal surface of that bone. It forms, with its fellow on the opposite side, a kind of sling, hy which the trunk is suspended.

The 'pectoralis minor' is represented hy a muscle, which, arising from the sternum and from the first, second, third, and fourth rihs near their sternal terminations, runs upward and hackward to he inserted into the superior costa of the scapula near the hase of that hone; it also contracts tendinous attachments with the aponcurotic covering of the teres miuor and other scapular muscles.

The 'rhomhoideus' arises entirely from the ligamentum nuchx, and from the spines of the anterior dorsal vertehræ, whence it runs outward to he affixed to the hase of the scapula.

The 'omo-hyoidcus' is representcd hy a strong muscular fasciculus, from the coracoid tuhercle.

The 'sterno-mastoideus,' or sterno-maxillaris, arises from the anterior end of the sternum, and, running forward strong and fleshy, is inserted by a flat tendon into the inferior maxilla

12
 underneath the parotid gland, sending, however, another tendon to be implanted into the root of the paroccipital.

Muscles inserted into the humerus.

The ' pectoralis major,' from the aponeurosis of the external oblique, from the two hinder thirds of the sternum; and from the fore part of the sternum. The first of thesc portions winds round to be inserted into the head of the humerus; the second ends in a fascia, which descends over the fore-arm, while the third, running in a transverse direction over the inferior portion, is inscrted into the humerus along with the 'Ievator humeri proprius' between the biceps and the brachialis internus: a part of the stermal portion joins the corresponding portion of the opposite side to form the 'muscle common to both arms,' by the action of which the two fore-legs are made to cross each other.

The 'latissimus dorsi' is powerfully assistcd in its action by the cutaneous muscle already described, a strong tendon from which is inserted into the humerus along with that of the latissimus dorsi. Both are intimately connected with the tendon of the teres major, and from this combination of tendons arises one of the heads of the triceps extensor cubiti.

The 'supraspinatus,' the 'infraspinatus,' the 'subscapularis,' the 'teres major,' and the 'teres minor,' with similar attachments,
differ in their proportions from those in the human subjeet, dependent upon the shape of the scapula.
'The 'deltoid' extends forward in nearly tbe same direetion as the infraspinatus, and has been named by hippotomists the abduetor longus braebii.' The 'eoraeo-braehialis' takes its origin from the tubereular remnant of the eoracoid situated upon the superior eosta of the seapula: the bieeps has but one origin, with which the eoraco-brachialis is in no way conneeted. 'The 'brachialis internus,' fig. 12, w, bas the same arrangement as in the liuman subjeet: it is the 'short flexor of the fore-arm.' The 'triceps extensor cubiti,' fig. 11, c, consists of three portions similar to those named in the liuman anatomy the long extensor, the short extensor, and the brachialis externus: thore is also a fourth portion, derived from the common tendon of the latissimus dorsi and teres major, by the intervention of which it takes its origin from tbe inferior margin of the seapula.
Λs might be expected from the construction of tbe bones of the forearm, both the prouator and supinator museles are wanting. The ' extensor earlpi radialis,' fig. 11, a, b, is here single, arising from the anterior part of the external condyle of the humerus, and from the external surfaee of that bone for a considerable distance: it forms a strong fleshy belly, terminating in a powerful tendon, which runs to be inserted into the base of the anterior surface of the metacarpal. This musele seems, from the extent of its origin, to represent the long supinator and the two radial extensors of the wrist eombined, and ail three thus co-operate in the extension of the wrist. There is but one "flexor carpi radialis,' fig. $12, p$; it arises from the external condyle of the humerus, and is inserted into the posterior surface of the base of the metaearpal, forming the antagonist to the preceding musele. The 'Hexor earpi ulnaris' arises from the posterior part of the external protuberance of the os humeri, and also by a distinet head from the protuberance situated above the internal condyle; its tendon is inserted into the pisiform bone and into the base of the rudimentary metaearpal beneath it. The 'extensor earpi ulnaris' arises from the posterior part of the external condyle of the humerus, and is inserted, like the preceding, into the os pisiforme, whence it is prolonged beneath the carpus, so as to perform the office of a flexor of the wrist. The ' extensor communis digitorum, fig. 11, h, arises from the external eondyle of the humerus and from the contiguous faseia, also from vol. III.

D
the upper and lateral part of the radius; its fleshy belly is strong, and terminates in a single tendon, which runs over the foot to be inserted into the last phalanx, having previously

Ligaments of the fore-limb, Horse. $1 t^{-*}$.

Deep muscles of the thigh and ligaments of the pelvic limb of the Horse, $\mathrm{In}^{\prime \prime}$.
given off a slip to join the tendon of the extensor minimi digiti.

The ' extensor proprius minimi digiti' is represented by two muscles: one of these, called the 'extensor of the pastern,' fig.
$11, q$, is inserted hy the intervention of a strong tendon into the side of the first phalanx of the functional toe. The second musele, placed hetween the above and the preceding muscle, furnishes a similar tendon, which, after passing in front of the carpus, hccomes united at an acute angle with that of the former, the two co-operating with each other in extending the foot. The tendon of the 'abductor longus pollicis' is implanted into the internal surface of the base of the metacarpal, so that it thus becomes an extensor of the foot: it is the 'ohlique extensor of the cannon' in Hippotomy. The 'flexor digitorum suhlimis perforatus' and the 'flexor profundus perforans' arise in common from the internal protuherance of the os humeri, and the two are eonfounded together for a considerahle distance, when the two muscles separate to form two distinct tendons; of these, that belonging to the flexor suhlimis, fig. $12, l, m$, runs beneath the annular ligaments of the carpus, to be inserted into the base of the proximal phalanx, previously dividing to give passage to the tendon of the profundus, i, on its way to be implanted into the last phalanx.

The following are the principal ligaments of the fore-limh, fig. 13; a, the ' post-scapular,' c, the ' preseapular,' which extend the basc of attaehment of scapular muscles; b, the ligamentous hand strengthening the fore part of the capsule of the shoulderjoint; k, similar ligaments strengthening the capsule of the elbow-joint; e, e, internal lateral ligaments of the successive joints; d, 'pisiform' ligament; c, ligament from the inner splint-bone (metacarpal II) to the sesamoid behind the metacarpophalangial joint ; o, 'outer cartilage of the hoof; ${ }^{\prime} p$, inner cartilage of the hoof.

Muscles of the hind-limb. The ectogluteus is a comparatively slender muscle, deriving its principal origin from the saeral fascia, but also reinforced hy a long slender fasciculus, which descends immediately from the upper portion of the ilium. Its insertion is into the third trochanter and external rough surface at the upper part of the thigh bone, and also hy strong tendinous aponeuroses into the fascia lata.

Thie 'mesogluteus,' fig. 11, v, is the principal muscle in this region ; it ariscs extensively from the saero-iliac aponeurosis, and from the extcrual surface of the ilium; it is implanted into the outer surface of the grcat trochanter, and is prolonged, by means of n strong postcrior fasciculus, toward the lower extremity of the femur.

The other muscles inserted into the great trochanter-namely,
the 'entogluteus,' fig. $12, f$, the 'quadratus femoris,' the 'obturator externus,' the "ohturator internus,' the • gemelli,' and the 'pyra-midalis'-present a disposition similar to that which they have in the human hody.

The muscles passing hetween the pelvis and the lesser trochanter, and also those that arise from the pubis to he implanted into the internal surface of the thigh, are the 'psoas magnus,' the 'iliacus,' the ' pectinæus,' and the 'triple adductor,' fig. 12, p.

The flexor muscles of the lcg are the 'biceps flexor cruris,' the 'scmimembranosus,' the "semitendinosus,' the 'sartorius,' the gracilis,' and the 'poplitæus,' all of which are enclosed hy the dense fascia of the thigh, which is kept tense by the action of a tensor vaginæ femoris.' The last-named muscle, called also the ' musculus fasciæ latæ,' arises from the anterior portion of the crest of the ilium, whence it descends ohliquely downward, enclosed hetween two layers of the fascia, covering the thigh, into which it is strongly inserted.

The extensor muscles of the leg-viz., the ' rectus,' fig. 11, h, the ' vastus internus,' fig. 12, 7, the 'vastus externus,' fig. 11, n, and the 'cruræus'-offer in all quadrupeds the same general disposition as in Man, the three last forming one great common muscle, trifemoro-rotuleus.' The anterior margin of the thigh is formed by the 'sartorius,' which here, from its position and office, has hecn named hy hippotomists the 'loug adductor of the thigh.'

The 'hiceps cruris' arises hy a single origin, which is derived from the ischium, and the neighhouring ligaments and fascial expansions. This muscle covers a large proportion of the outer surface of the thigh : its principal insertion is into the head of the fihula, hut it likewise throughout its whole length contracts extensive and important attachments with the fascia lata, so that it also becomes a powerful cxtensor of the thigh. There is, however, a distinct portion of the hiceps derived from the sacrosciatic aponeurosis, the filhres of which are directed obliquely from hefore hackward, which, meeting the ischiatic portion at au angle, form with it a kind of raphé, which is prolonged for some distance. This muscle is called * vastus longus' in Hippotomy. The 'gracilis,' fig. 12 , u, is a very considerahle muscle; it is called hy hippotomists the "short adductor of the thigh," whilst they usually give the name 'gracilis' to the semitendinosus. The 'semimemhranosus' and 'scmitendinosus' lave the same origin and general arrangement as in Mau; but both of them are inserted into the tihia hy a hroad aponeurosis, extending much
lower down than in the human subject, a eircumstance whieh causes the leg to be permanently kept in a semiflexed condition.

The 'gastroenemius,' fig. 11,6, is relatively less earneous than in Man: the "solæus' is slender and feeble: but the 'plantaris,' fig. 12, 13, is remarkably developed; it arises from the fossa above the external femoral coudyle: its tendon, 15 , is eontinued down ward, and runs over the extremity of the os caleis, where it is enclosed in a sheath; passing ou from this point, it divides, 18 , to be inserted upon each side of the posterior surfaee of the proximal phalanx towards its inferior extremity, here giving passage between its two insertions to the tendon of the long flexor of the toe, which it serves to bind down elosely to the pastern when the fetlock joint is bent, thus seeming to perform the functions both of the 'plantaris' and of the short flexor of the toes.

The 'tibialis antieus,' fig. 12, 97 , is implanted into the anterior surface of the base of the metatarsal, so as to be an extensor of that portion of the foot. The 'tibialis postieus' is seen at 25 and 26, fig. 12. The 'poplitcus,' ib. 23, is a powerful musele. The three 'peronei' are represented by a single musele, the tendon of whieh beeomes eonjoined with that of the long extensor of the digit, with which, when in action, it co-operates. The flexor museles are reduced to a state of extreme simplicity; the short flexor communis is wanting; the 'plantaris,' as deseribed allove, has a double insertion into the base of the great pastern lone, and presents a similar disposition to that of the flexor perforatus in digitate quadrupeds, while the 'flexor communis longus perforans,' fig. 12, 28, here serving a single tendon, 29, appropriated to the solitary toe, passes on as usual to be inserted into the last phalanx, 30, 31. The homologue of the 'flexor longus hallueis' exists in the Horse, notwithstanding the absenee of the hallux; but, insterd of its usual destination, it here becomes affixed to the tendou of the flexor communis perforans, to which it forms a powerful auxiliary.

The 'extensor communis,' fig. 11, 21, terminates in a single tendon, 26 , which is inserted into the dorsum of the last phalanx of the foot: it receives, however, in its course, a fow fleshy fibres, w, derived from the metnearpal and representing the cxtensor brevis' of unguieulate quadrupeds.

In fig. 14, showing the chief ligameuts of the hind limb, are represented the 'ilizeus internus,' i, k, l, and the 'epieotyloideus,' a, a suall and jeeculiar muscle, which arises by a flat tendon, b, from above the origiu of the rectus eruris, d, and is inserted at the fore and outer part of the neck of the femur, c, below the head:
its fibres are attached to the capsular ligament. 22 is the 'rotulocondylar ligament ;' 22 the 'rotular ligament;' 23 the 'external rotular ligament;' 10 the 'condylo-fibular ligament;' 15 the 'external semilunar cartilage;' 25 the 'calcaneal ligament;' 26,26 , the 'external lateral ligaments ' of the ankle and succeeding joints; ${ }^{27}$ the 'ant-oblique ligament;' 28 the ligament from the outer splint-bone (metatarsal IV) to the sesamoid behind the metacarpophalangial joint: 38 and 39 are cartilages of the hoof.

Muscles of the hyoid arch. The 'sterno-hyoideus' and the 'sterno-thyroideus ' form a single muscle, which divides to be inserted into both the larynx and os hyoides. The 'omohyoideus,' fig. 11, a, is a very strong muscle. The 'stylohyoideus' furnishes a shcath to the longer portion of the digastricus, and extends from the furcate extremity of the stylohyal to the basc of the thyrolyal. There is also a cerato-hyoideus" extending between the thyrohyal and the thyroid cartilage. The 'paroccipito-styloideus' is a short thick muscle, dexived fron the paroccipital, whence it descends toward the angle of the stylohyal, into which it is inserted, above the origin of the stylohyoideus.

Facial muscles. The 'occipito-frontalis' has the usual origin from the posterior part of the cranium, whence, running forward, it covers the skull with its tendinous aponeurosis, and, in front, spreads in muscular slips upon the forehead, some of which, fig. 11, 12, extend downward, to spread over those of the orbicularis palpebrarum.

Situated upon the outer side of the orbit there is another descending slip of muscle derived from the lateral cartilage of the ear, which, by elevating the external canthus of the eye, contributcs to the expression of that organ.

The ' levator anguli oris,' fig. $11, n$, is inserted into the upper lip and margin of the nostril : it has two origins, derived from the surface of the superior maxillary bone, between which the lateral dilator of the nostril and upper lip passes to its destination. The 'zygomaticus" is a depressor of the external angle of the eye, as well as an elevator of the corner of the mouth, its fibres being intermixed with those of the orbicularis palpebrarum, as well as of the orhicularis oris.

The 'long dilator of the nostril, and elevator of the upper lip' arises at a little distance bclow the inferior margin of the orbit; and, passing between the two origins of the levator anguli oris, terminates in a tendon, which becomes connected with that of the opposite side, and then spreads out in front of the upper lip.

From the tendon of the last muselc arises the 'anterior dilator of the nostril,' fig. 11, t, which, acting upon the interior nasal cartilage, powerfully expands the aperture of the nose. The 'orhieularis oris,' fig. 11, o, the 'levator labii superioris,' the 'elevator of the chin,' and the 'depressors of the lower lip, and angle of the mouth,' are well developed.

The anatomy of the limbs of the Horse would he ineomplete without a notice of the structure of the terminal segment of these hest of terrestrial locomotive organs, in the perfection of which the whole meehanical foree is coneen trated on a single hoof.

Vertical section of the madale or functional sigit of the forefoat of the 耳oree. III":

The longitudinal section of the huge finger that forms the foot or 'hoof' of the horse, fig. 15, shows the structure of the three phalanges-proximal 1, middle 2, and distal or ungual 4 , with that of the sesamoid, or nut-hone 3 , adding to the lever-power of the division of the tendon, 7 , of the flexor profundus, going to the last phalanx: the insertion of the tendon of the 'flexor sublimis,' 6 , and that of the tendon of the common 'extensor,' 5 , are also shown. The hoof-box of the ungual phalanx is denser at its periphery, 12 , than at its base, 10, but is not continuous over either surface; the former part is the 'wall,' the latter the 'floor' of the horny or 'insensible ' hoof. The wall, or " external wall,' has the form of a hollow eone ohliquely truncate above, so that it is highest in front, 12, beeoming vertical, and lower as it extends backward, losing density, degenerating partly into the elastic tissuc, 9 , but heing mainly inflected inward, toward the centre of the sole, where it hlends with the horny 'floor,' and forms the 'internal wall:' this supports the superineumhent softer elastie tissue, and partly that ealled the 'frog,' fig. 16, 3, for whiel a triangular space is left between the inflected parts of the 'internal wall.' Thus the posterior part of the periphery and of the floor of the 'hoof" is left uneovered by the horny box, which is accordingly free for a cert:ain degree of elastie expansion and contraction, especially posteriorly. The inner surface of the 'wall' is produced into a
number of subvertical lamella, fig. 17, 3, with which interdigitate corrcsponding lamella, ib. 17, from the periosteum of the ungual phalanx: the first are called the 'horny lamelle,' the second the 'vascular' or 'sensitive lamellæ.' At the interspace between the inflectcd parts or prongs of the 'wall' projects the mass of elastic subcorneous tissue called by the French farriers 'fourche,' and misnamcd by the English 'frog.' In the horizontal section of the hoof, fig. 16, in which a part, 2 , is refected back, the 'frog,' 3 , is seen to extend to the

Transverge section of the hool of the Horse. 112". centre of the sole: its exposed outer surface is the hardest and most horny; but this tissuc is not so thick as some farriers, misapplying the paring-knife, suppose: it gradually passes into clastic tissue: it is impressed at its middle part by the 'cleft of the frog,' and is reflected upon the 'internal wall.' In fig. $16,2,6$, is the section of the 'wall;' 3, the upper surface of the 'frog;' 4, 4, are the parts of the 'wall' called the ' heels;' 5 , parts of the sole called the 'bars;' 7-11 indicate the boundaries of the space lodging the frog ; 12, are the 'vascular lamelle.' The horny mattcr of the sole possesses more elasticity than that of the wall: the sole is slightly concave toward the ground, abutting by its lower circumference against the wall: it is cleft to its centre by the triangalar space through which the frog projects.

In fig. 17, 1 is the skin reflected; 2, soft elastic tissuc, with oil, forming a cushion bchind the mc-tacarpo-phalangial joint; 3, 'wall' of the hoof turned back, showing the horny lamellæ; 4, section of front part of the 'wall;' 5, 6, ligamentous parts of mctacarpo-phalangial joint; 7, tendon of common 'extensor;' $8,9,10$, those of the deep and superficial flexors; 15, expansion of the great anterior cartilage of the hoof; 16 , the 'coronary frog-band 'reflected; 17 , the 'vascular lamellax;' 18, elastic portion of the 'frog;' the "coronary venous plexus' is shown at $: 5$.

In the Indian Rhinoceros the pannieulus carnosus is more diseontinuous than in other Perissodactyles, but where it exists is of unusual thickness. One sheet at the sidc of the thorax sends its fascia into the interstice of the dermal fold in front of the fore limbs. A similar portion behind is inserted into the posterior fold of the skin, suggesting that such permanent folds served the purpose of affording a firmer insertion to the aponeuroses of the cutaneous muscles than a plane surface could have done. Two sheets of panniculus rise, broad and thick, one on each side of the antcrior part of the abdomen from the supcrficial fascia, and, passing backward, terminate in aponeuroses covering linec-joint. As the patelle are higher than the line of the abdomen, in the crect

Dissection of the diblt forming the Horac'a foot. Alt". position of the animal, the preceding inuseles afford additional support to that bulky part, some of the weight thus being transfcred to the hind-legs, which, reciprocally, are by thesc museles drawn forward in locomotion. ${ }^{1}$
§ 198. Museles of Artiodactyla.-In the Ruminant division of the Artiodictyle Ungulates the 'panniculus caruosus' is better developed than in the non-ruminant group, e. g. the hog and the hippopotamus. The fixed points from which, in the ox, the well-developed shects of dermal carneous fibres act on the skin are the scapula, mandible, iliuu, pubis, and patella: a
subjacent layer of fascia allows the play of the "panniculus" independently of the main masses of the muscular system, fig. 18. To the sheet of carneous fibres spreading from the scapular fascia over the neck the term 'cutaneus colli' is applied: to a thinner layer extending from the fore part of the neck over the forehead and cheeks to the lips, that of 'cutaneus faciei.' The thick layer expanding from the supra-scapular attachment over the shoulder and part of the fore-limb is the 'cutaneus humeri; 'that which cxtends from the iliac and pubic fascia lata, and from the patella, forward, expanding upon the abdomen, is the 'cutaneus abdominis:' the 'musculus preputialis,' in the BuLl , is a derivation from the foregoing dermal muscle.

The 'trapezius,' fig. 18, 10, 11, answers to the scapular division of that muscle in Man; it arises in the Ox from the neural spines of the anterior half of the thorax, and from the 'ligamentum nucha.' In the Giraffe it is in two portions: one arises from the 18

transverse processes of the fifth and sixth cervical vertebræ, its fleshy part is thick and strong but expands as it passes downward and backward and finally is lost in a strong fascia overspreading the shoulder-joint; the second portion is thin and broad, arises from the ligamentum nuchex, and is inserted into the fascia covering the scapula.' The 'masto-humeralis,' fig. $18,8,8$, may represent the 'cleidal' part of the trapezius in claviculate Ungulates: it arises by an aponeurosis from the ligamentum nuchx, and, by a tendon, from the paroccipital ; the chief and more superficial portion is inserted into the humerus, the deejer portion into the sternum. The 'latissimus dorsi,' fig. 18, 12 , in

[^1]tbe Ox, as in the Horsc, is a comparatively small muscle, and acts upon both humerus and antibrachium. The 'rhomboideus,' fig. 19, $\boldsymbol{0}$, is not single, as in the Horse and Giraffe, but consists in the Ox of pre- and post-rhomboid portions: the former rises from the nuchal ligament, as far forward as its occipital insertion: the latter from the spines of the two or threc anterior dorsals; both eonverge to be inserted into the base of the scapula.

The 'splenius capitis,' fig. 19, 7 , arises from the anterior dorsal and posterior cervical spines; the fibres diverge to a flat tendon inscrted into the paroecipital and the ridge rising therefrom. In the Sheep an insertion of a small fascieulus into the diapophysis of the atlas represents the 'splenius colli.' The 'scaleni' form three strong muscles in the Camelide, in the Giraffe four, which rise from the fourth to the seventh cervical vertebræ and are inserted into the manubrium sterni and first rib. The "scalenus anticus" in the Cow is shown at 12, fig. 19. The 'sterno-maxillaris' arises from the manubrium and divides, at 9 , fig. 18 , to be inserted into the paroccipital and mandibular angle.

19

Deep museles of tho Cow. $\mathrm{xy}^{\prime \prime}$ -
The 'levator anguli scapula,' fig. 19, s, arises from the pleurapopliyses of the third and fourth ccrvieal vertebres, aud is inserted into the anterior angle of the scapula: it seems part of the following muscle.

The 'serratus magnus,' fig. 19, 10, has an extensive origin from the pleurapophyses of the anterior half or two-thirds of the dorsal secies, forward, to that of the fifth cervical iuclusive, hy 'dentations,' or an angular strip from each : the fibres converge, ascending heneath the scapuata, to be inserted into the cartilaginous suprascapula. Thus, as the fore-part of the trunk is, as it were, slung upon the two great serrate muscles which principally support
the weight of the deep chest of the Ruminants, the interposition of the elastic cartilages between the upper attachments of the muscles and the capitals of the bony eolumns of the two fore-legs is attended with the same advantage as is obtained by slinging the body of a eoach upon elastie springs.

The main body of the 'pectoralis major,' fig. 18,13 , rises from the sternum and ensiform eartilage, the fibres converging to the tendon inserted in the outer tuberosity of the humerus: the an-

Muscles of fore limbl), Cow; from the outer (uluar) side. IV" terior derivative from this inuscle, effecting the erossing of the fore-limbs, is present in Ruminants as in Solipeds and Cetaceans. Two muscles converge to an insertion answering to that of the 'deltoid; one is the superficial portion of the 'masto-humeralis,' fig. 18, 8 , fig. 19, 11; the other, ib. 14, arises from the spine and post-spinal fossa of the seapula: the latter is the proper homologue of the "deltoid.'

The 'supra- or pre-spiuatus' is shown at 1 , figs. 20 and 21 ; it is inserted by a double tendon into the fore and inner tuberosities of the humerus: the 'infra- or post-spinatus,' fig. 20,2 , has a single strong insertion into the outer tuberosity. The insertion of the 'teres major' is seen at fig. 20, 3.

The subseapularis, fig. 21, 2 and 2^{x}, consists of two ehief masses, and corresponds in length and narrowness with the bone from whieh it originates; it consequently produces, like the muscles on the opposite surface of the seapula, more rapid and extensive motion of the humerus, to the inner tuberosity of which it is attached. The coraco-brachialis,' fig. 20, 8, arises from the tuberous representative of the eoraeoid; its inscrtion into the humerus extends down to the inner coudyle. The 'biecps brachii,' fig. 21, 10 , slows an origin from the eoraeoid as well as the chief one from above the glenoid cavity of the scapula. It is inserted into the radius, below the usual tuberosity, and also sends a strip of tendon to the antibrachial aponeurosis. In the Camelidee the tendon of origin is double, but approximated, and eneloses a sclerous sesamoid as it passes over the head of the humerus. The 'brachialis internus' rises from the neek of the humerus; its in-
sertion, fig. 21, 11 , is anterior to that of the biceps. The massive museles answering to the 'trieeps extensor' are the 'extensor longus,' figs. 20 and 21, 5, the 'ext. latus,' fig. 20, 4, the 'ext. medius,' fig. 21, 6, and the 'ext. brevis,' fig. 21, 7. The ' anconeus externus,' fig. 20, 6 , appears to be another part of this system of museles aeting on the trunk through the seapula and reeiprocally on the supporting limb. A small fascieulus, fig. 21, 13, arising from the inner part of the distal end of the humerus, and inserted into the upper half of the radius, aets feebly as a flexor, and seems to represent the 'pronator teres' of Unguieulates. The ' extensor earpi radialis,' fig. 21, 12 , is inserted into the forepart of the 'eannon-bone.' The 'flexor earpi radialis,' fig. 21, 14, sends its tendon behind the earpal joint to the baek part of the eannon-hone. The musele, fig. 20, ${ }^{10}$, whieb is inserted into the inner (radial) side of the eannon-hone, has an homologous origin with that of the "abduetor pollieis.'

The 'extensor digitorum longus,' fig. 20,11 , sends its two tendons in front of the earpus and eannon-bone; the inner one is inserted into the middle phalanx of the inner (vol. ii. fig. 193, iii) digit; the outer tendon divides, to be inserted into the ungual phalanges of both functional digits. The 'extensor brevis digitorum,' fig. 20, 12, is inserted into the middle phalanx of the outer (ib. $i v$) funetional digit. The 'flexor earpi ulnaris,' fig. 20,13 , is inserted into the "pisiforme' and outer side of the head of the cannon-bone. The 'flexor perforans digitorum,' fig. 21, 1s, sends its flat aud strong tendon behind

Muscles of the fore-llunb, Cow frote the faner (radial) side. IV'. the eannon-bone, near the lower end of which it divides, and perforates the corresponding divisions of the 'flexor perforatus,' to be inserted into the ungual phalanges of the digits, $i i i, i v$, fig. 193, Ox, vol. ii. The 'flexor earpi ulnaris internus,' fig. 21, 16, is inserted into the 'pisiforme.'

The ectoglutens, fig. 18, 15, arises from the fore part of the ilium and saeral faseia, and is inserted into the lower part of the great
trocbanter; it is closely connected with the 'tensor fascix femoris.' This muscle, fig. 18, 16, arisiug from hehind the outer iliac tuberosity, expands upon the thigh, and is lost in fascia covering the knee-joint, and attacbed to the spine of the tihia, whereby the muscle becomes, with the rectus, a flexor of the thigh. There is a - sartorius ${ }^{7}$ erossing ohliquely the inner side of the thigh, and inserted aponeurotically into the inner side of the bead of the tibia. The 'mesogluteus,' fig. 19, 18, arising from the outer side of the ilium, is inserted into the outer part of tbe great trocbanter. The - entogluteus,' ib. 19, rises above the acetabulum, and is inserted into tbe upper part of the great trochanter. The 'biceps femoris,' fig. 18, 17, 18, arises from the sacro-sciatic fascia and from the ischial tuberosity; the fasciculi from both origius unite to form a broad muscle (the "vastus longas' of Hippotomy), which is inserted by a strong aponeurosis into the head of tbe tibia and fascia of the leg. Tbe 'iliacus internus' is shown at 17, fig. 19: 23, 24, and $30, i b$. , are muscles of the tail. The 'vastus externus,' fig. 19, 26, covers the whole of the outer part of the thigh-bone, from the great trochanter; it is inserted into tbe patella and head of the tibia; a small part of the 'rectus femoris 'appears in front of its upper part. The 'gracilis" is a large broad muscle, arising from the pubic symphysis, and inserted into a long tract of the tibia. The 'adductor magnus' is seen at 27 , the 'semitendinosus' at 28 , and the 'semimembranosus,' or' 'adductor tibiæ longus,' at 29, fig. 19. The last two muscles are hlended in tbe Hog. The ' tihialis anticus' arises from the inner side of the fore part of the head of the tibia hy a strong tendon; the muscular part swells into the chief of those on the fore part of the leg; the tendon of insertion splits to give passage to that of the 'peroneus longus,' and is inserted into the outcr side of the bead of the metatarsal. There is an extensor of the middle phalanx of each functional toe; the tendon of the long 'extensor digitorum' hifurcates at the end of the metatarsus for insertion into the ungual phalanx of tbe same toes.

The ehief peculiarity of the flexors of the digits of the hind-foot in hoofed quadrupeds is the accession of muscles not so applied in most other mammals. Thus the 'gastrocnemius,' hesides its insertion into the beel-bone, sends a strong tendon along the back of the metatarsal, to the phalanges, where it expands and bifurcates, each division again splitting for the passage of that of tbe 'flexor perforans,' before being inserted into the middle phalanges. In like manner the bomologue of the 'tibialis posticus' eombines its tendon with that of the 'flexor perforans;' such common tendon
expanding helind the metatarsal, and splitting to perforate the tendon of the preceding flexor in its way to the last phalanx.

Of the abdominal muscles, the 'obliquus externus' is shown in fig. 18, 14 ; its broad teudon is perforated by the mammary artery and vein, at 19. The 'obliquus internus' is seen at 16 , fig. 19.

I found the following conditions of the hyoid muscles in the Giraffe :'—The 'mylo-hyoideus,' thick and strong, arose from the internal surface of the lower jaw, and was inserted into the raphe dividing it from its fellow of the opposite side. It adhered firmly to the 'genio-hyoideus:' this arose by a well marked tendon from the symphysis menti, and had the usual insertion. The 'genio-glossus' arose by a tendon close to the inner side of the tendon of the 'genio-hyoideus;' its fleshy belly had a considerable antcro-postcrior extent, and diminished to a very thin edge at its antcrior margin. The 'digastricus' had the usual origin, and was inserted, broad and thick, into the under side of the lower jaw. The 'stylo-hyoid' was remarkable for the slenderness and length of its carneous part. The most interesting modifications in the muscles of the os hyoides wore found in those whieh retract that bonc. The muscle whieh, as in some other ruminants, combincs the offices of the "sterno-thyroideus" and 'sterno-hyoideus,' arose by a single long and slender carneous portion from the anterior extremity of the sternum; this origin was nine inches long, and terminated in a round tendon, six inches long; the tendon then divided into two, and cach division soon bccame fleshy, and so continued for about sixteen inches; then each division again bceame tendinous for the extent of two inches, and ultimately carneous again, when it was inserted into the side of the thyroid cartilage, and thence continued in the form of a fuscia to the hyoid. This alternation of contractile with noncontractile tissue gave a striking example of the use of tendon in limiting the length of the contractile part of a muscle to the extent of motion required to be produced in the part to which the muscle is attached. Had the sterno-thyroideus been continued fleshy as usnal from its origin through the whole length of the neck to its insertion, a great proportion of the nuscular fibres would have been useless; for as these have the power of shortening themsclves by their contractility onc-third of their own length, if they had becn continued from end to end in the sternothyroidei, they would have been able to draw tbe larynx and hyoid one-third of the way down the neek; such displacement, however, is neither required nor indeed compatible with the

[^2]mechanical conneetions of the parts; but, by the intervention of long and slender tendons, the quantity of the contraetile fibre is duly apportioned to the extent of motion required for the larynx and os hyoides. The 'omo-hyoideus' was adjusted to its offiee by a more simple modification; instead of having a remote origin from the shoulder-blade, its fixed point of attachment was brought forward to the nearest bone (the third cervical vertebra) from which it could act upon the hyoid to the due extent.

In all Herbivora the muscles more directly worked in mastication, e. g. the 'masseter' and 'pterygoidei,' are proportionally more developed than the biting muscles, e.g. 'temporales;' but there are degrees of difference; in those Ungulates in which the eanines are most developed, as e.g. the Hog and Camel tribes, the temporal muscles are larger. In all Ungulates the ehief depressor of the jaw, or opener of the mouth, passing from the paroccipital to the mandibular angle, has a single flesby belly; it is, however, the homologue of the 'digastricus' in Man.

One of the museles proeeeding fiom the neural arehes of the dorsal vertebre to the occiput is tendinous, along a portion of its mid-course, in most unguiculate Mammals: it is called ' biventer cervicis' in Anthropotomy, Contiguous muscular fasciculi extending from the neural spines of the anterior dorsals to those of more or less of the cervical series, are termed 'spinalis cervicis.' The pair of fibrous masses with like attachments, but in whicb the striated fibre is almost wholly reduced to the yellow elastic tissue in Ungulates, is eommonly known as the 'ligamentum nuchro.'

In the Giraffe this meehanical stay and support of the long neck and head commences from the sacral vertebræ, and receives fresh accessions from each lumbar and dorsal vertebra, as it advances forward; the spines of the antcrior dorsal vertebre become greatly elongated to afford additional surface for tbe attachment of new portions of the ligament, which appears to be inserted, on a superficial dissection, in one continuous sheet into the longitudinally extended but not elevated spines of the cervical vertebre, as far as the axis; the atlas, as usual, is left free for the rotatory movements of the head; the ligament passes over that vertebra to terminate by an expanded insertion into the occipital crest. It consists throughout of two bilateral moieties. In the specimen I dissected, the nuchal ligament, in situ, measured 9 feet in length : an extent of 6 feet was removed, which immediately contracted to 4 feet.

In the Camel the ligamentum nuchæ arises, broad and tbin, from tbe anterior dorsal spines, but gathers substanee as it advances and
hecomes condensed into a pair of cords which receive aceessions from the cervical spincs, by which the ligaments seem bound down so as to follow the curve of the neck: the insertions are into the superoceipital. Posteriorly a continuation of the ligament may be traced spreading out and losing itself in the base of the single hump of the Dromedary, and as far back as that of the hind hump in the Camel. ${ }^{1}$

The relative size and insertions (a cervical, b nuchal) of the ligamentum nuchre of the Elephant are shown in fig. 22. Much of the same kind of yellow elastic tissue is combincd with the apoucuroses of the abdominal muscles in the Eleplant, Rhinoecros, ${ }^{2}$ and Giraffe, in reference to the capacity and heavy contents of parts of the alimentary canal.

§ 199. Muscles of Carnizora.-The commencement of ecrtain facial muscles that reach their full developement in Man may be disecrned in the Unguiculates. Small detached sheets of muscular fibre, ‘ ccrvico-facial 'or ' platysma inyoïdes,' are attached to the skin at the side of the neek, spread upon the lateral integuments of the face, and, in the Cat, show a special arrangement or developement by affording a muscular capsule to the bulb of ench long lair of the whiskers, upon the clin, lips, cheeks, and eycbrows, to which they give the impressive movements of those sensitive parts. Both the 'oceipital' and 'frontal' parts of the human ' occipito-frontalis' are also present in the Cat

The muscles of the jaws in Cornivora are chiefly remarkable for the large proportional size of the 'temporalis,' with which the ' masscter,' by the more vertical disposition of its fibres than in Ifrhirorr, combincs in the act of forcibly closing the mouth. The 'ptcrygoidei' are small and not very distinct from each

```
v". p. 36.
```

other. The ' digastric' is a powerful musele and seemingly ' monogastric,' hut many tendinous filaments in the middle of the carneous substance indicate the division which is established in higher Gyrencephala. In the Lion it arises by a strong tendon from the paroccipital; and its action may be seen in the effort the animal makes to disengage the mandihle from ligamentous parts of its food. In the Felines the latissimus dorsi has its chief insertion into the tendinous arch, hridging over the biceps, and, with the 'dermo-lumeralis' similarly inserted, it acts upon the inner side of the upper part of the humerus, but sends a strong aponeurosis between the external and scapular 'heads' or portions of the triceps to he continued upon the antibrachial fascia: iu the Dog , a distinct fasciculus of the muscle comhines its tendon with that of the 'scapular' portion of the triceps. In the Sealtribe the retractile action of the latissimus dorsi is extended, by the aponeurotic insertion, to the palmar aspect of the peetoral fin. The homologuc of the 'serratus posticus superior' is largely developed in the Lion, extending its anterior attachments to the nape. The 'protractor scapulx " arises in Felines from the diapophyses of the atlas, axis, and third cervical, and is inserted into the spine of the scapula near the acromion. The origins of the ' great pectoral muscles' interhlend and cross each other in Felines, so as to seem to form a common adductor musele of the fore-limhs; hut the mass of the fibres resolves itself into four alnost distinct muscles, answering to the 'large pectoral' and grand pectoral of Hippotomists, and including the • sternotrachiterien' and 'pectoantébrachial' of Straus-Durckheim. The 'pectoralis minor' in the Dog is inserted into the upper part of the glenoid cavity of the scapula. In unguiculate, and especially claviculate, Gyrencephala, the deltoid conforms by the greater extent of origin and size to the more varied movements of the humerus, as compared with the ungulate order. In the Cat the deltoid consists of an anterior portion arising from the acromion, and a posterior one from the spine, of the scapula: in the Bear only the acromial portion is developed. In nonclaviculate Carnivora the 'masto-humeralis' is present: in claviculate species the 'cleido-cucullaris' and cleido-mastoideus" are its divisions : the former, in Felines, rises from the paroccipital crest, and from the neural spines of the anterior cervicals, passes hack and down to the transverse ligamentous tract in which the clavicular ossicle is developed; the 'cleido-mastoid' is inserted into two outer thirds of the clavicular bone, whence is continued a fleshy belly descending along the fore-part of the brachium, in
front of the biceps, to he inserted into the tuberosity of the radius: it answers to s , fig. 18, in Ungulates. The biecps, in Feliues, derives its single head from the upper rim of the glenoid ravity, and is inserted into the bicipital tuberosity of the radius. The 'brachialis internus' is a long muscle on the outer side of the humerus, and is inserted into the lower wall of the sigmoid rasity of the ulna. The 'trieeps extensor' is represented by three or more museles, distinct in their fleshy part, and remarkable for their volume in Felines: their common tendon incloses the olecranon like a strong capsule. Besides the foregoing there are three shortcr extensors, one of which is represented by the humau 'aneoneus;' but all belong to the same system as the tricipital extensor. The 'pronator teres" is proportionally large: in the Lion its carneous part extends far down the fore-arm : in the Cat it ends in the tendon inserted about half way down the radius. The 'palmaris longus' is also more developed tban in man. The 'supinator longus,' on the other hand, bas a short and slender fleshy portion; and this relates to the habitual prone position of the paw in Carnivora. The flexors and extensors of the earpus and manus elosely aecord with those of Man, but with excess of fleshy fibres in the larger Felines; and a minor degree of distinction of some muscles, as, e. g., the 'flexores digitorum,' and 'extensores pollicis.' The ' extensor longus pollicis' has its origin from the outer wall of the sigmoid cavity of the ulna and the upper third of that bone: its long and sleader tendon is inserted into the first phalanx of the pollex, but usually, also, into that of the index. By this insertion, as well as by its high origin, it is less differentiated from the 'common extensor digitorum' than in Man. There is no 'extensor brevis pollicis.' The 'indicator. is represented, in Felines, by a short and slender muscle from the lower half of the cuter side of the ulua: its tendon glides through the same carpal synorial sheath as that of the extensor longus pollieis: it has not á xeparate insertion into the index, but blends witl the tendinous division of the common extensor going to that digit. The differentiation establishing the muscle as a true or iudependent " indicator ' has not yet come about.

The 'flexor sublimis' is a powerful muscle and the principal bender of the paw in ordinary locomotion; its origin is restricted tn the humerns: its insertions are extended into all the five digits hy the fasceie attached to the sides of the metacarpo-phalangial joints, as woll as the ordinary perforated tendons into the sides of the first and second phalanges. The 'flexor profindns' arises by fice heads from the antibrachinm, which form a common fattened
tendon, along the earpus; this first detaches a tendon to the ungual phalanx of the pollex, and, at the metacarpus, divides into the four tendons similarly inserted into the four long digits. In each the insertion, fig. $36, b$, is into the lever-like process from the palmar part of the hone of the last phalanx. It is this musele which overcomes the retractile foree of the elastic ligaments, ih. a, of the claws, and concentrates the power of all five upon the part seized. There is no separate 'flexor longus pollicis.'

In the hind limh of Felines, the psoas and iliacus are more ohviously parts of the same musele than in Man: a fasciculus of the 'psoas' sends a tendon to the puhis; but the main hody of the muscle aets upon the inner trochanter. In the Cat a detaehment of the small ectogluteus descends to he inserted into the patella. The much longer mesogluteus has five origins from lumhar, sacral and caudal vertebre, and from the crista ilii: its tendon goes to the great trochanter. The 'gracilis' is relatively large. The muscle at the foremost part of the thigh, in Felines, answers to the 'sartorius' and 'reetus femoris;' there is also a 'tensor fascix,' which sends an aponeurosis over the fore part of the knee-joint and a tendon to the inner part of the head of the tihia. The 'hieeps flexor cruris' receives a slender aecessory fascicule from an anterior caudal vertehra; hesides its normal inscrtion it is continued by fascia into the 'tendo achillis.' In the Lion, a special musele, 'eaudo-femoralis,' from the same vertebre is inserted by its own long tendon into the outer condyle of the femur. The Bear has not the latter musele. The largest part of the 'gastrocnemii' muscles is at or near to their femoral origins: the tendons of each are at first distinet, and finally hlend hy expansions whieh spread over the caleaneum. The soleus is small, and rises from the fihula: its tendon unites with that of the gastrocnemius externus. The tendon of the 'plantaris' combines with that of the 'short flexor' of the toes to augment the power of hending their phalanges: its fleshy part is relatively much greater than in Man.
§ 200. Muscles of Quadrumana.-In this series, up to the apes, the panniculus carnosus exists; hut is reduced to a thin sheet of carneous fihres from the dorso-lumhar fascia, spreading over the latissimus dorsi, and again degencrating to faseia attached to the inner side of the humerus. The 'platysma myoides' hegins to he defincd, in the Aye-aye, as a pair of hroad thin layers, arising from peetoral and clavicular fascia, and ascending over the front and sides of the neek, mandihular rami, and eheeks. In the Orangs and Chimpanzees it supports the large eervico-peetoral air-sac communicating with the larynx.

From the Ayc-aye to the Gorilla,' with a few exceptions, there is a 'cleido-mastoideus' as well as a 'sterno-cleido-mastoidcus; but in some Baboons (Macacus) the distinct fasciculus from the clavicle has not been found. In an Orang I found the cleidal part inserted into the diapophysis of the axis vertebra.

The term 'digastricus' is applicable to that mandibular muscle in all Quadrumana, although the partition by tendon of the anterior from the posterior belly is not complete in many. In most, as in the Aye-aye, the anterior portions of the pair occupy the anterior interspace of the mandibular rami. The middle tendinous part is attached to the hyoid, except where it is feebly marked, as in Stenops. The intermediate tendon of the omohyoid is not found save in the higher tail-less Apes.

In all Quadrumana the power of the arms in drawing up the trunk is increased by the accessory muscle from the ordinary tendon of the 'latissimus dorsi,' which extends its action from the upper to the lower end of the humerus (interior condyle), and to the olecranon. The 'rhomboidci' extend to the occiput in Maca-〔ues, Baboons, and the Orang. The 'protractor scapule' (' acro-mio-trachclien,' Cuv.) exists in most Quadrumana below the Apes; in these the ' lcvator anguli scapulx' is distinct from the 'serratus magnus; but is the fore part of that muscle in Baboons.' In the Gibbons (IIylobates) the two portions of the 'biceps flexor cubiti' are more powerful and unite lower down the lumerus than in other Quadrumana, and the inner portion derives an origin from near the pectoral ridge of the humerus: their common tendon is inserted beneath the radial tubercle, and into the antibrachial fascia. In Stenops the biccps has only ita 'long head' or origin: that from the coracoid process is, at least, not distinct from the coraco-brachialis. The 'triceps extensor cubiti' is complicated in Quadrumana by the accessory fasciculus in connection with the tendon of the latissimus dorsi. 'The lower portion of the 'internal head' of the triecps has also a distinct origin or fasciculus from the entocondyloid ridge in Chiromys and Tarsius; in Stenops it arises more from the back part of the humerus.

The deep and superficial flexors of the fingers are distinct, but a remnant of that blending which exists in most lower mammals may be scen in the short connecting tendon which in the Aye-aye ${ }^{3}$ 1rasses from the ulnar belly of the 'flexor sublimis' to the division of the 'flexor profundus,' giving off the tendon to the middle finger. The fleshy part of both flexors, but especially of the deeper one, is continued nearer to the hand, in Lemuride and most other

[^3]Quadrumana, than in Man, thus enabling the muscles to eontinue their action as finger-benders when the hand itself is flexed. Tbe fasciculus of the 'flexor profundus' which sends the tendon to the last plalanx of the thumb, is more distinctly a' flexor longus pollicis' in Apes than in lower Quadrumana. In the Aye-aye it adheres to the supplementary carpal and fascia on its way to the thumb, and thus opposes both the last phalanx and the 'pad' at the base of the thumb in the act of grasping. The 'flexor brevis,' the 'abductor,' the 'adductor,' and 'opponens pollicis' are present in the Chimpanzee and Gorilla, as are likewise the 'extensor longus' and 'extensor brevis.' In tbe Orang tbese muscles begin to be confounded; in most lower Quadrumana they are blended together. The homologue of tbe 'extensor indicis' of Man bifurcates and sends a tendon to botb the index and medius digits; the bomologue of tbe extensor minimi digiti likewise splits and sends a tendon also to the annularis; so tbat, while in Man the index and minimus only have two extensor tendons, all four fingcrs $(i i-v)$ have tbem in most Quadrumana. Tbe band is thereby the stronger as a suspensor of the body from a bough.

The 'ectogluteus' is feebly developed compared with that in Man : the Gorilla, though receding far in this respect, recedes the least. The bomologue of tbe 'gracilis' is relatively larger in all Quadrumana than in Man, and its insertion is extended lower down the leg. In Stenops the vastus exteruus contributes a fasciculus to the reetus femoris; in Chiromys it is as distinct as in higher Quadrumana. But here the mesogluteus exceeds the ectogluteus in size, although the latter is supplemented in the Gorilla by fleshy fasciculi from the ischial tuberosity, whicb spread their insertions from that of the ectoglutæus down the femur to the internal condylc, apparently representing the adductor magnus. In both Orang and Chimpanzce a muscle from the outer border' of the ilium to near the acetabulum is inserted into the under and outer part of the great trocbanter and rotates the thigh inwards.' The gastrocncmii have a greater length and minor breadtb and thickness of the fleshy part: the soleus rises from the fibula exclusively, and joins the gastrocnemii low down.
§ 201. Auscles of Bimana. - The myologies of Anthropotomy reduce the need of noticing luman muscles here to some comparison witl those of highest Apes, bringing out the ordinal characteristics of the limbs, and to the illustration of those giving cxpression to the face and reflecting the action of the organ tbat marks Man's place in Creation as the type of a distinct sub-class.

[^4]Fignres 23 and 24 give a view of the superficial muscles and tendons of the fore-arm and hand of a full-grown male Gorilla and Man of corrcet relative size. The portion of the triceןs is scen in the Gorilla at $2^{\prime \prime}$; in Man at 5^{\prime}, in whom the origins of the carneous fibres of that part from behind the inter-museular septum arc continued lower down the humerus. The 'brachialis anticus' is seen at 4, fig. 23 , and 17, fig. 24. This musele is not so completely differentiated from the deltoid and supinator longus in the Gorilla as in Man, nor so individualised as a single muscle: its two portions being more distinct. The bieeps, fig. 23, 3 , maintains in Man more of its full fleshy character to the sending off of the tendon, 3^{\prime}, to the rough posterior margin of the tuberosity of the radius, gliding over the anterior smooth surfaee of that process with an intervening 'bursa.' The aponcurosis, $3^{\prime \prime}$, sent off to the fascia of the fore-arm crosses the 'pronator teres.' This muscle, s , fig. 24 , is attached to the outer side of the radius below the middle of the bone in the Gorilla, but rather above it in Man. The double origin, viz. from the inner humeral condyle and the coronoid process of the ulua, is better defined in Man, fig. 23, e. The 'palmaris longus,' fig. 23, 8, arising as a distinct musele in Man from the inner humeral condyle, is a fasciculus, 5, of the ' ilexor carpi ulnaris' (3, fig. 24) in thic Gorilla; but, as this muscle is subject to variation, and sometimes absent iu Man, it uaty show analogous inconstancy in the Gorilla. The flexor carpi ulnaris is inserted into
 the pisiforme in both Man and Λ_{p} c, but the Mascles of the foresearm nand hand. flesly and teudinous parts are better defined, and the latter relatively longer aud more slender in Man, fig. 23, 9. The flexor earpi madialis arises in Man, fig. 23, 7, from the inner comulyle, from the antibrachial fascia and septa continued therefiom letween the pronator teres, 6 , and palmaris longus, 8 ; but in the (iorilla, fig. 24,4 , it derives a cousiderable accession of
fibres dircetly from the radius, and its terdon is shorter and much

Musclea of the fore-arm and hand, Gorilla. I", thicker than in Man. In both it passes through a pulley provided by the trapezium to its insertion into the base of the metacarpal of the index. The tendon of the supinator longus in the Gorilla, fig. 24, 4^{\prime}, is also shorter and thicker, and is not crossed, as in Man, by the extensors of the metacarpal and first phalanx of the pollex (fig. 23, 11 and 12) before its inscrtion into the styloid process of the radius. Part of the carneous mass of the flexor sublimis digitorum is seen at 13 , fig. 23 , and 6^{\prime}, fig. 24. External to this a greater proportion of the flexor profundus appears in the Gorilla, fig. 24, 6 , than in Man, fig. 23, 15. The flexar longus pollicis, fig. 23, 14, expends its force in the Gorilla, fig. 24, 20, upon both the pollex and index, furnishing tendons to the distal phalanx of each, but the largest and most direct being that to the index. There are modifications of minor importance in the origin of this muscle which tend to give it a
character of being part of the system of the 'flexor profundus' in the Grorilla.

The relations of the tendons of the superficial and deep flexors to each other-and to the digits are much alike in Man and Ape, but the tendons are relatively broader, and their restraining and strengthening sheaths and bands stronger in the Grrilla; those formed by the oblique decussating ligamentous fasciculi, as in the mid-finger of fig. 23, are more distinctly shown in Man than in the Ape. The muscles acting on the metacarpal and first phalanx of the pollex-fig. 24, 22, abductor,' ib. 24, flexor brevis, ib. 25, adductor - are longer and more slender in the Gorilla. The abductor in Man is shown at fig. 23, 17. In the Gorilla the 'abductor minimi digiti' is shown at fig. 24, 10; the 'flexor brevis' at 11; the tendon of the flexor profundus at ${ }^{13}$; that of the 'Hexor sublimis' at 6 '. Two of the 'lumbricales are shown at 14 and 28 , and one of the interossei at 27 , fig. 24 . The carneous part of the common extensor of the fingers is continued to the wrist in the Gorilla; three strong tendons go to the second, third, and fourth digits, and a fourth, less strong, to the fifth digit. This digit also receives the tendon of an extensor minimi digiti, and the index a small tendon of an 'indieator' which is more completely blended with that of the ordinary extensor, besides being more feeble, than in Man. The extensors of the metacarpal, first and last phalanges of the pollex, are present in the Gorilla, but of smaller size than in Man.

In the Gorilla the portion of the biceps cruris derived from the ischiadic tuberosity, and inserted, fig. 25, 4, into the outer part of the head of the tibin, is more distinet than in Man from that, ib. 5, derived from the femoral linea aspera and inserted into the licad of the fibula, and which expands, 5^{\prime}, upon the enemial fascia. The external gastroenemius, fig. 25, 7, continues longer distinct from the internal, and both present longer but narrower and thinner carneous portions than in Man. The soleus, ib. s, arises exelusively from the fibula and is much narrower than in Man, where it also derives fibres from the oblique line of the tibia and from the middle third of its internal border. The margins of the tendon of the soleus first mite with those of the gastrocuemius, the middle part continues distinct to near the caleaueum. The plantaris lats not been met with in the Gorilla. The peroncus longus, fig. 25, 9 , has a longer carncous and shorter but thicker tendinons part in the Gorilla than in Man: the course and insertion of the tendons are the same. The peroneus brevis,
ib. 19, very elosely repeats the charaeters of that musele in Man. The 'tibialis anticus,' fig. 25, 17, commences by a broader and more fleshy origin, but gradually deereases as it deseends, not swelling out into the well-marked 'belly,' as in Man: the

Muscles of tho leg and font, Gorilla. L". $^{\prime \prime}$. tendon divides more distinetly and deeply to be inserted into the metatarsal of the hallux and the entocuneiform bonc. The extensor longus digitorum, with the same relations at its origin to the tibialis antieus and peroneus longus as in Man, divides, after passing under the annular ligament, into three, instead of four tendons; the innermost of which subdivides to supply the second and third toes. The extensor longus hallucis sends its tendon to the last phalanx of the hallux, as in Man. The short extensor of the toes, ib, 20 , also sends off a strong fasciculus, 20^{\prime}, the tendon of whieh aets upon the proximal phalanx of the hallux. Three other fasciculi send tendons to the seeond, third, and fourth

The long flexors of the toes are distinguished in the Gorilla, as in lower Quadrumana, by their relative position at the baek of the leg. The one toward the inner or tibial side sends its tendon through a strong ligamentous synovial sheath behind the inner malleolus to the sole, where it divides into three chiet tendons which are eonnected with those of the ' flexor aceessorius.' In fig. 26 , the divisions of the long tibial flexor, 1 , are cut and reflected; sa goes to the fifth toe; 4 is the perforated tendon of the fourth toe, 4 , reinforeed by carneous
fibres from the deeper surface of the main tendon; 16 is the tendon to the last phalanx of the second toe.

The long fibular flexor of the toes, arising from the back part of the fibula and interosseons ligament, grooves by its tendon the pusterior part of the thia, the astragalus and the calcaneum, and divides at the sole, fig. 26,2 , into the perforating tendons of the hallux, se, the third, $2 b$, and the fourth, 2α, toes. The portion of the flexor brevis which riscs from the calcanouin divides into two tendons which form the perforated ones of the third, 3^{\prime}, and second, $s^{\prime \prime}$, toes. The short muscles giving the grasping power (1) the hind thumb are, 8 , 'abductor hallucis,' 9 , 'flexor brevis hallucis,' 10 "adductor obliquus hallucis,' and 11 , 'adductor transverablis latlucis.' The lumbricales and interossei are powerfully developed. In the Orang the long fibular flexor sents no tendou to the hallux.
'The ordinal modification of the bind- or lower- limbs for the whole work of sustaining and moving the hody, in Bimana, is acompanied by well marked and considerable modifications of the toes, the chicl of which are illustrated by comparison of the figure, 26, from the highest ape, with fig, 27. The loug
fibular flexor now becomes the 'flexor longus hallueis,' and eoncentrates its foree exclusively on the tendon, $2,2 c$, whieh goes to the last phalanx of the hallux, i; this tendon is twiee the size of any of the divisions of that of the long flexor on the tibial side. This is limited to the funetion implied by the name 'flexor longus digitorum pedis,' its tendon, fig. 27 , 1 , sending off suecessively the perforating tendons to the seeond, third, fourth, and fifth toes. In fig. 27, are shown the insertion of the 'tibialis posticus,' 15 ; the 'flexor hrevis minimi digiti,' 7 ; the 'flexor brevis pollieis,' inserted into the outer, 9 , and inner, 10 , sesamoids, the adductor pollicis, 8 , and the peculiar 'transversalis pedis,' 10 , arising from the under surfaee of the distal and of the fifth metatarsal, erossing three of the other metatarsals, to be inserted into the outer side of the proximal phalanx of the hallux, blending there with that of the ' adduetor pollicis.'

The heel being the lever-power by which the whole superincumbent weight of the body is raised in the peculiar 'walk,' or bipedal gait, of Man, museles that are distinet in quadrupeds are here, coutrary to ordinary rule, blended, or have a common insertion. Not only the outer and inner gastroenemius, but the soleus, and even the plantaris, might be regarded as so many origins of the same muscle, which combine and concentrate their forees upon the calcaneum.

The 'panniculus carnosus' of quadrupeds is reduced in Bimana to the 'platysma myoides,' fig. 28, p, p, p, which extends from the uppcr and fore part of the chest upward over the front and side of the reck to the mandible and lower part of the face, where the two museles meet below the symphysis. The middle filhres are attaehed to the base of the jaw, and posteriorly ascend to the fascia of the masseter; the anterior ones ascend with the depressor anguli oris and quadratus menti to the lower lip and angle of the mouth. In many instanees there is a strip from the parotid faseia which eonverges to this angle, and constitutes the 'risorius santorini.' The platysma draws down the lower part of the faee, or, by a slighter action, the lower lip: the 'risorial' slip tends to raise the angle of the mouth. Most of the muscles of the face are attached at one part to bone, at another to skin or to some other musele. The skin of the liuman face is remarkable for its tenuity, flexibility, and chundant supply of vessels and nerves; its vascularity tinting the cheeks and lips: it is more adhcrent aud the subjaeent cellular tissue is denser along the median line than at other parts.

The ' orbicularis oris,' fig. 29, oo, has no attaehment to bone.

It consists of two semi-elliptic planes of muscular fibres whieh surround the mouth and interlace on either side with those of the 'buccinator' and other dilators of the oral orifice. The external or peripheral surface adheres to the skin, the internal or posterior surface is covered by the mucous membrane of the mouth. Acting as a whole it closes the mouth, bringing the lips

in contact and pressing them firmly together, but the upper and lower halves can act separately, or the fibres of one side may contract while the others arc quiescent, so that different parts of the lips may be moved by different portions of the musele, which may be regulated or antagonised by the muscles whieh eonverge to the mouth. A pair of accessory strips to the orbicularis, 'accessorii orbieularis superioris,' rise from the alveolar border of the premaxillary, and arching outward on each side are continnous at the angles of the month with the other museles there inserted. I sccond pair', ' naso-laliales,' deseend from the septum of the nose to the upper lip, but with an interval, eorrespouding with the depression on the skin beneath that septum.

The 'levator lahii superioris,' fig. 29, l, arises from the lower margin of the orbit, and deseends to he inserted into the orbicularis aud the skin of the upper lip. The ' levator anguli oris,' fig. 29, c, arises helow the suborbital foramen and deseends, inelining outward, to the angle of the mouth, hlending its fibres with those of the zygomatici and orbicularis. The 'zygomatieus major,' fig. 29, s, is cylindrical, rising from the malar and deseending obliquely inward to a similar insertion at the angle of the mouth. The zygomaticus minor, fig. 29, 3 , ariscs in front of the zyg. major, and passing downward and inward to the angle of the mouth, where it is continuous with the outer margin of the levator labii superioris. The levator menti is a conical fascieulus arising from the ineisive fossa of the mandihle, external to the symphysis, and expanding as it descends to he inserted into the integument of the skin. The - depressor lahii inferioris,' fig. 30, d, arises from the inner half of the external oblique line of the mandihle, and is partly also continued from the platysma: its fibres ascend, inelining inward to he attached to the lip, where they hlend with those of the orhicularis oris. The 'depressor anguli oris,' fig. 29, t, arises from the external ohlique line of the mandible: its fibres aseend and converge to the angle or commissure of the lips, blending with the other insertions at that part.

The bueeinator, fig. 30, \dot{b}, arises from hoth upper and lower jaws and the pterygo-maxillary ligament: its fibres line the cheek and converge toward the angle of the mouth, where some deeussate, the lower ones going to the upper segment of
 the orhicularis, the upper ones to the lower segment, while other fibres are continued forward into the eorresponding lip. The buecinator aets, in antagonism with the orhieularis, in spirting fluids from the mouth aud in playing on wind instruments. In mastication the hueeinator presses the food from letween the eheek and grums into the eavity of the mouth. It assists also in deglutition when the mouth is closed, hy pressing the food backward. The 'levator labii superioris alreque nasi' arises from the nasal proeess of the maxillary, descends obliquely outward and divides, a short strip heing attaehed to
tho cartilage of the ala nasi, the outer and longer strip to the skin of the upper lip near the nose, and beeoming blended with the orbicularis and levator labii proprius. The 'triangularis nasi,' or 'compressor naris,' figs. 29 , and 30 , n, arises from the maxillary external to the ineisive fossa: its fibres proceed upward and inward, expanding to an aponeurosis continuous, over the bridge of the nose, with that of the opposite muscle. The 'depressor alx nasi' is a short flat musele radiating upward from the myrtiform or incisive fossa of the maxillary; it sends upper fibres to the septum and back part of the alx nasi and lower ones into the orbicularis oris. The 'orbicularis palpebrarum,' fig. 29, o, surrounds the orbit and eyelids: it arises from the internal angular process of the frontal, from the nasal process of the maxillary, and by a short tendon at the inner angle of the orbit. It rapidly expands to form a broad thin elliptical plane of fibres: the palpebral portion is thin and pale: the orbital portion is thieker and of a reddish colour. The action of the muscle is that of a sphincter, the eurved fibres in contraction approaching the centre: but as they are fixed at the inner side the skin to which the muscle is attached is drawn toward the nose, and becomes corrugated into folds which converge toward the inner canthus. The - corrugator supereilii, is a small triangular muscle placed at the inner eud of the eyebrow, arising from the same end of the supereiliary ridge: its fibres pass upward and outward to be inserted into the under surface of the orbicularis palpebrarum. It depresses the cycbrow, and, in conjunction with its fellow, throws the integuments into vertical folds as in the act of frowning. The occipitofrontalis ' consists of an anterior and postcrior carneous expansion united by a broad 'epicranial,' aponeurosis. The anterior musele, fig. $28, f$, consists of two lateral portions, ench connceted inferiorly with the integmment of the eorresponding cyebrow, and slightly overlapped by the 'orbicularis.' The posterior or occipital portion, ib. o, also consists of a pair, attached inferiorly to the upper curved line of the superoceipital, and to the mastoid. The fibres are parallel and nearly vertical. The action of this musele is most apparent upon the skin of the foreliead and the eyebrows: it raises the latter and throws the former into transwers wrinkles.
§ 202. Locomotion of Mammals.- In the movements of the luman frane the tluree kinds of lever are exemplified. Those of the liend upon the atlus are on the prineiple of the first kind, fig. 31, in which the fulerum \mathbf{F} is between the power \mathbf{P} and the resistance w. When the booly is raised on tip-toe by the action of the
muscles on the heel-bonc, fig. 37, h, the action is that of the second kind of lever, in which the resistance (of the tibia on the astragalus), as in fig. 32, w, is between the fulcrum F (afforded by the ball of the hallux), and the power a (tendo achilhs).

Lever of the first kind.

32

Lever of the eccond kind,

In lifting a weight in the hand by motion of the fore-arm only, fig. 33, the elbow-joint is bent; the power (of the flexors of the fore-arm) heing applied (as by the biceps, p) at a, between the fulcrum (elbow-joint) f, and the resistance w or b, according to the third kind of lever exemplified in fig. 34.

The mechanism of the pulley is exemplified in the passage of the tendons of the peronei muscles through the groove of the external malleolus of the human ankle-joint, in the tendon of the obturator

internus gliding through the groove in the os ischii, in the tendon of the circumflexus palati passing through the hamular process of the sphenoid bone, in the tendon of the obliquus superior gliding through the ring attached to the frontal bone, and.in several other instances where a change of the directions of the limbs results from tendons passing over joints, through grooves in
bones, or under ligaments, by wbieh tbe muscles are capable of producing effects on distant organs without disturbing the symmetry of the body, an effeet which, owing to the limited power of contraction in the muscles, could be accomplished in no otber way.

The joints in the mammalian skeleton are chicfly of two kinds, 'ginglymoid' or hinge-joints, and ' enarthrodial or ball-and-socket joints. In Man the former are less definitely fitted for motion on one plane than in most brutes. Tho

Lever of the third kind. urm and fore-arm move in concentric planes upon the elbow-joint; the knee-joint allows a certain rocking motion of the leg upon the thigh; tbe ankle-joint has a greater latitude of motion, and the foot may be direeted out of the plane of the leg's motion.

Atmospheric pressure exercises its imfluenee upon joints. Dr. Arnott estimates the amount of that on the knee-joint at 60 lbs ; Weber of that on the hip-joint at about 26 lhs. : in the hip-joint of the Megatberium the pressure could not have been less tban 150 lbs .
A. Swimming, - Quadrupeds with inflated lungs are of less specific gravity than water, and swim by alternate extension and flexion of their legs; the effective stroke being the act of extension, when the limb presents a larger area to the water than in flexion : this is seen in the Horse, wbich strikes the water witb the expanded and subconcave surface of tbe hoof, but draws the eonvex conical part througb tbe water in the bending of the limb preparatory to the next effective stroke. In the best water dogs the digits are connected by webs, which are stretched in the back or down-stroke, folded in the return movement. The feet of the Otter are hroader, especially the hind ones, and more fully palmated. The Scals and Whales have the limbs fashioned as fins.

Man, with the chest well cxpanded, is lighter tban water: the prosence of mind which counteracts the tendency produced by immersion in a cold and dense medium to expel the air from the lungs is the first safeguard against drowning; and next, if the art of swimming has not been learnt, to keep tbe head immersed to the month and nose, and to refrain from the misdirected struggles of terror whiel tend only to hasten on the eatastrophe.
In swimming, the hands and fect are employed so as to present the greatcst surface to the water in the effective stroke, the least in
the preparatory movement; in this the hands are brought near the mesial plane, with the palmar surfaces parallel to each other; they are then thrust forward by the extension of the arm, with the points of the fingers in advance to eut the water with the least resistance; when the hands have nearly reached their greatest distance from the centre of gravity, they are rotated by pronation, so that the palms are directed at an oblique angle outward and downward; they are then forced backward by the abduction of the whole arm through a large are of a circle, having the shoulderjoint for its centre, and the length of the arm for its radius; the fore-arm is then flexed, and carried into its former position preparatory to making another stroke. During the extension of the arm, the feet are drawn toward the eentre of gravity, with their convex surface direeted obliquely backward by the extension of the ankle and flexion of the hip and knee joints, and during the abduction of the arm the flat surfaces of the feet are driven forcibly backward and downward by the sudden extension of the leg. From the ratio of the areas of the hands and feet, and the ratio of the difference of their velocities in the two strokes, there results such a preponderance of the force in the vertical direction upward and in the horizontal direction forward as is sufficient to keep the respiratory openings above the surface of the water, and to overcome the resistance which the water opposes to the motion of the hody, due to its figure and velocity.
B. Moving on Land.-In mammalian quadrupeds the limbs are usually long, and support the trunk horizontally, uplifted from the ground, as on columns expanded at their base. The uppermost long bone is single, the next two form a pair, side by side, and these rest on more numerous ossicles, transferring the weight upon the hase of two, three, four, or five diverging piles: the single hoof of the Horse seems an exception, but it, too, expands to its hase. The shafts of the long bones are hollow, agreeably with the principle of combining greatest strength with least weight. According to the lightness and speed of the quadruped, the limb-bones are inclined to each other's axes at a greater angle. In the colossal Elephant and Megathere they rest on each other almost vertieally, in supporting the trunk. The horizontal trunk and produced head and neck of quadrupeds cause the largest proportion of the weight to fall upon the front pair of supporting columns, of which, accordingly, the angles of the joints are less, and the direction more vertical than in the hind pair, as is well exemplified in the hoofed kinds (vol. ii. figs. 307, 309, 310).

In walking, the Horse, if the rigbt side be in advance, moves first the left hind-leg, second the right fore-leg, third the right hind-leg, fourth the left fore-leg; propelling the centre of gravity forward over a space equal to the length of the first step. When the left hind-leg is in the act of advancing, the trunk is supported on the other tbree legs and is balanced on a triangular instead of a parallelogrammical basis. A suecession of movements of the four legs, in the above order, constitutes the progression by walking in most quadrupeds; its rapidity depends on the time occupied in the serics of movements by whicb the limbs effect the step. In a large well-made Horsc one foot may move the length of a step in a sccond of time, when eacb leg may swing during one quarter and rest on tbe ground three quarters of a seeond. Rapid walkers do it in less time, and the interval between putting down one leg and lifting anotber becomes inappreeiable. In quadrupeds with limbs unusually long in proportion to the trunk there is a modification of the aet of walking: the Camel and Giraffe seem to swing along by moving the two right limbs together and alternately witb the two left limbs. But, tbough in a quick walk the two legs of the same side seem to be moved forward simultaneously, and arc both off tbe ground at the same time through the greater part of the step, yet on elose inspection the hind-leg is scen to be first lifted from the ground, and after a very bricf interval the forc-leg of the same sidc. ${ }^{1}$ In this way of walk the trunk is balanced on a linear basis of support, alternately transferred from one side to the other. In tbe Giraffe the long neck is then stretched out in a line with the back, giving tbe animal a stiff and awkward appearanee; but this is lost when they commence their graceful undulating amble: the motions of the legs are now pceuliar; the hind-pair are lifted alternately with the fore, and are carried outside of and beyond them by a kind of swinging movement. ${ }^{2}$

In the pace of the Horse called the 'trot,' the legs move in pairs dingonally, those marked B, E, fig. 35 , c.g. being raiscd as soon as A, D, strike the ground: the bases of sup-

port are alternately in the lincs Λ, D, B, E; and the undulations from the projection of the trunk are in the vertical, not as when walking
in the horizontal, plane. Moreover, in the rapid trot, each leg rests a short time on the ground and swings a longer time.

The gallop includes three comhinations of movements of the limhs. When the Horse hegins the gallop on the right hind-leg, the left one reaches the ground first; the right hind and left forelegs next, simultaneously, and the right fore-leg last; this is termed the gallop of three beats. In the gallop where the four legs strike the ground successively, the left hind-foot reaches the ground first, the right hind-foot second, the left fore-foot third, and the right fore-foot fourth ; this is the 'canter,' or gallop of four beats, but it is not the kind of movement adapted for great specd. The gallop wherein the legs follow the same order as in the trotthat is, the left hind and right fore-feet reaching the ground simultaneously, then the right hind and left fore-feet-is the order in which horses move their feet in racing, where the greatest speed is required, and is called the gallop of tre beats. In the ' amble,' the two legs on one side rest on the ground and propel the centre of gravity forward, whilst those on the opposite side are raiscd and advanced, and, on taking a new position on the plane of motion, the former pair are raised and advanced in a similar manncr: these successive actions are accompanied hy considerable lateral motion. This resembles the gallop of the Giraffe, and is a result of special training in the Horse. In the ordinary gallop, the centre of gravity moves in a vertical plane, and describes the path of a projectile. The space passed over on the plane of motion is equal to the horizontal velocity of the centre of gravity multiplied by the time. According to Sainbell, the horse Eclipse, when galloping at liberty and with its greatest speed, passed over the space of twenty-five feet at each stride or leap, which he repeated $2 \frac{1}{3}$ times in a second, being nearly four miles in six minutes and two seconds. Flying Childers was computed to have passed over eighty-two feet and a half in a second, or nearly a mile in a minute. In both these famous racers the muscular system had been allowed to gain its full developement, as at four years, before being exerciscd for the course : modern impatience strains and spoils the muscles by the chief prizes being allotted to three-year-old horscs.

In many Marsupials and Rodents the hind-legs are shorter than the fore-legs, the disproportiou heing greatest in the Kangaroos and Jerboas. In slow progression the Kangaroo supports the hody on the tail and fore-legs, while the hind-legs are simultaneously moved forward outside and in advance of the fore-legs; the hase of support heing here transferred from a triangle to a transverse linc. In full specd the tail is rigidly outstretched to
afforl a firm fulcrum to muscles passing from the caudal vertebræ to the pelvis and hind-limbs: the short fore-limbs are tucked up to the chest so as to offer the smallest surface to the air, and the animal progresses in a series of bounds by simultancous movements of the hind-limbs.

The Rabbit, in moving slowly, advances the fore-feet two or three steps alternately. The loody being thus elongated, the hindlegs are suddenly extended and drawn forward simultaneously: it thus, as it were, walks with the fore-lcgs, and leaps with the hind. The IIare is under disadvantage with its long lind-limbs in running down-lill, owing to the great inclination of the axis of the trunk to the plane of motion, and it usually zigzags as it descends; but it gains proportionally in the ascent, and its speed on level ground, tlurough the size and strength of the chief propelling limbs, is very great. The degree of flexion of the trunk accompanying the movements of these and other quadrupeds is indicated by that in which the neural spines converge toward the single vertical one marking the centre of motion, and it is commonly greatest in the unguiculate quadrupeds.

The verticality of the long and narrow tarsus and metatarsus producing the 'digitigrade' character of the type Carnivoro, combines with the gcometrical and physical relations of the other parts of the limbs to give them their supcrior speed and agility. In the Dogs and Cats the oblique scapula, being unfettered by bony (elavicular) connection with the sternum, cnjoys the frcedom of rotation which characterises it in the swift Ungulates. The lumerus in the Lion (vol. ii. fig. 337) has its axis directed downward and backward, forming with that of the scapula an angle of 110°. The olecranon projects so far behind the axis of rotation in the elbow-joint as to constitute a powerful lever for the extensors of the fore-arm. The lind-limbs are longest, and the bones are inclined more obliquely to each other than in the fore-limbs, subserviently to elasticity and power in springing. The ealcrncum is produced on the same principle as the olecranon, but forms the more powerful lever of the two. The last perfection is given to the limbs of Carnivora by the modifieations of the toes of Felines, whereby their tread is noiseless, and the claws exempt from the wear and tear of progressive motion. It is effected by a joint allowing the ungual phalanges to be bronght in extension above the middle phalanges, elastic liganents being adjusted to keep the joint so extended, and by a thick cushion of soft elastic sulstance beneath the joint or parts of the phalanges transmitting the superincumbent weight to the ground.

In the toes of the fore-foot the last phalanx is retracted on the ulnar side of the second phalanx. The principal elastic ligament arises from the outer side and distal end of the second phalanx, and is inserted into the upper angle of the last phalanx : a second arises from the outer side and proximal end of the second phalanx, and passes obliquely to be inserted at the inner side of the base of the last phalanx: a third arises from the inner side and proximal end of the second phalanx, and is inserted at the same point as the preceding. The tendon of the 'flexor profundus

Elastic ligaments of Llon's claw. perforans is the antagonist of these ligaments. The toes of the hind-foot are retracted in a different direction, viz. directly upon, and not by the sidc of, the second phalanx ; and tbe elastic ligaments are differently disposed. They are two in number, arise from the sides of the second phalanx, and converge to be inserted at the superior angle of the last phalanx. In fig. 36, a is the pair of elastic ligaments; b, the tendon which pulls out and works the claw; c, inelastic ligament continued from the "extensor' tendon, which is mainly inserted into the second phalanx. ${ }^{1}$

The main purport of the modifications of the motory system in Quadrumana is to make them climbers. By the developement and direction of the hallux the hind-foot is converted into a hand, with unusual power of prehension, especially in the Gorilla; tbe joint of this hand is so modified as to give it a free motion excentric to the axis of the leg, wberehy its outer edge is applied to the ground; the whole hind-limb is shortencd, disproportionately so in the best climbers (vol. ii. fig. 180), in which also the lind-limb may be unfettered, for its acts of manipulation, by the absence of the 'ligamentum teres' of the hip-joint (Pithecus). The length of the iliac bones relates to elongation of the muscles for rotating the hind-limb and hand more quickly and through greater spaces. Correlatively, the scapular arcb, approximates to the condition of the pelvic one by the extension of complete clavicles to the manubrium, and the head of the humerus is received into a deeper and more secure socket than in Bimana. This is well exemplificd in the long-armed Gibbons, which enjoy the peculiar mode of locomotion called 'brachiatiou." The body is set into pendulous vibration by the action and reaction of the

The dissections of the Lion's foot showing the above-deseribed modifications of the elastic ligaments are Nos. 287a and 288A, I'hysiol. Series, vol. i. xx.
muscles of one arm and of the trunk, the force finally attained and the swing being such as to propel the animal some distance through tbe air; a bough is seized by the opposite out-strctched arm, and the momentum is alplied in aid of a repetition of the action to gain a longer launch. I have myself witnessed, in the London Zoologieal Gardens, an aerial leap of upwards of fifteen feet so effected by the long arms of a captive Hylobat. M. Duvaucel, observing them in their native forests, testifies to their passing through a distance of forty feet from bough to bough. Mr. Martin, when curator of the Zoological Society's Muscum, watching the same female Hylobates agilis which had been tbe subject of my own study of the brachiating mode of motion, states that, 'a live bird being set at liberty in her presence, she marked its flight, made a long swing to a distant branch, caught the bird with one hand in ber passage, and attained the braneh with her other hand, her aim both at the bird and the branch being as successful as if one object only had gained her attention.' ${ }^{\text {' }}$

In most of the Platyrhine monkeys the tail is prehensile, and becomes, in Ateles more especially, a fifth independent organ of grasping.

In ordinary progression on the ground the Quadrumana move as quadrupeds; but the higher tailless Catarrbines (Apes), instead of setting the palm or outer margin of the fore-hands, like the inferior families, to the ground, apply the back of the seeond phalanges of the flexed fingers, the skin covering which has a broad and thick callosity, whence these apes are sometimes called collectively, ' knuckle-walkers.' The longer-armed kinds, in slow movement, support the body upon the kuuckles, as upon a pair of crutches, and swing the lind-limbs forward lotween them. In more rapid movement they sway the trunk and hind-limbs in a sort of sidelong sweep, progressing by a kind of shambling amble. The tracks of the Gorilla show this to be the habitual mode of progression along the ground. ${ }^{2}$ Station or motion on the lower limbs only is shown to be difficult by its awkwardness and the shortness of time during. whicb it can be maintained. The walk is a waddle from side to side, the huge superineumbent body being balanced by swinging movements of the long arms, or by elasping the hands behind the head. When so pursued as to be driven to stand at bay, the Gorilla, like the plantigrade Bear, raises bimself on the hind-hands, so as to have his powerful arms aud fists free for the combat.

Tbe Bimana are as expressly adapted to station and movement on the ground as are the Quadru-
 mana to climbing in the forest. There isno known connecting link between the lowest variety of Man and the highest species of Ape. No animal is served by arms, at once so large and variously flexible and applicable as Man; in none are the terminal divisions of the limb so distinct in their power and adaptibility. ${ }^{1}$ The mechanism of the vertebral column and limbs which makes Man a ' plantigrade biped,' and the only one in the Animal Kingdom, is as perfect in the Mincopie, ${ }^{2}$ Australian, or Boschisman, as in the most advanced member of the whitc raee. The locomotive frame of any variety would equally serve as the subject of such elaborate analyses of the mechanical conditions of ' standing,' ' walking,' 'running,' ' leaping,' \&c. as have heen given by Borelli, ${ }^{3}$ Barthez, ${ }^{4}$ Rouliu, ${ }^{5}$ Gerdy, ${ }^{6}$ and W. \& E. Weber, ${ }^{7}$ to whose works, and especially the latter, the reader is referred for this interesting branch of Animal Mechanics.

1 Exiv'
4 XIV"-

2 XXXVII ${ }^{-4}$.
$\mathbf{x} \mathbf{v}^{*}$.

Cxxx1.

= 512 ".

Figure 37 exemplifies a Man stooping with a load, and sustainod in that position by the glutei, f, the quadriceps femoris, y, and the gastrocnemii, l. If the weight r be 120 lbs ., that of the bearer 150 lbs ., and if the line $r s$ be the direction of the force of gravity cutting the femur and tibia in c and x, the centre of gravity of the Man being at b, and the common eentre of gravity of the Man and bis load at a, then the weight of the Man from the head to b will be $={ }_{2}^{150} \mathrm{lbs}=75 \mathrm{lbs}$, and that of the section b to c, by supposition, $=47$; therefore the weight of the arc $a b c=75+47=122$, also by supposition the scetion $c v x=20$, and consequently the whole arc $a b v x=$ 142; the distances of the directions of the muscles from the axes of the joints to the distances of the like of gravity are, according to Borelli, in the following ratio, $\frac{1}{2}$ the distance $f b$ is to the distance $m b$ as 1 is to $8 ; \frac{1}{2} o v$ is to $t v$ as 1 to $6: \frac{1}{2} h d$ is to $p d$ as 1 to 3 ; and $t v$ to $b m$ as 3 to 4 ; bence he derived certain proportions, from which he estimated that the extensor muscies of the leg, to sustain this weight, exerted a force $=6032 \mathrm{lbs}$, being more then fifty times the weight.

CHAPTER XXVIII.

NERVOUS SYSTEM OF MAMMALIA.
8203. Myelon. - The myelon in Mammals, as in Birds, quits, in the course of developement, the hinder part of the neural canal, moving and concentrating forwards, and leaving the concomitantly elongated roots of the nerves, between their places of exit at the intervertebral foramina and their places of attachment to the myelon, as an indication of the primitive extent of the nervous axis.

It is remarkable that the Monotrematous order, so restricted in its representative genera, should present the two extremes of this developemental difference in the length of the myelon. The Ornithorhynchus hardly departs from the eondition of the lizard, the myelon extending into the sacrum, and having the intravertebral nerve-roots limited to the short canal of the caudal region; whilst in the Echidna, fig. 38, the myelon moves forward to the middle of the dorsal region, d, where it ends in a point, and leaves all the canal behind ocenpied by the elongated nerve-roots and shrunken emptied myelonal sheath, answering to the " cauda equina' and 'filum terminale' of anthropotomy, but of extraordinary length.

In the Ornithorhynchus the myelon fills elosely the neural canal: it is thickest at its commencement and at the lower two-thirds of the cervical region; it is more slender in the back, especially near the loins; it is slightly enlarged in the lumbar region, and groulually, terminates in a point at the end of the sacral canal. The short and thick myelon of the Echidua presents the two usual enlarge-

Brain uxd suinal cheord, Echidna, thall nat. size.
ments, giving origins respectively to the nerves of the pectoral and pelvic extremities, the slightly contracted intermediate portion being extremely short.

In the Marsupialia the myelon usually extends to the saerum,
 and presents both brachial and pelvic enlargements which correspond with the relative size and muscularity of the extremities to which they furnish the nerves; the latter enlargement is consequently most marked in the Kangaroo, fig. 39, but does not exhibit the rhomboidal sinus of this part in Birds. The disposition of the layer of grey matter enveloping the central medullary tract in each lateral moiety of the ehord is shown in the three situations marked 1,2, and 3 ; the superior expansion and complexity of the grey matter in the anterior columns of the pelvic enlargement, 3 , aecords with the predominance of the loeomotive over the sensory functions in the long and strong saltatory legs of the Kangaroo.

In the Lissencephala we have again examples of the concentrative protraction of the myelon into the dorsal region, as e.g. in some Cheiroptera and in the Hedgehog. From the eoineidence of the condition of the myelon with the tegumentary covering in Erinaceus and Echidna, we are led to ask, whether the shortness of the solid chord, and the great length of the succeeding nerves within the neural canal, have any physiological relation with the habit, common to both the placental and monotrematous hedgehogs, of rolling the body into a ball when torpid or asleep, or when the tegumentary armour is employed in selfdefence. In the bat it would seem to be concomitant with the reduced size and function of the pelvie limbs: hut, in the Noctules (Vespertilio noctula), the myelon extends to the lumbar vertebra. The anterior enlargement is the ehief one in Cheiropterc, and is close
to the medulla ohlongata, as it is likewise in the Cetacea. In most Rodentia the myelon terminates in the lumbar region, but in the rahhit it extends a little way into the sacrum. In the mouse the relative proportion of the myelon to the brain is as 22 to 100 .

In the Cetacea and Sirenia, the myelon presents only the anterior enlargement, which is very near the hrain, and is remarkahle for the elose aggregation of the origins of the nerves from that part. The myelon is closely invested by the dura mater, which is directly perforated hy the nerves, and the sheath terminates at the pointed end of the myelon, not heing continucd as sueh, over the 'eauda equina.' The myelon is small in proportion to the size of the body, shows the central eanal, and, Hunter remarks, 'is more fibrous than in other animals; when an attempt is made to break it longitudinally, it tears with a fibrous appearanec, hut transversely it hreaks irregularly." ${ }^{1}$

In the Elephant the dura mater surrounds the myelon less elosely than in the Cetacea, and the roots of the nerves have a longer course within the sheath. In the Giraffe ${ }^{2}$ I found the myelon elosely invested by the dura mater, which was thinner on the dorsal than on the ventral side: it is chiefly remarkable for the length of the cervical portion, which from the eorpora pyramidalia to the pectoral or brachial enlargement measured four feet three inches. The elongation of this part during foetal developement proceeding by uniform interstitial addition, the roots of the nerves hecome equally separated from each other; and, as the lowest filament of one root was not further removed from the lighest of the next helow, than this from the succeeding filament of the same root, such filaments were extended over an unusual space of the myclon; the root of the third eervical coming from a tract of not less than six inehes in length: the contrast between the cervical myclon of the Porpoise and Giraffe in this respect is striking.

With the singular exeeptions of the Eehidna, Hedgehog, and certain bats, the mass of the myelon bears a direct ratio to that of the body throughout the Mammalian series, and its structure is essentially the same. In the adult human male it a little cxeceds an ounce iu weight: its tissue is firmer than that of the brain. As in all Vertebrates, the ventral and dorsal surfaces are respeetively divided into equal moieties by a longitudinal fissure, of which the dorsal is deepest, and, in the Mammalia, elosest. In Man, the interfissural plate of pir mater can be slown to be a fold in the ventral (anterior) fissure, fig. 40, a, but is confluent as a

$$
\text { xcIv. p. } 374, \quad{ }^{2} \text { xevir' }
$$

single delicate layer of vascular tissue in the dorsal (postcrior) one, ib. c. A layer of white neurine accompanies the ventral fold, whicb, when withdrawn, shows the fissure to be closed by such layer, perforated by numerous holes for capillarics: its fibres are transverse and form the white myelonal commissure.' The depth of the ventral fissure is greatest at the pectoral enlargement of the myelon, and gradually diminishcs towards the 'cauda cquina.' The deeper dorsal fissure penetrates fully one-half of the dorsoventral diameter of the myelon througb the greater part of its course, but becomes shallower in the lumbar region: it is bounded by a layer of grey neurine, connecting the same tissue in eacb lateral moiety of the myelon, which layer forms the 'grcy myclonal commissure.'

In tbe developement of the myelon, as of the encephalon, the contral part contains a fluid which is reduced by the endogenous

Transverse section of the human ingelon, close to the third and fourth cervical nerves. Magnifled ten diameters. xvili", growth of neurine, on approaching maturity; it remains in the myelon, as its - canal,' which is obvious in the cold-blooded Vertebrates, ${ }^{1}$ and is exposed, in birds, as the ' ventricle of the pelvic enlargement,' as it is in the 'fourth ventricle' of all Vertebrates, where it bears the name of 'calamus scriptorius' in anthropotomy. The myelonal canal is more obvious in lower mammals ${ }^{2}$ than in Man, and in the foetus than in tbe adult; in wbom, whilst unobliterated, it is surrounded, like the more obvious myelonal canal in Reptiles, by the grey commissural neurinc. The canal is lined by ciliate cells. ${ }^{3}$ The lateral columns of this tissuc, united by the commissure, are thicker but less peripherally extended in the ventral, g, than in the dorsal, h, portions of the myelon. In transverse section the grey neurine resembles a comma, the concavity of which is directed outward, the head, fig. $40, g$, is surrounded by the peripheral white neurine, and the tail, $\mathrm{ib} . ~ h, i$, is produced to the issue of the dorsal (posterior') nerve-roots, ib. 7 . The proportions of the grey and

[^5]white neurine vary in different parts of the myelon. In fig. 41, 1 is a section at the fore (upper) part of the peetoral enlargement, the head of the comma is small, the tail narrow ; in the middle of the enlargement, section 2, the head is larger, with more distinct processes, the tail is thicker. In the dorsal region, seetions 3, the grey matter is more reduced than in the neck. In the lumbar region, sections 4 , it again expands, the heal shows the stellar character, is fenced off from the ventral periphery by a smaller exteut of white neurine; the tail is thicker, but here becomes shorter and seems not to reach the dorsal surface. Near the termination of the myelon the comma-shape is lost, and the grey neurine reduced to a subcylindrical tract, slightly notched laterally and surreunded, save at the commissure, by the white neurine. Of this tissue the largest proportion exists in the cervical part of the myelon and its enlargement, where the small columns called ' posterior pyramids' are continued from the dorsal part of the medulla oblongata, contracting to a point, near the end of the brachial colargements, and there allowing the proper dorsal (posterior) columns of the myelon to come into contact at the posterior fissure. The difference in the proportions of white and grey neurine in the ventral and dorsal traets of the myelon coincides with the different nervous endowments of the pectoral and pelvic limbs: in the former volition and scnsation are greatest ; in the latter reflex actions with diminished sensibility: the cxercise of the arms and hands induces more calls upon cerebral action, that of the legs and fect operates nore exclusively through physical changes of the lumbar part of the mye-

Transverse sections of the human Mrelon.
A. Anterlor or "ventral. P. Posterior or "dormil." lon itself: hence, thercfore, the need of a greater proportion of the reproductive or grey tissue. Numerous multi-caudate vesicles are present in the grey nemine, and linear tracts are continucd from the major part of its periphery, as scen in transverse section, towards that of the myelon, accompanied by capillary vessels which enter the pin mater.

The proportion of the ncural eanal to the myelon varies in
different mammals: it is greatest in the Cetacea, Sirenia and Seal-tribe, the space hetween the myelon and neural arches heing oceupied hy hlood vessels, which, in those aquatic orders, are chiefly arterial plexuses. In land-mammals and Man the veins pre-

Communication of the 'perineural' sinuswith the veins of vertebral centram, FII":

Transverse section of dorgal vertebra and contents of tta neural canal. $\mathbf{I}\left[x^{\prime \prime}\right.$.
dominate, having more or less of the character of sinuses, as shown in the seetion of the lumbar vertehra, fig. 42, where the communication of the 'perineural' veins, d, with those of the tissue of the vertebral centrum, is shown. But the most constant fluid external to the myelon is that whieh has heen called 'cerebro-spinal.' In the dorsal region of the neural eanal, in Man, the position of this fluid is shown in fig. 43, where c is the myelon, with its pia mater and arachnoid, m the dorsal or posterior septum, n the nerve-roots, and $s s$ the sub- or ent-arachnoid space. The use of the uniform support and defence afforded by the interposition of this fluid hetween the myelon and the hard walls of the neural canal is obvious. ${ }^{1}$

The arachnoid is disposed ahout the myelon, as about the hrain, after the manner of the serous memhranes; it consists of an extcrior or 'parietal layer' reflected upon the myelon to form the

Transverse section of the myelon and its membatios across the roote of the fith cervical nerves. internal or 'myelonal' layer. If a section he made through a pair of nerve-roots, those e.g. of the fifth cervical, fig. 44, the arachnoid is seen to he continued as a loose sheath, about the inter-neural part of the root, $n n$, and is reflected so as to form small euls-de-sac, at the orifices of emergenee.

In Man the myelon is loosely invested hy the 'dura mater,' to whieh it is attached hy xix". In which the effects of the removal of this fluid in the Dog are described.
processes of the arachnoid called ' ligamentum denticulatum,' and the nerve-roots.
§ 204. Encephalor, its primary divisions.-The enccphalon, or brain, of Mammals, like that of lower Vertebrates, Turtle, fig. 45 (vol. i., Shark, fig. 187, and Lepidosiren, fig. 186), presents four primary seg-

Brain of a Turtle (Chelone), clde view. ments or divisions, indicated by as many superincumbent, originally vcsicular, masses, or pairs of masses; but consisting, not only of those, but of tracts of the myelencephalic columns from which those masses are successively developed.

The hindmost division, or - cpenccphalon,' fig. 46, c, consists of the enlarging parts of the myelencephalic columns, a, called 'medulla oblongata,' of the supcrincumbent mass, c, originally a pair in the human fretus (fig. 47, c), called • cerebcllum,' and of a transverse commissure of that body, called 'tuber annulare' or 'pons varolii,' p; the three parts, so named in anthropotomy, are subordinate clements of one and the same primary division of theencephalon. ${ }^{1}$

The next division includes the parts of the myelencephalic columns which support, and from which arc devcloped, the optic lobes, o : it is the 'mesencephalon,' figs. 45, 46 and 47,o. With the columnar elements arc the parts called the 'fillet,'

Bralu of Oposeum (Didelphis), side view.

$$
x, x \rightarrow-1
$$

 Braln of human fatus, at four monthe, sido view. and 'proccssus a cercbello ad testes' in anthropotomy, including the 'third ventricle' and its prolongations into the vascular appendages

[^6]called ' pineal' and 'pituitary' h, glands: a second pair of ganglionic masses arc developed in Mammalia hehind the optic lohes, o, and received from the old anthropotomists the name of 'testes,' the more constant and important pair heing the 'nates,' and the whole, from their arrested condition in Man, forming the 'corpora - quadrigemina or ' higemina.'

The third primary division of the brain includes the 'crura cerehri' with the reinforcing or recruiting ganglions called ' thalami optici' and 'corpora striata,' and the superincumbent masses called 'cerebral hemispheres:' it is the 'prosencephalon,' figs. 46 and $47, p$.

The foremost primary division of the brain includes the anterior termination of the columnar tracts, called ' crura rhinencephali,' and the appended vesicular mass, called 'olfactory lohe ;' it is the 'rhinencephalon,' ih. R. The nature and value of this division are masked, in Man, hy the arrest of its developement and the contrast of the excessive expansion of the vesicular part of the antecedent division. Accordingly the 'crura rhinencephali' are termed 'olfactory nerve' with its 'roots,' and the primary vesicle is the 'hulh of the olfactory nerve,' of anthropotomy.

Each primary encephalic division has its cavity or cavities called 'ventricles.' The epencephalic prolongation of the myelonal canal is the 'fourth ventricle:' its continuation into the primary vesicle is the 'cerehellar ventricle :' it is persistent in fishes (vol. i. p. 275, fig. 178, c), reptiles (ih. p. 295, fig. 193), and hirds (vol. ii. p. 120, fig, 45), hut is ohliterated in Mammals where the cerehellum is solid. The 'myelonal canal' passes forward as the 'third ventricle,' and 'iter' or communicating canal between that and the 'fourth.' Its continuation into the optic lohes, retained in oviparous Vertebrates (vol. i. p. 278, fig. 182, h, b, p. 279, fig. 183, d, p. 295, fig. 193, 3, vol. ii. p. 120, fig. 45, o,) is ohliterated by growth of neurine in Mammals; as is also its ascending canal to the 'pineal appendage;' the descending one to the 'hypophysis' is retained as the 'infundibulum.'

Each cerehral hemisphere begins in Mammals, as in lower Vertebrates, as a hladder with a thin wall of hrain-suhstance, the cavity including, potentially, all the anthropotomical 'horns,' 'fore,' ' aft,' and 'under,' of the 'lateral ventricle,' which are subsequently meted out hy endogenous growths of grey and white neurine, in size and shape according to the group or genus.

In most Mammals which derive so important a share of their ideas through the olfactory sense, the 'lateral ventricle' is con-
tinued into the 'rbinencephalon,' as shown in fig. 46, d. So that all the essential parts of a primary encephalie division, viz. the columnar as 'crus rbinencephali,' the superimposed mass, and the eavity exemplifying the nature of the olfactory bulb as a ' primary vesicle' of the brain, are present.
§205. Macromyelon.-The epencephalon consists of the macromyelon and cerebellum. The term 'maeromyelon is not cxactly the equivalent of the 'medulla oblqngata' of antbropotomy, the authoritics in tbat department of anatomy having applied the pbrase in different senses. Witb Willis, ${ }^{\text {, }}$ it included the part of the brain beneatb the cerebellum and cerebral hemispheres, ' all tbat substance,' e.g., wbich reaches from the cavity of the callous body and eonjuncture in the basis of tbe bead to the hole at the hinder part wbere the same substance, being further continued, cads in the 'spinal marrow.' With Vieussens, ${ }^{2}$ the 'oblong marrow' included the columns of the neural axis between the 'spinal marrow' and the 'cerebral hemispheres,' witb tbe 'crura cerebri' and their ganglionic colargements, called 'optic thalami,' and 'corpora striata.' Winslow ${ }^{3}$ defines the 'medulla oblongata' as the medullary basis common to botb cerebrum and cerebellum. Haller 4 restricts tbe 'medulla oblongata' to the intracranial inyelonal columns, as far as the 'pons varolii.' Rolando ${ }^{5}$ prefers tbe older view of its extent. Chaussier, ${ }^{6}$ again, distinguishes the portions of tbe intracranial columns crossed by the transverse commissural fibres of the cerebcllum as a primary division of the brain, under the name 'mesocephale;' and this term has been extended by Tocld ${ }^{7}$ to include the 'corpora quadrigemina' witb the 'processus cerebelli ad testes,' and part of the floor of the fourth ventricle.

But tbe developement of the liuman brain and its several stages, represented by the conditions at wbicb it is arrested in lower vertebrates, show that the transverse commissural fibres wbicb cross or decussate with the intracranial myelonal columns, whether uuder the name of 'pons,' or 'trapezoid bodies,' or 'arciform fibres,' are subordinate adjuncts to other parts, chiefly the cerebellum; while the distiact and superimposed masses called 'corpora quadrigemina' include the true correlatives of the cercbrum and ccrcbelluin, as primary vesicles of the brain.

By 'macromyclon,' therefore, I signify the intracranial prolongations of the myelonal columns as far forward as their emergence from the 'pons,' or cercbellar commissure : in this tract they are

reinforced by masses of grey neurine, and the transverse commissural fibres are so intermixed with the longitudinal ones as to compel their being combined in description as in delineation, figs. 48, 56. But, before quitting the Mammalian class, the reduction of the 'pons,' concomitantly with that of the side-lobes of the cerebellum, as in figs. 51 and 53 , is such as significantly to testify against its title to he regarded as a primary division of the hrain; and in birds a 'tuber annulare' or 'pons varolii,' ceases to appear upon the under surface of the myelencephalous tract above defined. From this tract the cerebral nerves, from the fifth to the hypoglossal or ninth inclusive, arise.

In advancing to the formation of the macromyelon growing

Maeromyelon, auterior or veutral aspect. Man, nat. alze. central tracts of the myelonal columns come to the periphery, and push aside the medial tracts on hoth the ventral and dorsal surfaces. On the former, fig. 48, they decussate, as they appear, at d, and, with a contiguous portion of the anterior myelonal columns, b, expand to form the "prepyramidal bodies,' p. The rest of the antcrior columns, b, with the contiguous antero-lateral column, in their course along the macromyelon, are associated with a mass of grey matter occasioning a swelling out of the surface, called the* olivary bodies,' ib. o. A thin layer of superficial fibres which, in lower Mammals with non-prominent 'olives ' pass outward, as a 'trapezoid layer,' in Man curve round the exterior of the olivary prominences, and constitute the - arciform fibres,' ih. A.

The transversc fibres defining anteriorly the 'prepyramids and 'olives' increase in mass, from the lowest Mammals (Ornithorhynchus, fig. 51, c, Didelphys, fig. 53, b), to Man, fig. 48, a. As they arch over the fore part of those macromyelonal tracts they have been called 'pons;' but their true position is that of an inverted or suspended hridge: their developement is in the ratio of that of the side-lobes of the cerehellum.

On the posterior or dorsal surface of the myelon the deep-
seated tracts become superficial at a greater distance from the skull than on the ventral surface, and do not decussate; they expand as they enter the macromyelon, and form the 'post-pyramidal bodies,' fig. 49, Y. The posterior myelonal columns which they push aside, diverge as they are continued into the macromyelon, and combine with the contiguous lateral columns to form the post-restiform tracts, x. In advance of the postpyramids, still deeper columns of the myelon come into vicw, as the

Macromyelon, posterfor or đorsal anpect, With section of cerebelinm, Iutant, nat, size.
'teretial tracts,' ib. A, F, bounding the sides of the fissure, called 'calamus scriptorius,' at the floor of the expanded macromyclonal canal called 'fourth ventricle.' This is over-arched by the cercbellum, here bisected, and one half reflected at r ; the peduncle or 'crus' of the opposite half being shown at U . The thin layer roofing the ventricle anterior to the crus is called ' valve of Vieussens,' в.

Sections of the macromyelon, as at fig. 50, show the form of the grey matter, called 'corpus dentatum,' of the olives, o o , and the relative position of the enlarging columns. Those on each side the fissure A, are the prepyramids; those on each side the fissure P, are the post-pyramids; the lateral or restiform tracts intervene between them and the olivary tracts, o.

In the Monotremes the macromyelon is large in proportion to the rest of the brain, but the ' pons' bears relation to the cerebellum in its smallness. The prepyramids, figs. 51 and 52, a, are long, narrow, flat, and contract as they approach the pons, especially in the Ornitho-

Trasperee sectlens of the marromyelon, at the parts uarked x und T ng. 49. Man, nat. bize rhynchus; the olives, fig. 51, a, fig. 52, b, are also long and flat, but expand as they approach the pons, and are crossed, before reaching it, by the 'trapezoid homologues of the 'arciform fibres in Man. The distinction between the olivary and pre-restiform tracts is less marked. The grey matter
is small in the olivary tracts, and does not form a ' corpus dentatum.' The pons is flat, it forns a narrow transverse band in the

Slde viet and base of brain, Ornithorhychus.

Base of braln, Echldne.

Ornithorhynchus, fig. 51, c; these fihres cover a greater anteroposterior extent of the macromyelon in the Echidna, and give the pons a triangular form.

In the Opossum the pons, fig. $53, b$, is reduced almost to the proportions of that in the Ornithorhynchus;

Bree of brajn, Didelphye. the prepyramidal, d, and olivary tracts are similar, and the latter are crossed by as wellmarked a trapezoid arrangement of transverse fibres, c.

The prepyramidal tracts come to the surface at a greater distance from the pons, in most Mammals, than in Man, and thus resemble more the postpyramidal tracts; this character is shown in the Horse, fig. 54, Dolphin, fig. 60, b, and Baboon, fig. 62. In the anthropoid Apes, the proportions of the prepyramids (fig. 112, Orang) approach those in Man, and the arciform disposition of the superficial layer of crossing fibres hegins to prevail, and to allow the olives, which are likewise here more prominent, to come into view. Although the olives are less prominent in Delphinus than in the Apes, they are equally uncovered by the trapezoid fibres: and show internally the arrangement
of grey matter called ' corpus dentatum.' The pons, fig. $60,5, c$, by its prominence and antero-posterior extent, corresponds with the great lateral developement of the cerebellum, e.

When the prepyramids, fig. $55, p$, are divaricated in the human macromyelon, the

Base of tho Brain, Horse median fissure, which is wider and sballower than

55

Postponten Dart of Macromyelon, anterlor or ventral espect. Man, xexirt ${ }^{\prime}$
that, r, below the decussation, shows the same cribriform character of its 'floor,' formed by the penetrating vessels from the fold of pia rnater which lined it. A further extent of divarication shows transverse fibres uniting tbe halves of this part of the macromyelon, and dccussating with longitudinal fibres, as in fig. 56. The scetion of tbe prepyramid on each side of a, fig. 57, shows its triangular figure and the restriction of grey matter to the ' nuclei,' r, s; they are mainly composed of white longitudinal fibres which enter the pons above its lower or peripheral transverse fibres, and interlace with the fibres of a bigher plane: at the entry each pyramid is constricted, as at fig. $56, p$, but soon expands. The proportion of the decussating and non-decussating tracts of the prepyramidal columns is shown in fig. 56, where p is part of the right prepyramid cut across near the pons and reflected to show the decussating fasciculus, d, and the non-decussating fasciculus, n, continued through the pons, r : the decus-
sating fasciculus of the left prepyramid is shown at d^{\prime}. The fibres of the outer white neurine of the olives are longitudinal, and are continued forward above the pons, as shown at f, fig. 66. The nucleus of grey matter sinks

Dissection of macromyelon, seen ouliquely from the right side. Jran, xxami". deep in to the macromyelon, as shown in the sections, figs. $50, o$ and $57, g$; its section in any direction presents the undulated course of the white capsule suggesting the anthropotomical term - corpus dentatum.'

The lateral or restiform columns, diverging, as in fig. 49, x, are mainly continued into the cerehellum, of which they form the hinder or ' inferior peduncle,' fig. 66, r. Recruiting grey neurine is developed in their interior. The post-pyramidal columns, contracting as they diverge and ascend, are closely applied to the restiform tracts, hut are continued,'as the ' fasciculi graciles,' into the crura ccrebri.

Stilling ${ }^{1}$ has enriched anatomy with the following magnified view of a transiverse section of the macromyelon, one half of which shows, the structures as seen hy transmitted light, fig. 57. The anterior or ventral fissure, a, is here seen to he much deeper than the opposite one, b, represented hy the "calamus scriptorius.' The septum or raphe, c, of the lateral moieties is a compact white neurine; d, v, are the prepyramidal columns, of which r is the large nucleus, $s s$ the smaller nuclei; the roots of the hypoglossal nerve, l, run along the interspace hetween the pyramids and olives. Of the latter the nucleus is shown at g, with its plicated capsule of white neurine; a small mass of grey substance is situated near the olivary one at $u ; x$ indicates grey matter and i gelatinous matter, near the roots of the vagal nerves, $k \hbar$. The nuclcus of the vagus is h, with the root of which nerve is also conrlected the white longitudinal fihres, m. Whether g he exclusively related to the hypoglossal, or is the place of origin (part of the larger root) of the trigeminal, is undctermined; n is the 'soft column,' o the wedgc-like column; f is the nucleus of the restiform hody. The transverse or arciform fibres covering this
lateral column are marked p, those continned over the olives, w, and those over the prepyramids, v; they form the trapezium in lower Mammals.

The nucleus in the trapezium, on each side of the raphe, so closely resembles, at a higher section, the olivary body, that it has

Tranperee soctlon of the maeromyclou through the fower thid of the olivary bodes. Musilligd ten dimmetera.
been termed the 'upper olive'; it makes its appearance near where the lower olives first diminish in size. In the Shecp it appears as a group of large stellate multipolar cells, and these cells are more numerous in the Rodents, and still more so in the (ar. In the Rabbit the upper olivary body is convoluted in three or four turns; in the Mouse it consists of a wavy mass of large and numerous cells; its structure is especially distinct in the Cat.

The 'post-pyramidal' and 'restiform' nuclei are present in all Mammals. The olivary bodies consist of layers of small cells jenetrated by the arciform filaments, by which they are connected with each other and with the raphe; they are not absent in the Sherp. The transverse scetion of the human medulla oblongata in the region of the first cervical nerve is more circular, less
elliptical, thau in the Sheep and most lower Mammals. The restiform and postpyramidal nuclei are relatively larger, but the Quadrumana and Carnivora approach the human structure in this particular ; the Cat, e.g., shows an intermediate condition between those in Ruminantia and Bimana. ${ }^{1}$

In comparing the macromyelon of the Mammal (fig. 50) and Fish (vol. i. fig. 172) the usual course of structural differentiation seems to be reversed; a greater numher of longitudinal tracts are definable in that of the Sturgeon or Shark than in that of Man. But the superior character is more seeming than real; the superaddition of ascending fibres in the higber Vertebrate tends to obliterate the boundary lines and seems to blend tracts-the 'funicular' and post-pyramidal, e.g. in the Mammal, which are distinguishable in the Fish.
§ 206. Cerebellum. - The posterior and restiform columns, pushed aside by the postpyramidal and teretial tracts in approaching the macromyelon, diverge and expand into a fibrous stem, which, arching over the fourth ventricle, developes the central transversely folded lobe, answering to the cerebellum of the Shark (vol. i. fig. 187, c) and Bird, and expands into lateral lobes

Vertical section of the median lobe of Cercbellum and Macromyelon.
characteristic of the Mammalian class. The myelonal tracts, which in descrihing the brain from behind forward may be said to enter into the formation of the cerebellum, fig. 66, r, leave it, after some expenditure and exchange of substance, as 'departing'

[^7]restiform tracts, ib. t, continued into the basis of the mesencephalon, forming also those called 'processus cerebelli ad testes,' united above by the thin layer of medullary matter called 'valve of Vieussens,' fig. 49, в. The progressive increase of the lateral lobes is attended by corresponding developement of the system of transverse or arciform fibres constitutiug the 'pons varolii,' which, entering the cercbellum at the "infero-lateral' or 'semilunar fissure,' fig. 64, h, i, interblend with the longitudinal 'entering' and 'departing' columns, and constitute the commissural part of these lobes.

In Anthropotomy the part where the formative and commissural tracts join on entering the cerebellum are collectively called its " crus,' the tracts being its constituent "peduncles; ' thus the entering or posterior and restiform tracts, which are the 'homotypes" of the "crura cerebri,' are termed the 'inferior or posterior peduncles,' or 'processus ad medullam oblongatam,' fig. 66, r; the emerging restiform tracts, called 'processus ad cerebrum,' and ' processus ad testes,' are the 'superior or anterior peduncles,' ib . t; whilst the entering fasciculi of the 'pontal or varolian commissure' are the "middle peduncles" or "processus ad pontem,' fig. 64, i.

These latter are porportionally least in the lowest, and largest in the highest, species of Mammals. In all, the formative columns on entering the white axis receive grey or ' recruiting' matter for the developement of accessory fibres, relating in size and complexity to the increase of the ccrebellum, and chiefly of its lateral lobes. In the Monotremes, figs. 51 and 52, the 'pontal' or cerebellar commissure is a thin layer of transverse fibres of small antero-posterior extent; the true character of the real *crura ccrebelli," or formative fasciculi, is here well exemplified. The cerebellum, fig. $38, b$ (Echidna), consists mainly of the median lnbc, which being transversely folded presents in vertical section that arrangement of grey and white matter called 'arbor vita.'

In the Marsupial Order, the cercbellum presents close-set, subparallel, transverse convolutions; few in the climbing Koalas and ($)_{\text {pussums, fig. }} 46, c$, more numerous in the locomotive Kangaroos: it is remarkable, as in Monotremes, for the large proportional size of the median or vermiform lobe as compared with the lateral lobes, especially in the carnivorous and insectivorous Marsupials, where this condition is associated with a corresponding diminution of their commissural band as shown in the view of the hase of the brain of an Opossum, fig. $53, b$. In the Kangaroos,

Perameles, Phalangers, and Koala, the hemispheres or lateral lobes of the cerebellum are characterised by a small subspherical lateral process or appendage, c, c, fig. 74, which is lodged in a peculiar fossa of the petrosal above the internal meatus: there are corresponding but less produced processes in the Dasyures and Opossums, they do not project in the Wombat. On the upper surface of the cerebellum the medullary substance or nucleus appears superficially at a small tract on each side the vermiform process, marked with an asterisk in figures 74 and 75. ${ }^{1}$ The simple disposition of the arbor vite is shown in fig. 46, e.

In the Lissencephala, the cerebellum in the Insectivora, fig. 76, and Cheiroptera, resembles that of the Opossums; in the Rodentia the lateral lobes, fig. 59, d, show a greater increase, which is most marked in the swift running Hares, fig. 81, l, l. As this developement is not accompanicd with a concomitant growth of the cerebrum, the cerebellum is proportionally greater to the rest of the brain in Rodents than in other mammalian orders.

The Cetacean brain is remarkable for the large proportional size of the cerebellum, fig. 60, and especially of its lateral lobes, c. On the under surface may be distinguished the main part of the lateral lobe, e, the oblique lobule, f, that which answers

Upper surfice of the Jraing, Agouti. to the "amygdaloid lobe" and the ' floccus ' of Reil, h. Each is subdivided by the chiefly transverse anfractuosities into numerous lamellæ. The middle lobe, fig. 93, a, is not symmetrical but inclined, like the skull, to one side, in Delphinus. The grey nucleus or ${ }^{\text {cor- }}$ pus fimbriatum' is well developed. The 'pons,' fig. 60, c, is now large and prominent.

In the Ungulata, the relative size of the lateral lobes increases with the bulk of the species, and attains its maximum in the Elephant; in the Rlinoceros, Giraffe, fig. 86, Ox, and Horse, fig. 61, the middle lobe is contorted, especially above. The common castration of the latter quadruped has afforded abundant evidence that the cerebellum is in no degree affected thereby in size or form. ${ }^{2}$

[^8]In Carnivora the smallest species (fig. 89, Stoat) have the smallest lateral lobes in proportion to the middle one.

In the Quadrumana the middle lohe is proportionally largest in the Lemuridse and smaller Platyrhines. The appendicular lobule is present in the Aye-aye ${ }^{\text {a }}$ and other Lemuride, and is lodged in a special pit of the petrosal. In the larger Catarhines the lateral lobes increase in size, and lose, or incorporate, the appendix; they show the lobular groups of lamella, cspecially on the under surface, fig. 62, as

' cu ', p. 56 , firy 3 , 8.
the timid and sharp-eared nocturnal Aye-aye, being associated with large external ears and a well developed auditory organ. ${ }^{1}$

In Man the lateral lobes of the cerebellum acquire their largest proportions, are called 'hemispheres,' fig. 63, c, and reduce the middle lobe, which is the most constant part in the vertebrate

series, to the semblance of a subordinate adjunct, called 'vermiform process,' ib. P, in Anthropotomy.

The characteristic form of the human cerebellum is manifested, according to the devclopmental law ('Preface,' vol. i. p. xxi.) before its surface becomes convoluted, and when the large hemispheres are represented by smooth vesicles of neurine, fig. 47, c, c. It resembles the eerebellum of the bony fish and frog in the smoothness of the surface, but has assumed in the fortus at four months the recognisable specifie form. The cerebellum is, in fact, more unique and definitely human at the embryonic period than when fully developed ; it then weighs, or averages, 5 oz .4 dr . in the male, and 4 oz .12 dr . in the femalc. ${ }^{2}$

When the under surface is exposed by removing or reflecting the macromyelon, as in fig. 63, tbe middle lobe, P, is seen at the bottom of a valley (vallecula, Haller, v) dividing the hemispheres,
the convesities of which rest in the occipital fosse. This surface of the middle lobe (' inferior vermiform process,' Anthropotomy) is transversely folded or 'ringed.' The broader and more prominent folds form the 'pyramid,' ib. P; the succeeding narrower folds, the ' uvule,' ib. n. The extremity of the vermiform process which projects into and closes the fourth ventricle, inferiorly, is the ' nodule.' On the inferior surface of the 'hemispheres' Anthropotomists define, with Reil,' 'biventral,' fig. 63, l, 'slender,' i b. c, and 'post-inferior' lobes, d. The smaller group of folds is the 'amygdala,' ib. a; the still smaller group, f, is the 'flocculus.'

The anterior surface of the ccrebellum, seen in connection with

the macromyelon, as in fig. 64, shows the 'semilunar fissure', k, penctrated by the formative and commissural columns, i : the relative position of the 'flocculus,' n, is here best shown; the macromyelon passes into myelon at m. On the upper surface of the ccrebellum, fig. 65, its most prominent part is that of the middle lobe, called 'supcrior vermiform process,' v : the hemispheres are almost flat: they are here subdivided into the 'square lobe,' ib. A, and the 'post-superior lobe,' \mathbf{r}. The lateral lobes exceed the stir",
middle lobe in antero-posterior extent, leaving an anterior or ' semilunar ' fissure, and a narrower ' posterior notch,' ib. n, the groups of lamellæ bounding which are called, by some, 'postinferior lobes.' The hemispheres are commonly but not constantly symmetrical; both these and the middle lobe consist of numerous lamellæ, of white covered by grey neurine; the interlamellar fissures are penctrated by folds of pia mater. The lamellæ are

65

collected into groups, forming the 'lobes' of the hemispheres, which are divided by deeper fissures. The lamellæ of the middle or 'vermiform' part are fewer, and more transverse or vertical than those of the hemispheres; they are also thicker, single ones answering to, and connecting, two or more of the hemispheral lamellæ, fig. 65, v.

A vertical section of either hemisphere, or of the median lobe, displays a ramification of fibrous matter, the smaller or ultimate branches of which are enveloped by laminæ of grey matter. This appearance suggested to the older Anthropotomists the name of 'arbor vite,' which it retains. The trunk of the tree is represented by a central nucleus of white matter, fig. $66, d$, from the upper and lower surfaces of which branch off, some at a right,
others at an acute angle, several lamina, each of wbich forms the stem of a number of other branches. Each of the primary branches is the foundation or central stem of a lobule. Laminæ of fibrous matter are seen branching from botb sides of it immediately after its separation from the nucleus. Sometimes the primary branch bifurcates, and eacb division of it forms the stem of what may be called a sub-lobule. If we suppose tbat one of the primary brancbes is composed of a certain number of laminæ

Dfacetion of the tormative columns of the epe, mes aud pron-cncephaion,
of fibrous matter, the secondary ramifications from it will in a great degree correspond. In most instances tbese secondary branches subdivide into two or more tertiary ones, whicb, as well as the branch from which tbey spring, are enclosed in grey matter. A vertical section of the median lobe, fig. 58 , gives a similar appenrance to that of the hemispheres, fig. 66, c. The central
nucleus breaks up into primary branches, which hecome the centres of the lobules of which it consists. The ramifications of the nucleus, whether of the median lobe or of the hemispheres, pass from it only in the vertical plane or from hefore backwards; in the latter direction, however, to a very slight extent. The fibrous matter of the median lohe is continuous with that of the hemispheric lobules. By reason of this disposition of the fibrous matter, the surface exposed by a borizontal section tbrougb the entire cerebellum consists of a plane of white matter bounded on the sides and behind by a narrow cortex of grey matter.
'The wbite matter consists exclusively of fibres, cbiefly of the tubular kind, and of all degrees of size. These, in the more distant ramifications, penetrate the vesicular matter of their grey cortex, and form some unknown connection with its elements. The grey matter consists of three layers, readily distinguishable by tbe naked eye from their difference of colour. Tbe external layer is the darkest, and consists cbiefly of granular and vesicular matter. The next or intermediate layer is of a ligbt colour, and is composed of a stratum of fine nucleus-like particles. The third layer has the greatest tbickness, and is immediatcly in contact with the fibrous matter ; it is intermediate in point of colour to the other two, and consists of numerous vesicles of the caudate kind, especially witb branching processes and nerve-tubes of all sizes. The dark colour of the external layer is doubtless owing in a great measure to the great numbers of capillary vessels which enter it; the greater paleness of the inner stratum is to be attributed to the intermixture of the white fibres, whilst the light colour of the middle stratum is intrinsic.' ${ }^{\prime}$

The lower or hinder crus, fig. 66, r, on entering the cerebellum curves backward, expanding on the outer side of the converging and onwardly continued fibres which constitute tbe upper or ' anterior crus,' t. In the part of the ' nucleus' connected with the latter is developed a plicated capsule of grey or vesicular matter, d, also exposed in section at R , fig. 49 , and called ' corpus dentatum ;" it supplies accessory white fibres to those diverging from, or converging to, the crura; with these are interlaced the commissural fibres of the pons.

Thus an influence ascending from the myelon, by the restiform tracts, fig. 66, s, r, to the cerebellum, may be propagated from that hody, by the crus, t, to the mesencephalon, and thence to the cerebrum. Conversely, cerebral influence may pass through the mesencephalon hy the 'processus and
trostes,' ib. t, fig. 66, to the cerebellum, and thence by the restiforin tracts, $\mathrm{ib} . r$, to the myelon, s : while the transverse fibres of the pons, ib, v, associatc all the parts of one cerebellar hemisphere in aetion with the other, and are intimately connected and interlaced with the longitudinal faseiculi forming the crura cerebri.

If it be considered that the maintenance of the erect position by Man demands unusual power of regulating and combining muscular movements, whether with or without the cognisance of the mind, and that he exercises or can exercise a greater variety of modes of locomotion than any lower animal, flight alone being inexecutable, the characteristic size and complexity of the human ccrebellum would aecord with such view of its functions; and the general results of the experiments of Flourens ${ }^{1}$ and Majendie ${ }^{2}$ concur with the inferences which, in the main, may be drawn from comparative anatomy (vol. i. p. 287).
§ 207. Mesencephalon.-Part of the columnar fibres continued from the epencephalon proceed direetly to the prosencephalon, traversing the pons, fig. 66, p, v. The olivary tracts, ib. f, proceed first to the mesencephalon, whieh likewise receives the crus, t, or continuation of the restiform tract, r, after having undergone eercbellar developement and connections.

The mesencephalic basis is traversed by a forward continuation of the primitive myelonal oavity-the 'iter a quarto ad tertinm ventrieulum'-which latter, fig. 105, b, is a vertical expansion of the 'iter,' extending upward into the pedicle of the conarium (' pineal gland,' ib. f), and downward into that ('infundibulum') of the hypophysis (' pituitary gland,' ib. v). The sides of this ventricular fissure are partially glued together by grey matter continuous with that in the interior of the 'thalami,' and ealled ' soft commissure ' in front of b, fig. 105.
In the Monotremes the mesencephalie erus ('processus a cerebello ad testes'), receiving a tract, answering to the 'fillet of anthropotomy, expands into the optic lobe ('mates,' ib.), forming chiefly its exterior white layer: the primitive cavity of this vesicle becomes filled with grey matter. The layer ('valvula') uniting the two erura becomes thickened by transverse white fibres behind the optic lobes, and these, in higher mammals, swell into a second pair of tubercles ('testes,' ib.), which usually exceed the 'nates' in breadth, but are less in length; they now form the ' earpora bigemina, or quadrigemina' of anthropotomy. The above difference in the proportion of the

[^9]VOL. 111.
two pairs is exemplifed in fig. 73, b, Didelphys, and fig. 75, в, Phascolomys, in the Marsupial order ; by fig. 79, Lepus, and fig. 80, 8, 9, Cavia, in the Rodentia; and by fig. 67, Talpa, in the Insectivora. Both X_{y}-and Liss-encephala manifest their inferior position in the present class, and affinity to oviparous Vertebrates, by the larger proportion of the mesencephalon (fig. 46, o) to the prosencephalon, than in Gyrencephala. In most Marsupials (Dasy-

Brain of Mole. urus, fig. 72; Didelphys, fig. 73), in many Rodents (fig. 81, Lepus; fig. 80, Castor), in all Insectivores (fig. 76, Rhynchocyon), and in Bats, the bigeminal bodies are more or less cxposed between the cerebrum and cerebellum. As in Amblyopsis (vol. i. p. 278, fig. 175), so in Talpa, the optic lobes, fig. 67, c, do not show a reduction of bulk commensurate with that of the visual organ; yet there is a degree of such relationship in Mammals. Thus the Ungulates which have large eyes have the optic lobes or nates, fig. 68, a, proportionally larger than they are in a Carnivorous quadruped with a similar-sized brain. In both the 'testes,' ib. b, are broader, but in Felis they also rise higher; whilst in Ungulates, and especially Ruminants, the 'nates' show the greater vertical developement.' In all Carnivores the 'testes' have a minor antero-posterior extent than the 'nates.' The white bands or tracts (' brachia ' in anthropotomy), extending along the outer sides of the bigeminal bodies to the thalami and commencement of the optic tracts, fig. 68, d, are prominent in the higher Quadrumana and in Man. In most Gyrencephala the white fibres continued from the optic lobes develope an oblong nodule, $\mathrm{ib} . e$, also containing grey matter ('corpus geniculatum' of anthropotomy), which in the human brain is divided into an external and internal portion.

The 'crura cerebri' formed by the pre- and post-pyramidal

[^10]and 'teretial' tracts, expand in passing beneath the bigeminal hodies, and receive accessions from grey matter continuous with that of the macromyelon, but so dark as to have received the name 'locus niger' when exposed in section. They are divided by the third ventricle, and swell out respectively at their upper part, through the superaddition of formative neurine, into the bodies called ' thalami optici,' fig. 68, c, figs. 71 and 75, t. The free surface is white, but the grey matter constitutes their chief bulk, and is partially divided by the longitudinal fibres into an outer and an inner portion: from the latter the soft commissure is continucd. The optic tracts, fig. 68, d, commencing at the optic lobes and geniculate bodies, bend round the outer and back part of the 'thalami,' from which they derive accessory filaments to form the optic nerve. In connection with the mesencephalon must be noted the tract of white fibres continued from the formix, on each side the third ventricle anterior to the soft commissure, to a nodule, conspicuous in Gyrencephala behind the infundibulum, and forming a pair ('corpora albicantia' in anthropotomy) in Apes, fig. 112, and Man.
§208. Prosencephalon.-As the 'crura cerebri' enter the proscncephalon, they are augmented by further accessions of formative ncurine in masses which in the human brain have received the names ' nucleus tanixformis,' ' nucleus lenticularis,' and 'nucleus caudatus.' The latter projects into the proseneephalic ventricle, as the ' corpus striatum,' figs. 70, $s, 75, r$. But this name extends or applies also to the deeper-seated grey masses, which are so intcrblended with the diverging white fibres as, in section, to give altcrnate white and grey striæ. The accession of white fibres from these formative nidi, diverging to form the basis of the cercbral hemispheres, causcs the form cxpressed by the term 'fibrous conc,' fig. 66, c. The grey mattcr again appears as a thin superficial covering or 'cortex' of the expansion of the whitc fibres: and this grey matter contains cells similar to those in the corpus striatum.

In most Ly- and Liss-encephala, and in a few of the smallest kinds of Gyrencephala, the prosencephalic vesieles retain the outward uniformity of surface which they liave in birds and reptiles: unlike those of the mes- and ep-encephalon, they are so little united together that they are called and seem to form distinct "hemisplieres." These are connected together in all Mammals as in Birds by the cord-like fasciculus of transverse fibres, figs. 69 and 73, r, callcd "anterior commissure." Bint the main distinction lies in the superaddition to the "diverging' or 'crural'
fibres of other "commissural' tracts either 'longitudinal,' connecting parts of the same hemisphere, or 'transverse,' and bringing a greater proportion of the two hemispheres into mutual communication. But there are steps in this differentiation.

Each hemisphere of the cerebrum begins as a vesicle of neurine, the cavity of which receives the growth from the "crura" forming the 'corpus striatum.' This, in Birds, mainly fills the 'ventricle' or remnant of the primitive cavity of the sac. But, in Mammals, the wall of the vesicle is augmented by folds, of which the first and most constant is pushed from the mesial or inner side of the ventricle into its cavity, giving rise to the convexity, figs. 70, 71, h, fig. 75, n, representing the part called 'hippocampus' in anthropotomy. The 'fissure upon which the hippocampus is folded '1 is numbered 4 in the 'Table of Cerebral Fissures,' p. 136, as in fig. 69, et seq.

In Lyencephala it extends from the fore part of the inner surface of the hemisphere backward and downward in a curve with the concavity toward the centre or 'nucleus cerebri,' fig. 69, b. It is not, however, a mere doubling of the wall of the hemispheral vesicle; longitudinal fibres are de-

Inner suriace of hemisphere. Vertical section of brain, Ornithorhyuchus. veloped therein for commissural office; they cause a definite production of the lower part of the fold within the ventricular cavity called hippocampal band (tœnia hippocampi), or, because in Man it is plaitcd, 'corpus fimbriatum:' its inferior hinder termination is in the 'pes hippocampi;' its upper or anterior one becomes the 'posterior pillar ' of the fornix. 'Fornix' is the anthropotomical term for the anteriorly continued and transversely connected longitndinal fibres of the hippocamp: the 'posterior pillars,' fig. 69, a, one from each hemisphere, converge as they advance, are united by a commissure of their own, ib. o, beyond which some fibres pass forward and radiate upon the inner surface of the fore part of the hemisphere; while others bend down, as the 'anterior pillars' of the fornix, pass between the anterior commissure, ib. c, and the nucleus cerebri, b, and terminate in the mammillary body already mentioned.

Delicate fibres, running on the inner surface of the hemisphere at right angles to the line of the hippocampal fissure, are continued into the ventricle, where they cover the longitudinal fibres
developed in the hippocampal fold, and which form the main part of the hippocamp and its anterior extension. ${ }^{\text {b }}$

This fold and its concomitantly developed longitudinal and transverse or arched fibres, constitute a great and abrupt distinction and rise in structure in the Mammalian brain as compared with the Avian one, and indieate that birds are an offshoot from the lower Ovipara, forming a branch apart. ${ }^{2}$

In Ornithorhynchus the postero-inferior parts of the hemispheres are brought into connection with the antero-internal parts by the longitudinal fibres, while the antero-internal parts of the hemispheres are connected with each other through the transverse fibres at the approximated anterior ends of the folds, where the stratum connecting those ends together, and radiating the fibres upon the inner surface of the anterior lobes of the hemispheres, and over the inner wall of the ventricle, is thickest. ${ }^{3}$

The greater part of the hemispheral eavity or ventricle is overarehed in Lyencephala by the inner leaf of the hippocampal fold, and its developements called 'trenia hippocampi' and 'fornix.' The transverse fibres connecting the tænia hippocampi and terminating that body anteriorly in Lyencephala, are earried, in the ascending Mammalian scries, by the growth of the hemispheres anterior to them, as it were by a movement of rotation, from before upward and baekward, until, in Man, they bceome the 'psalterial fibres' which connect the posterior 'genu' of the corpus callosum with the 'tania hippocampi,' these being eompared to the 'frame' and the transverse fibres to the 'strings' of the harp, by the old anthropotomists. The superaddition of ecrebral matter above and anterior to c, figs. 69, 73, is associated with transverse commissural fasciculi, progressively addcd, from behind forward, and now overarching the lateral ventrieles, and fulfilling all the functions, relations, and defmitions of the anthropotomical 'corpus callosum,' figs. 78, l, and 123, c. Its hind part is cmbraced by the 'callosal convolution,' ib. $\mathrm{o}^{4}{ }^{4}$

[^11]Such are the essential characters of the Mammalian 'proseneephalon.' The chief modifieations of the Mammalian hrain, as above characterised, will next be noticed in the

70

Lateral ventrícle, Echidnả. different leading groups of the class.
A. Lyencephala. In the Ornithorhynchus, the hrain, figs. 52 and 69 , is to the weight of the body as 1 to 130 ; the hemispheres are triangular, depressed, the hroader posterior part overlapping the optic lohes, and reaching to the cerebellum. With the exception of the hippocampal fissure, fig. 69, 4, and the depression lodging the rhinencephalic crus, the surface is unbroken or smooth, with a few vascular impressions diverging from the fore part. The medulla oblongata is broad and depressed; the corpora pyramidalia, fig. 51, a, are in very low relief; the corpora olivaria, a^{\prime}, expand as they advance; they are crossed anteriorly by the 'corpora trapezoidea,' b, which are large ; the ' pons,' c, is narrow : anterior to it is a large ganglionie body, c^{\prime}, from which issues the huge trigeminal nerve, 5 . The longitudinal groove he-

Brain and latcrai ventricle, hippocampus removed Echidna. tween the optic lobes is shallow; it is wanting in the small and low 'testes.' The hippocampus is the ehief prominence within the ventricle of the hemisphere; the eorpus striatum is long and narrow.

The hrain of the Echidna, fig. 71, is relatively larger than in the Ornithorhynchus, and the exposed outer surface of the hemispheres is extended hy convolutions. The cerehral hemispheric cavity is mainly occupied in both Monotremes by the ' hippocamp,' fig. 70, h, which constitutes a great part of its floor as well as inner wall. This, with much of the hippocamp, is removed in fig. 71, to show the proportions of the 'eorpus striatum,' s, and to bring into view the thalami, t; these are divided from the ' natcs,' r, hy a linear groove; the 'testes,' s, are half the size of the 'nates,' and the median longitudinal groove, which is shallow hetween the nates, is not continued further
back. ${ }^{1}$ Like the water-shrews, the Ornithorhynchus has a smooth cercbrum; the Echidna, like the Great Ant-eaters and the Sloths, has a convoluted one. Besides the long and deep 'hippocampal fold,' the fore part of the mesial surface shows a beginning of the supercallosal one; hehind which it is also notched vertically hy the mesial ends of the upper transverse folds, ${ }^{2}$ fig. 71. Of these, three nearly parallel ones extend across the hroad posterior part of the upper surface of each hemisphere, their outer ends inclined forward; anterior to them is a larger convolution bent upon itself so as to form the inner houndary of the anterior half of the upper surface. In the angle of the above are two ohlique folds inclining ' mesiad' toward the contracted fore part of the hemisphere. The base of the brain, fig. 52, shows a few short foldings of the surface of the great natiform protuherances, b. The principal folds sink about a line's depth into the suhstance of the cerehrum. The rhinencephalon is enormous, ib. r. Some of the fibres of the great antcrior commissure hend forward, and arc continued into each of its crura. The outer part of the crus, ib. $1 a$, continued from that of the proseucephalon, emerges from the fore margin of the natiform protuherance, from which it has a reinforcement of fibres; the inner division, tumid with added grey neurine, ih. $1 b$, is also very broad. The prosencephalic cavity or 'ventricle' is continued into the rhinencephalon, and is exposed in fig. 52, hy removal of the thin floor which rests upon the large 'cribriform plate.' The 'pineal' and pituitary (ih. p) appendages of the prosencephalon offer no monotrematous characters.

There is not that difference of size hetween the Ornithorhynchus and Eechidna which would lead us to conncet therewith the convolution of the hemispheres in the latter animal ; what is known of their hahits suggests no superiority of psychical power and resource in the land- over the water-monotrematous lnsectivorc. Increased extent of the walls of the hemisphere in no

[^12]degree influences the developement of a supraventricular transverse commissure; the seeming small one exposed at o, fig. 71, is hippocampal or psalterial. This low phase of Mammalian braingrowth is essentially related to the eommon monotrematous conditions of generation.

The brain bears a small proportion to the body in the Marsupial order; in the Ursinc Dasyure, fig. 72, it is as 1 to 520 ; in the Wombat, as 1 to 614 ; in the great Kangaroo, as 1 to 800 . In smaller Kangaroos the disproportion is less; thus in the Treekangaroo (Dendrolagus inustus) I found it as 1 to 250. The brain is relatively largest in the smaller species of Petaurists and Phalangers.

The eerebral hemispheres do not extend over the cerebellum in any of the species, and in some, as the Dasyures and Opossums, they leave the optic lobes exposed. In the Phalangers and Petaurists, the Opossums, Perameles, the insectivorous Phascogales, and the smaller Dasyures, the exposed surface of the cerebral hemispheres is unconvoluted. In the Dasyurus ursinus, fig. 72, b, this surface is broken by a few slight indentations, two of which may indicate the beginnings of the 'medi-lateral' longitudinal folds.

In the Wombat an ectorhinal fissure bounds the outer side of

Brain of Daspurus ursingz. the olfactory traet at the base of the brain; ${ }^{1}$ from the anterior moiety of this fissure three or four smaller ones curve upward upon the sides of the hemispheres, one of which answers to the 'fissura Sylvii," ${ }^{2}$ but is less defined than in the Kangaroo. On the upper surface a short transverse fissure marks off the outer part of the anterior lobe of the cerebrum, and behind this each hemisphere exhibits a few detached shallow fissures.

The American Opossums show a range in size from that of a mouse to that of a cat, and the Australian Dasyures rise from the same diminutive extreme (Antechinus pusillus) to the size of the wolf (Thylacinus). But the cerebral hemispheres are as smooth in Didelphys Virginiana ${ }^{3}$ as in D. (Philander, Microdelphys) murina; and the great Ursine Dasyure, fig. 72, shows but a few short and shallow indentations of the cxposed cerebral surface. ${ }^{4}$ Thylacinus

[^13]has the antcrior apex of the hemisphere marked off by a deeper transverse fissure, extending to the inner surface. In the Herbivorous Marsupials the fissures are more definite, deeper, and rather more numerous in the larger (Macropus major, fig. 74) than in the smaller specics (Hypsiprymnus). All Marsupials have the hippocampal fissure, fig. 46, 4, fig. $73, i$, coextensive

Didelphya Virginianu with the antero-posterior range of the proscncephalic cavity, and arching over all the commissural apparatus of the hemisphercs. The eoncomitant extent of the convolution (hippocampus major) is shown in Lxx'. pl. vii. figs. 3 (Didelphys) and 4 (Macropus), in the exposure of the ventriele from the outer side. In Didelptys, fig. 73, the surface of the hemisphere ahove the fissure is fcehly impressed by blood-vessels; in Thylacinus there is a short fissure above the hack part of the hippocampal one ; in Phascolomys and Macropus there is also an anterior one which bends or bifureates at its fore part. ${ }^{1}$ These fissures mark the level of the roof of the lateral ventricle; the surface below forming the thin mesial wall of the eavity, fig. 75, q, which in the higber Placentals is defined, as the 'septum lucidum,' by a corpus callosum from the part ahove, On the upper surface of the hemisphere, in Macropus major, a longitudinal part of the fissure, fig. $74, s$, marks off i medial convolution, l, at the anterior half, and occasionally it is prolonged hackward loy the fissure, 10 , as in the left hemisphere of fig. 74. But there is continned from 8 , in both hemispheres, a fissure extending outward, which bounds behind the
 part of the hemisphere impressed by the 'sylvian fissure,' 5. The

[^14]sylvian convolution, e, \dot{e}^{\prime}, folded on 5 , is divided behind by the fissure, 9 , from the post-sylvian fold, f. The contracted anterior part of the hemisphere is marked off by a fecble coronal fissure, 12, and is partially divided into a superfrontal fold, n^{\star}, and a subfrontal fold, n^{\prime}. In the broad hind part of the hemisphere are the medial, l, and lateral, m, tracts.

On separating the hemispheres of the brain of the Wombat, not only the bigeminal bodies, s, fig. 75, and pineal gland, ib. u, but the thalami, ib. t, t, are brought into view, and instcad of a broad corpus callosum, we perceive, situated deeply, a small commissural medullary band, ib. m, passing in an arched form over the antcrior part of the thalami, and extending beneath the 'labia hippocampi,' the supraventricular part of the hemi-
 spheres, q, being thus, as in the bird and monotreme, disconnected with each other. On gently raising the labia ${ }^{1}$ from above the commissure and pressing them outward with the handle of a scalpel, the instrument passes into the fissure upon which the hippocampus, ib. n, is folded. The mesial wall of the hemisphere is continued from the upper labium of the hippocampus, and is composed of a thin lamina of medullary substance analogous to a detached laycr of the septum lucidum. In the Kangaroo the mesial parietes of the lateral ventricles are thicker. In both Marsupials they receive the thin layer of fibres, fig. $75, o$, passing from the commissure, m, over the upper lip of the hippocampal fold, to radiate vertically upon the anterior half of the inner wall of the ventricle. These fibres are figured in lxx'. pl. vi. fig. $4, o^{\prime}$ (Wombat), and fig. 6, o^{\prime} (Kangaroo), and are described as the 'anterior fibres of the tænia hippocampi continued into the anterior lobes of the hemisphercs.' ${ }^{2}$

These are not to he confounded with the 'labia cerebri' of anthropotomy.

The author of XLII". Gigures, in pl. xxxvi. fig. 4, a more extensive series of transversc fibres which he describes, p : 644, as heing lost beneath the 'labia ccrehri,' as the margin of the 'callosal fold' is called hy some authors. The surface of the diva-

The crura cerehri, which, in the Opossum, e, fig. 53, are left exposed helow, like the optic lohes above, by reason of the small proportional size of the cerebrum, are more completely concealed in the hrain of the Kangaroo and Wombat. The natiform protuherances form a great proportion of the under part of the cercbral hemispheres in all the Marsupials; the ectorhinal fissure which indents their base in the Wombat and Kangaroo, runs along the side of the bemisphere to the outer side of the olfactory lohe in the Opossum, indicating the large relative size of the basirhinal fold or tract. Behind the commissure of the optic nerves is secn a broad and short infundibulum supporting the pituitary body, g, fig. 53 , and posterior to this is the single corpus alhicans. The optic lobes, fig. 73, b, are solid; a pair of similar but smaller ones rise behind, and form with them a 'bigeminal' mass: the anterior divisions or 'nates,' $\mathrm{B}, \mathrm{fig} .75$, have a greater longitudinal diameter than the posterior ones or 'testes,' which have a greater transverse developement. The difference in the relative developement of the nates and testes between the herhivorous and carnivorous Marsupials is less than in the corresponding Placental quadrupeds.

The posterior transverse fibres of the hippocampal commissure are continued, fig. 75, m, outward and hackward heneath the more longitudinal fibres, which overlap them as they pass forward to the anterior cerehral lobes and pass into the snbstance of the hippocampi, n. Thus the commissure, which is brought into view on divaricating the cerebral hemispheres in the Wombat, is secn to be partly the bond of union of the two hipporampi majores in the transverse direction, like the "lyra" of unthropotomy, and partly of the hippocampus and the fore and inner parts of the hemisphere in the longitudinal and vertical directions. It mainly fulfils the function of the fornix, not only ns being the hippocampal commissure and continued backward and downward as ' posterior pillars;' but by sending down from the inferior surface two small nerve-like processes, which extend vertically, hehind the anterior commissure, to the corpus alhicans,

[^15]at the base of the brain. The superior view of the connections of the hippocampal commissure of the Wombat is given at m, n, o, fig. $75 .{ }^{1}$

The artery of the plexus choroides, entering with the fold of pia mater at the lowest part of the hippocampus, is richly spread upon the small production of that fold, ih. p, beneath the margin of the 'tænia' near the passage by which it is continued into the fold and plexus of the opposite ventricle. This intercommunication between the two prosencephalic cavities exists in all Mammals, and is defined in anthropotomy as the 'foramen Monroianum.' The pineal appendage, $\mathrm{ib} . u$, is small compared with its 'crura,' which, as in all other Mammals, are continued backward from the fore and inner parts of the thalami, t.

A well-marked ectorhinal fissure extends from the natiform protuberance, defining externally its 'basirhinal tract'2 and the forward continuation of the 'crus rhinencephali.' A longitudinal white streak ${ }^{3}$ divides the outer and inner portions of that crus. The prosencephalic cavity is continued into the large rhinencephalon, figs. 73 and $46, \mathbf{R}, d$.

The characteristics of the Marsupial brain are, its small relative size, small proportion of cerebrum, convolutions wanting, or few and symmetrical in those Marsupials possessing them, large proportional anterior commissure, and still larger hippocampi; some fihres arch across from one to the other hippocampus, answering to the 'lyra,' and forming the beginning of the great transverse commissure or corpus callosum of higher Mammals; the fibres radiating upon the fore and inner wall of the ventricle are the anterior terminations of the great longitudinal commissure answering to the 'fornix in anthropotomy. The 'corpus striatum,' fig. 75, r, is relatively small and inferior in position to the hippocampus, being partially overlapped thereby.
B. Lissencephala.-I demonstrated the characters differentiating the first step in the developement of the 'corpus callosum' of the Hedgehog, in the longitudinal section of the hrain ${ }^{4}$ prepared and added to the Hunterian series of Comparative Anatomy in 1834, by contrast with a similar section of the hrain of the Opossum ${ }^{5}$ and Dasyure; ${ }^{6}$ placing a plate of mica in the fore part of

[^16]the hippocampal fissure in each, which accordingly passes above the transverse commissural system ('lyra of fornix') in the Marsupial, and heneath the ahruptly superadded 'corpus callosum' in the placental Insectivore. In a similar seetion of the brain of the Squirrel ${ }^{1}$ the corpus callosum is of greater rclative extent, as it is in all Rodents as contrasted with Insectivores. Concomitan tly witb the appearance of the new series of transverse fihres hringing tbe bemispheres into communication above their ventricles, the anterior commissure is diminished in sizc.

Notwithstanding this difference in the kind and arrangement of the transverse connecting fibres of the hemispheres, these do not present a corresponding rise of developement. In the snouted Shrews of Africa the hrain, fig. 76, offers outwardly as low a condition as in the Opossum or Dasyure. All the four primary segments are in view; the epencephalon, c, mesencephalon, 0 , prosencephalon, P , and rhinencephalon, r , succeed each other longitudinally from bchind forward, as in Reptilia. The multiplication of grey and white matter above the medulla oblongata mainly distinguishes the hrain of the active Shrew from tbat of the slow Tortoise, fig. 45; and the lateral lobes of the cerehellum carry appendages, as in the Opossum. The anterior bigeminal bodies, o , much exceed the postcrior ones in size. A feehle and interrupted indication of the medilateral

Braln of Rhynchocyon LXXXIV** longitudinal fissure marks the upper surface of the hemispheres. These are much contracted anteriorly. A short callosal fissure is added to the hippocampal one on the inner surface of the hemisphere. The rhineneephala are long, large, and pyriform. In the Hedgehog (Erinaceus) the eetorhinal fissure is apparent in the upper view of the brain through the grent relative size of the crura rhineneephali.

The Bats resemble the terrestrial Insectivora in their cerehral surface, as do also the smaller Rodeuts. In some of the larger ones, Agouti, c. g. (vol. ii. p. 270, fig. 146), the medilateral fold is better defined: but the Beaver slows no trace of this, although the hemisplieres are hroader anteriorly: they are more expanded hicre in the equally smooth cerebrum of the Porcupinc, fig. 77. The Rodents show some variety in the shape of
the cerebrum. In the Leporide, fig. 79, a, it is lozenge-shaped, witb the anterior borders longer, and converging to a narrower (thougb obtuse) apex, than the posterior ones. In the Pacas the cerebrum is broader, with both ends more obtuse and larger, and the hinder third is broader. In Castor, fig. 78, it presents a full ovate figure. In

Tpper surdace of the hrain of the Porcupine. Hystrix, fig. 77, it is subquadrate, through increasing breadtb of the fore part. On the medial surface of the hemisphere the ${ }^{\text {s }}$ bippocampal fissure' is confined to the hinder balf; the 'callosal fissure ' is superadded, commencing at the 'splenium' or posterior genu of the great commissure, and running along its upper surface to the anterior genu; it is shallow, but now defines the true ' labium cerebri.' On the under surface the ectorbinal fissure, figs. 83 and 84,2 , has the same extent as in the Wombat; it diverges, as it recedes, further from its fellow, in fig. 83, through the greater breadth of the basirhinal protuberances, h. A few short fissures rise from its anterior half a little way upon the hemisphere in the Cavies, as in tbe Wombat. In the Porcupine the sylvian fissure, figs. 77, 84,5 , is well marked, thougb short, and tbere is a feeble indication of the coronal fissure,' 12.

In the smaller and especially the insectivorous Bruta the brain presents the lissencepbalous type, having smooth, low, triangular hemispheres, leaving the mesencepbalon as well as epencepbalon in view posteriorly. Dasypus has the fore part less contracted than Myrmecophaga, at least than M. didactyla. In Bradypus the anterior expansion gives an ovate form to the hemispheres; and now, besides the bippocampal, callosal, ectorhinal, and sylvian fissures, the upper surface shows the medilateral, suprasylvian, and frontal ones. The medilateral bends outward antcriorly, defining the 'anterior lobe' impressed by the short angular or triradiate 'frontal' fissure. The above fissures mark out a medial, lateral, sylvian, postfrontal, and prefrontal convolutions. On the inner surface a supercallosal
fissnre now defines a convolution of the corpus callosum, ${ }^{21}$ the lower margin of which, resting on that hody, is the ${ }^{\text {c lahium cerebri' }}$ of anthropotomy : in Sloths, as in Shrews and Rodents, it is anterior to and distinct from the 'hippocampal' fissure and fold.

In all Lissencephala tbe hemispheres prosent the following structurc, the rise in which, as compared with that in Lyencephala, is indcpendent of the smallness and smoothness of those divisions of the brain.

Taking tbat of the Beaver (Castor fiber), e. g., and comparing its prosencepbalon with tbe sub-convolute one in Phascolomys or Macropus, we find, on divaricating the hemispheres, that the 'corpus callosum' is hrought into view, and on removing the cerebral substance to a level with this hody, as in fig. 78, its fibres are observed to diverge into the suhstance of each hemisphere, some bending upward, hut a greater proportion arching downward and commingling with those that diverge from the cerehral nuclei. The portions of the brain which are removed in thus tracing the extent of the corpus callosum bring into view the corpora bigemina, B , and the pineal gland, u; hut the optic thalami arc concealed by the great commissure above descrihed. If tbe postcrior margin of the corpus callosum he raised, its inferior surface is found to be closely connected or continuous with the transverse commissural hand of fibres, arching over the antcrior part of the optic thalami, and passing outward and backward along the floor of the lateral ventricles into the substance of the hippocampi, which are almost as large as in tbe Wombat. The anterior part of the corpus callosum is bent downward, and it is attached along the middle line of its inferior surface by a uniting

Dlagection of brala to mhow corpus callosume. Beaver medium of medullary substance, the heginning of tho 'septum lucidum,' to the hippocampal commissure or fornix; the twniæ hippocampi send forward, as in the Womhat, a delicate layer of medullary fibres which

[^17]spread over the mesial surface of the anterior lohes, and are homologous with those marked o^{\prime} in fig. 75 , and in figs. 4 and $6, \mathrm{pl}$. vi. Lxx .

The corpus callosum heing removed, and the commissural fihres of the hippocampi heing left hehind, the view of the Beaver's hrain now corresponds with that ohtained iu the dissection of the hrain of the Wombat, fig. 75. The artery of the plexus choroides, ih. p, in hoth the Beaver and Wombat, enters the lateral ventricle, where the hippocampus commences at the base of the hemisphere, and the plexus is continued along the under surface of the tænia hippocampi, and passes heneath the formix, through the usual foramen, to communicate with its fellow in the third ventriole immediately hehind the anterior crura of the fornix, which are sent down in the Beaver, as in the Wombat, from the centre of the inferior surface of the hippocampal commissure.

If we expose the lateral ventricle hy removing its outer parietes in a marsupial and placental quadruped, the hippocampus major, the trenia hippocampi, the plexus choroides, and the foramen Monroianum are hrought into view. If a style he thrust trausversely through the internal wall of the ventricle, immediately ahove the hippocampal commissure, in the placental quadruped, it enters the opposite ventricle and perforates the septum lucidum, passing helow the corpus callosum. If the same he done in the Marsupial hrain, the style passes into the opposite ventricle, hut is immediately hrought into view from above hy divaricating the hemispheres.

The commissure, answering to the 'lyra,' represents the heginning of the corpus callosum; hut this determination does not invalidate the fact that the great commissure which unites the supraventricular masses in the Hedgehog, Beaver, Bat, and all other placentally developed mammals is a definite superaddition for more effectually associating the hemispheres in whatever motion or change they may undergo in the actions of the hrain.

All Lissencephala show a large proportional size of the hippocampi, fig. 79, f and e, a small - corpus striatum, d, and large 'higeminal hodies,' k, which hear the same proportion to each other as in Marsupiatia. The smaller the hrain, the larger is the share which the mesencephalon takes in its formation, as in the Shrews and Moles (fig. 67).

The rhinencephalon, fig. $79, g$, fig. $81, e$, is connected hy a broad and complex 'crus' with the under part of the hemispheres,
having the 'outcr root,' fig. $82, x$, which is continued from the

Lepus. $\mathbb{4}$ Corpus strlatum.

* Tenta e emicirc, / Hippuc. mojor. basirhinal tract, ${ }^{1} \mathrm{ib} . h$, the 'inner root,' y, and the intermediate ' perforate hody or tract,' ib. r : the lateral ventricle is continued into the rhinencephalon (fig. 79, h).

The ehicf brain-characters of the Lissencephala are, the nonextension of the ecrebrum over the cerebellum, the paucity and

82

[^18]simplicity of folds on the exposed surface of the hemispheres in a feiw, their absence in most; the connection of the two hemispberes by a 'corpus callosum,' as well as by the 'lyra' and 'anterior commissure, the absence of the 'septum lucidum,' and the proportionally large hippocampi and bigemiual bodies.
C. Gyrencephala.- In this subelass the prosencephalon is rela-

Brain of Cat, Jetis domettifa. tively larger, extending backward more or less over the cerebellum with a concomitantly developed 'corpus caliosum,' the connection of which with the 'fornix' is now maintained, not only by the 'lyra,' but by the attenuated vertically extended subjacent parts of the medial walls of the lateral ventricles called 'scptum lueidum,' their interspace being the 'fifth ventricle' of Anthropotomy, fig. 118, n.

In some of the smallest species of Gyrencephala the exposed surface of the cerebral hemispheres may be smooth, or with few and simple fissures (fig. 96, IIyrax ; fig. 101, Tragulus ; and vol. ii. fig. 147). This state docs not, however, relate to reduction of hemispheres, but may coexist with their
 extension over the whole cerebellum, ${ }^{1}$ as in some small Quadrumana, fig. 109, Midas and Callithrix; but the increase of superficial grey matter hy fissures and folds is now the rule.

Three leading patterns of convoluted surface, which, from the prevalent direction of fissuring, may be termed the 'oblique,' " longitudinal,' and 'transverse,' are presented by the Gyrencephala, and arc exemplified, respectively, in the ungulate, unguiculate, and quadrumanous divisions of the subclass. Notwithstanding, in these general variations homologous
primary convolutions may he traeed. The Proboscidia, fig. 108, and ('rtucre, fig. 85, show excess of convolution of the cerebral surface.

1:rasisistratus ${ }^{1}$ affirmed the convolutions to be most numerous in the brain of Man, and associated them with his supcrior intelligence. Willis ${ }^{2}$ pointed out that the convolutions, though present, were fewer in brutes than in Man; that the Ape had more of them than the Fox or Dog, \&c.; that paucity was associated with regularity and symmetry of folding and with more definite and limited instincts, whilc the want of symmetry of the more richly convoluted brains was associated with greater diversity and

frcedom of meutal operations. By thesc remarks Willis initiated the comprarative anatomy and physiology of this part of the brain. 'isol d'Azyr ${ }^{2}$ noted the symmetry of the convolutions in the brain of the Monkey, and contrasted it with the want of such symmetry in Man. Millacarne ${ }^{4}$ first defined a particular convolution, that, viz., which overlies and follows the contour of the corpus callosum. Tiedemann docs not enter upon the comparison of the eonvolutions; but he first showed the order and periods of their sucressive appcarance in the human brain. ${ }^{\text {b }}$ Serres ${ }^{6}$ stated them to be too inconstant to characterise species or families of Mammalia. I carty madc observations to test this question, and in 18331 communicated the results in regard to the convolutions of the cercbrum in the Felide, ${ }^{7}$ distinguishing the 'folds' by letters, and the 'fissures' by figures; ${ }^{8}$ and finding that their

[^19]homologues could be traced from species to species in that family, \mathbf{I} distinguished most of them by names. I further entered upon their classification, and defined the 'primary' and 'secondary' fissures and folds, showing that the 'secondary fissures where in general less symmetrical than the primary ones' (xlvir". p. 134), and that the differences observable in the brains of the Felide were due chicfly to the absence of more or less of the secondary convolutions in the smaller speeies; 'in the common Cat the principal fissures, or anfractuosities, are less obscured by fissures of the second degree than in the larger Felines' (ib. p. 133).' M. Leuret, in citing this attempt to bring the convolutions within the domain of comparative anatomy, ${ }^{2}$ has extended, in association with his colleaguc, M. Gratiolet, the like comparison to other species and families of Mammalia. Foville ${ }^{3}$ arranges the cerebral convolutions into those of the 'first,' 'second,' ' third,' and 'fourth orders,' characterised partly by position, partly by direction; and, in each order, they are subdivided into 'groups.' This system, based mainly on the study of the parts in the human brain, has its utility limited to Anthropotomy ; the comparisons not having been carried to the extent requisite for defining the cerebral fissures according to their order of appearance or constancy in the Mammalian series. Prior to the appearance of both these works I had continued my observations as opportunities presented themselves; and gave the result of such extended comparisons in the Course of Lectures delivered at the Royal College of Surgeons of England in 1842: my diagrams there, in which homologous convolutions are indicated by colours, may still testify in part to the cxtent to which the comparisons had been carried; the main aim which I had in view being the determination of the homologous and superadded convolutions in the more complex prosencephalon of Man. ${ }^{4}$

In the Carnivora, to the rhinal, figs. 90, 92,2 , hippocanpal, fig.

Inner surface of hemisphere, Felis. 86, 4, callosal, ib. 7, and sylvian, fig. 90, 5, fissures, are added, in the smallest species (Putorius), the fissures 8 and 14, fig. 87. The first, commencing near the posterior part of the hemisphere, at 11 , extends forward, equally bisecting that part of the surface between the interhemispheral and sylvian (5) fissures, then bends outward parallcl with and in front of the sylvian fissure. That marked 14 extends

[^20]from the interhemispheral fissure outward and slightly forward. The upper part of the hemisphere is thus here divided into tracts which may be termed 'medial' l, m, sylvian e, e^{\prime}, g, and frontal $n^{\text {x }}$.

In a small Plantigrade, the Coati ($N u s u a$), we find a longitudinal fissure, fig. $88,11,11$, which diverges outward as it advances; and a fissure, fig. $90, \mathrm{~g}$, which is in advance of and parallel with the sylvian, 5, but curves hackward overarching that fissure and suhdivides the corebral tract between the fissure, 5 , and the one marked 11. Here, thercfore, is a ground of choice,

whether, viz., the fissures 8 or 11 in the Coati be the homologue of that marked 8 and 11 in the Stoat. The homology of 14 is

clearer, and the tract anterior thereto is more definitely or deeply subdivided into a superfrontal fold u^{2}, and a midfrontal one $n^{\prime \prime}$: fige, 88, 89, Coati, Fox.

In the ('at, figs. 83, 91, the longitudinal course of the fissures 11 and s is more cxtensive; the oblique fissure 12 crosses the anterior end of 11, and marks out an anterior tract which is divided, transversely, by 14. A fissure, 10 , following the hinder contour of the hemisphere, bends forward, between 11 and the interhemispheral
one, as if to subdivide the medial tract, fig. $83, l$, and is continued far forward in the larger Felide, thongh sballow like a secondary fissure. Tbe sylvian fold, e, e^{\prime}, also begins to be subdivided by the secondary fissures $8^{\prime}, 8^{\prime}$, fig. 91 , which are more fully established, arching over the sylvian fissure, at s^{\prime}, in the Canida, fig. 92, Fox. On the inner surface of the bemispbere the supercallosal fissure, fig. $86,7^{*}$, in the Cat, rises anteriorly diverging from the callosal one, 7 ; the frontal fissure, 14 , extends backward into their intcrspace: the marginal fissure, $i b .6$, runs parallel with the supercallosal one, 7^{\prime}, and is longer in the larger felines; in which most of the primary folds are impressed by short secondary fissures. ${ }^{1}$

The cerebrum of the Canida, figs. 89, 92, Fox, is longer and narrower anteriorly than in Felide, fig. 83. The frontal fissure, fig. 89,14 , marks out a longer antcrior lobe: the medial fold, ib . l, l, is more longitudinal, less bent outward anteriorly ; the lateral or supersylvian fold g, g, has a like character : the sylvian fold, fig. $92, e, e^{\prime}$, is subdivided by the secondary fissure, 8^{\prime}, arching over the sylvian one, 5. The coronal fissure, ?2, is now recognisable. The anterior lobe is equally divided by the frontal fissure, fig. 89,14 , into the postfrontal tract, n, and the prefrontal, $n^{\prime \prime}, n^{*}$ Most of the primary folds are marked by secondary fissures, and the number, extent, and depth of tbese chiefly distinguisb tbe brain of tbe Dog from tbat of the Fox.

The brain of the Bcar (Ursus) is more oblong tban that of the Fox. Tbe frontal fissure marks out as long an anterior part, in wbicb tbe subfrontal n^{\prime}, midfrontal $n^{\prime \prime}$, and superfrontal $n^{\prime \prime \prime}$, tracts are indicated by secondary fissures: but the medial fold, l, is more extensively bent outward. The medilateral fold, m, is still more bent outward anteriorly from the longitudinal course. Sccondary fissures impress the surface of several of the primary folds, especially the broad anterior part of the medial one. The cerebrum attains its greatest relative size and complexity of structure, in tbe present group, in the Seal family, fig. 93. The horizontal contour of the brain is almost circular, and the surface of the hemispheres offers, at first view, numerous convolutions; but a comparison of tbeir relative depth serves to distinguish the secondary fiom the primary ones, which latter are the follow-
ing: - The prefrontal lobe, $n^{\prime \prime}: u^{*}$: as defined by the fissure 14 , fig. 93, is shorter than in the Felines; both medial l, medilateral m, and supersylvian g, folds, are longitudinal and parallel, but with outlines wavy through secondary fissures. The sylvian fissure, ${ }^{\text {? }}$, marks the sylvian fold, which is not continuously or well defined, the lateral fissures heing too irregular and interrupted. The ectorhinal fissure, through the vertical extension of the natiform protuberance, is more intcrrupted than in other Carnizora; but it is continued backward from the sylvian fissure and defines the mesial non-convoluted part of that protuberance (hasirhinal traet). The orbital fold, bounding the outer erus and side of the rhinencephalon, is defined by the entorbital fissure, more extensively and definitely in the Seal than in most other Carnivora. The mass of the hemispheres bchind the sylvian fissures is relatively greater than in other Carnivora, and a larger proportion of the cerebellum is covered thereby.

Tbe general parallel longitudinal course of the primary folds, e, g, l, characteristic of the hemispheres of Carmivora, is more strictly preserved in the ('forern, fig. 94 ; hut with great increase of ecrehral suhstance, and especially of the exterior layer, by the very numerous secondary fissures, which mask the true character of the primary ones, 11 and s, until a comparison of the relative depth unfolds it. ${ }^{\text {i }}$

Although the olfactory nerve be not developed in Delphinide, the rhinal, fig. $60, b$, and basirhinal, b^{\prime}, tracts are de-

Deiphinue ; upper burince of right bemisplitere. fined by the ectorhinal fissure, 2 , a circumstance significative of the derivation of this marine family from some form of the Mammalian class, retaining, as in Balcuida, the usual provision of nerves of special sense. In fig. 95 are shown the extent of the corpus eallosum, b, the depth of the cerebral fissures, and the proportions of the 'corpus striatım,' d, k, the optic thalamus, i, and the hippocampus, η, with its umusually broad 'turnia,' h, or free border continucd in to the 'formix.' I heginning of the 'posterior horn' of the lateral ventricle is now first shown.

- The primary cerebral convolutions in the hoofed Mammals have

[^21]a general disposition, converging from behind forward as far aso the anterior third of the eerebrum, and thence diverging, but in different degrecs.' ${ }^{\text {' }}$ Both Artiodactyle and Perissodactyle orders include species as small as a rabbit; yet the Pigmy Chevrotain

(Tragulus, fig. 101) and the Roek-Coney (IIyrax, fig. 96) alike manifest the essential gyrencephalous characters in the extent to which the cerebrum (prosencephalon) covers the cerebellum, and the degree in which its surface is folded: both, likewise,

manifest the Ungulate convolutional pattern, albeit exemplified in the simplest measure by them in their respective groups. The brains of both Tragulus and Myrax show the following
primary fissures: ceto- and cnto-rhinal, hippoeampal, fig. 99, 4, sylvian, fig. 106, 5, callosal, fig. 99, 7, lambdoidal, figs. 96, 101, 13, and entolambdoidal, fig. 99, 13^{\prime}, supersylvian, fig. 101, s, and lateral or medilateral, ih. 10. In Tragulus, fig. 101, this is slightly indicated: in Hyrax, fig. 96, 10, it is longitudinal but short. IIyrax also shows a frontal fissure, ib. 14, and the postsylvian fissure, ib. 9. But the chief difference is seen in the course of the fissure 13, wbich, impressing tbe inner and posterior side of the homisphere at fig. 99, 18', converges toward its fellow in Tragulus, but diverges as it advances, in Hyrax, and extends beyond the frontal fissure, 14, simulating the longitudinal one in the same part of the brain in tbe Agrouti, Sloth, and Aye-aye. Its fore-part runs into the superfrontal fold, n, or divides it from the subfrontal, $n^{\prime \prime \prime}$. We may traee the bomologue of 13 , interrupted by secondary fissures, marking off a less elongated mesial tract of the brain, in the IIorse, fig. 97, and Rhinoceros, fig. 98. The primary

fissures, in IIyrax, define the following folds: viz., sylvian, figs. 96,106 , e, e^{\prime}, postsylvian, ib. f, part of supersylvian, ib. g, blending with tbe medilateral or medial, l, the entolambdoidal, fig. $99, p^{\prime}$, rising to the upper surface, confluent with the traet representing the superfiontal, n^{\star}; in like manner the sylvian, fig. 96, e^{\prime}, hlends with the subfrontal traet, ib. $n^{\prime \prime \prime}$. On the inner surface of the hemisphere, the hippocampal fold, fig. $99, a$, the callosal, h, and entolambdoidal, p^{\prime}, are defined; with an indication of a falcial fold, $o^{\prime \prime}$ The ectorhinal fissure at the base of the brain bounds the outer side of the rhineneephalic part, and divides it from the more cxterior part of the ' aatiform protuherance.'

Iu the larger Perissodactyles, the expansion of the hinder part of the hemisplieres is attended with a greater recession of the supersylvian fissures, fig. 97, Horse, and fig. 98, Rhinoceros, 8 , outward and backward; they also bccome deeper, more continuous, and more wavy: the lateral or medilateral fissure, 10 , is now developed to a similar extent, running parallel with 13 and 8 , and with more depth in Rhinoceros, fig. 98, than in Equus, fig. 97. Both
l and g bend outward anteriorly, in Rhinoceros, in a more definite way than in Equus. The anterior lobe, marked off by the short fissure, 14 , is relatively larger in every dimension in the great Perissodactyles, and is broader and deeper in the Horse tban in the Rhinoceros. The tract of the inner or mesial surface of the bemispheres above the callosal fissure, fig. 100,7 , is impressed by the parallel ' marginal 'fissure, ib. 6, in both large Perissodactyles; and the callosal fold so defined is subdivided by a secondary intermediate 'supercallosal' fissure, 7', more continuous in the Rhinoceros than in the Horse, into tbe • callosal proper, ${ }^{2} k$, and the supercallosal, k^{\prime}, folds. Beside the falcial fissure, 15 , there is a prefrontal sccondary fissure; and the septal or postfalcial surface, p^{\prime}, q^{\times}, is extended by secondary fissures. Tbe increase and complexity of the upper convoluted surface of the hemispheres in the larger Perissodactyles are due to the full establishment of primary fissures, upon the plan sketched out in Hyrax, to their more wary course, and to the superaddition of secondary fissurcs, indicated by interrupted lincs in figs. 97 and 98.

In passing from the Pigmy Musks to the brains of larger Artiodactyles, we find the fissure which is feebly indieated at 10 , fig.

Tragulus.

Cervis.

101, Tragulus, fully developed in figs. 102 and 103, and dividing the triangular tract into the oblique folds l and g : which I hold to include the same parts of the cerebrum as the morc longitudinally disposed folds lettered g, l, m, in Carnivora. In some small Cervida the secondary fissure, 11 , is not present : in most it is, as also in the hollow-horued Ruminants, Giraffe, Camel-tribe, fig. 105, Auchenia, Suida, fig. 104, and IIippopotamus. The lambdoidal fissure, 13, retains its character, as in Tragulus, viz. short, antcriorly convergent, and continucd on the inner surface of tbe bemi-
sphere; not so longitudinally cxtendedalong the mesial margin of the hemisphere as in IIyrax and Equus. The folds, l and m, figs. 102-105,come into contact at the middle part of the interhemispheral fissure, and show their character as medial ones, in the larger Artiodactyles. In Cervus, fig. $102, l$ and g blend antcrionly, and are continued into the frontal tract, n, the anterior longitudinal subdivisions of which are marked off by the short fissures, $1 \psi^{\prime}$ and $14^{\prime \prime}$. In the Giraffic, fig. 103, the primary fissure, 10 , is
 continued by a bend whieh may indicate 12, into the midfrontal fissurc, $14^{\prime \prime}$; in most Ruminants the supersylvian fissure, 8 , extends into $14^{\prime \prime}$. On the inner surface the same course of complexity adds

to the primary hippocampal, 4 , callosal, 7 , and entolambiloidal, 13^{\prime}, fissurces, shown by Tragulus and Hyrax, the marginal, 6, supercallosal, 7^{\prime}, and falcial, 15 ; the supercallosal, which is interrupted in the Sheep and Ox, is continuous in the Giraffc. Less significant secondary fissures impress both fore and hind parts of this surface. Below the sylvian fissurc, 5, and fold, e, e^{\prime}, a narrow undulated 'subsylvian ' fold, f^{\prime}, fig. 107, Giruffe, divides them from the ectorhinal fissure, 2 : it is not prosent, at least as a convolute tract, in Perisso-

Etephant; stile Flew of ecrebral hemisphere. dactyles: it is well marked and rises high up the sylvian fissure in Proboscidians, fig. 108, f^{\prime}. We shall meet with this sub- or entosylvian tract again : it attains its greatcst extent of surfacc in Man.

The sylvian, e, and supersylvian, g, folds are more undulated, or interrupted, and less neatly defined in the Ungulata, at least in the larger species, than in the Carnivora. They are still less defined in the richly convoluted hrains of the Prohoscidia, fig. 108, and Cetacea, fig. 94.

With regard to the Ungulata the choice of 10 or 13 for the medilateral fissure 10, fig. 91, in Unguiculata, may long be undecided, and consequently the choice of 10 or 11 , for the homologue of the lateral fissure 11; hut the determination of the supersylvian fissure, 8 , will probably be accepted, and on this basis, with the relations of $13,13^{\prime}$, figs. $96-107$, to the inner surface of the hemisphere, I am now, as in 1842, guided in the above determinations.

In the Lemuride the cerehrum does not extend over the whole of the cerebellum, fig. 109, Aye-aye: it does so in both platyrhine and catarhine groups: hut there are species of Quadrumana more diminutive than any of the Ungulate Mammals, and with this infantile character is associated a fotal smoothness of the cerebral

surface, irrespective of the relative size of the hemispheres, figs. 109 and 116, Midas.

Every quadrumanous hrain shows the ectorhinal, fig. 111, 2, entorhinal, ih. 3, hippocampal, fig. 110, 4, callosal, 7, marginal, 6, and sylvian, fig. 109, 5 , fissures. In the Galagos and Slow Lemurs a heginning of other fissures appears on the upper surface; hut they are not fully marked until the species attain the size of the Aye-aye and Lemur.

In Chiromys the fissure, fig. 109, 11 (Aye-aye), ${ }^{1}$ commencing in advance of the posterior border of the hemisphere, advances, slightly
cIr. pl. xii. figs. 3,2 ; it combines, also, the character of the medilateral, 10 , in Curnivora.
diverging, to the anterior fourth : and there marks out an ineipient coronal fissure, 12: it then bends inward and is continued into a fissure, apparently answering to that marked 14 in Felis. The supersylvian fissure, ib. $8, e, n$, arches over the sylvian, 5 , and postsylvian, 2 , fissures and folds; the postsylvian fold, f, being defined by a short postsylvian fissure, 9. Subfrontal and midfrontal folds are indicated by a shallow subfrontal fissure. On the inner surface, fig. 110, besides the hippocampal, 4, callosal, 7, and marginal, $6,{ }^{1}$ fissures, a post-hippocampal, 4^{\prime}, bifurcates, and defines cntolambdoidal, p^{\prime}, and septal, s, folds. There is also the beginning of a falcial fissure, 15^{\prime}, and fold, t. The vertical extension of the natiform protuberance, fig. $111, f^{*}$, arrests the cetorhinal fissure, 2 , at the sylvian one, 5 . The Ayc-aye agrees with the Lemurs and

Inner surlace of cercbral hemianhere, Ayo-ase. all Quadrumana in this respect; the homology of b, fig. 111, with the basirhinal fold, figs. $52, b^{\prime}, 82, h$, in Ly-and Liss-encephala, is masked by such interruption of the fissure, 2, in Quadrumana.

In Lemur proper the lateral fissure (between l and g, fig. 116) is shorter than in Chiromys and is not distinet from the supersylvian : in some species it bends outward more abruptly, in so far marking more plainly the coronal fissure, 12, as in higher Quadrumuna, and indicating a longer anterior lobe than in Chiromys: a frontal fissure, $14^{\prime \prime \prime}$, appears there. In the main we recognise in the cercbrum of Chiromys and Lemur, as in that of Carmivora, the primary division of the upper mass of the hemisphere into subparallel folds, medial, l, medilateral or supersylvian, g, and sylvian, e; but, shorter and more bent as they recede from the middle line; with indications of a longer anterior lobe or tract. The hippocampal fissure is prolonged into a ' post-hippocanpal,' fig. $110,4^{\prime}$, as in higher Quadrumana.

In the dininntive Platyrhine (Midas, Geoffi'., figs. 109, 116) the smoothness of the upper surface of the hemisphere is brokeu only by the extension thereon of the sylvian fissure, 5. In the next stage (Crllithrix) a 'postsylvian fissure,' ib. 9, is added, and the hemisphere may also show a longitudinal fissure, fig. 116, 8 , 12, curving, like the supersylvian, over the end of the sylvian, s, and postsylvian, 9 , fissnres; but which, in relation to the interhemispheral fissure, corresponds rather with the lateral fig. 89, 11, of Curniwora: the large anterior tract may show a short frontal fissure, fig. 104, $14^{\prime \prime \prime}$. In all the small Platyrhines (Midns, Calli-

[^22]thrix, fig. 109) the sylvian fissure, 5, and fold, e, are directed more obliquely from above and bchind, downward and forward, than in the Aye-aye, ib., and most Lemuridx: this character appears to be due to the preponderating growth of the frontal lobes, and becomes more marked as the Quadrumana rise in the scale. We next find that each hemisphere is divided into an anterior, middle, and posterior tract or region by two deep and extensive fissures, 12 and 13, Macacus, fig. 109, and Cebus, fig. 116, whicb, from their respective correspondence in position with the coronal and lambdoidal sutures, hear the same names.

In Cebus the sylvian fissure, fig. 116, 5 , is overarched by a subangular one defining the fold, g; from

111

Under surface of cerebrad hemisphere, stacucus. the angle a fissure, 13 , extends to the interhemispberal one, and is continued deeply down the inner or mesial surface. Outwardly the lambdoidal fissure, 13 , defines and undermines a posterior part of tbe hemisphere, by raising whicb the continuation of the postsylvian fold, f, may be traced beneath it. The chief difference between the catarhine and lemurine hemispheres, at the inner surface, is the supcraddition and interposition of the entolambdoidal fissure, 13^{\prime}, bctween the post-hippocampal, 4^{\prime}, and marginal or super-callosal, 7^{\prime}, fig. 117; the entolambdoidal being sometimes continued into the posthippocampal fissure, as in fig. $118,13^{\prime}-4^{\prime}$. The almost transverse fissure, fig. 116, 12, divides the large anterior from the middle lobes. In the latter, however, may be recognised the sbort tract, l, m, combining the 'medial' and ' medilateral' folds, but more transversely disposed tban in Carnivora; pushed out, as it were, by the backward growtb of the anterior lobe. Secondary fissures there indicate frontal, n, midfrontal, $n^{\prime \prime}$, and superfrontal, n^{\prime}, folds. One or two longitudinal occipital fissures mark out corresponding folds, $q^{\prime \prime}, q^{\prime \prime \prime}$. The ectorhinal fissure, fig. 111, 2 , sinking in to the sylvian one, 5 , may have a continuation in the anteroposterior fissure, ib. 2^{\prime}, which divides the ' natiform protuberance' into a medial or basirhinal, b, and a lateral moiety, f^{\prime}. In most Cutarhines the coronal fissure, 12, figs. 114, 116, extends, from within, more obliquely forward and outward; the homologues of the platyrhine fissurcs and folds are clearly secn, as marked by the figures and letters in Macacus and Cebus,
fig. 116. Secondary fissures subdivide the orbital as well as the frontal and falcial surfaces of the anterior lobe: the surface resting on the orbital plate of tbe frontal hone, in the Orang's brain, fig. 112, shows the following con-volutions:-'postorbital,' o, midorbital, a^{\prime}, entorbital, $o^{\prime \prime}$, ectorbital, $o^{\prime \prime}$, and antorbital, o^{x}. That which lies external to the rhinal fissure or depression is not subdivided into ectorhinal and entorbital folds as in Man, fig. $120, d, o^{\prime \prime}$. Similar secondlary chinks furrow the occipital lobe, on the tentorial surface of which the tentorial fold, fig. 111, r, the entotentorial, r^{\prime}, and ectotentorial, $r^{\prime \prime}$, are now defined by the fissures, $18,18^{\prime}, 18^{\prime \prime}$. These

Baso of the hraln, Orang-utan, x.xix- folds are more or less continuous with the basirhinal, b, and subsylvian, $f^{\prime \prime}$, tracts. The increasing number of secondary fissures and the greater depth and more winding course of the primary ones mainly characterise the brain in the Orang (vol. ii. fig. 148) and Chimpanzee, fig. 114. The tract between the interhemispheral and supersylvian fissures is subdivided into medial, l, medilateral, m, and supersylvian, g, folds, fig. 116, Chimpanzec: we have evidently here the corresponding parts of the hemispheres that form these folds, or parts of them, in C'arnivara.
1). Archencephala. - The same principle earried abruptly to an extremely greater degree, as in figs. 115, 116, Homo, associated (as compared with (iorilla, e. g.,) with a greater proportional bulk of the brain to the body, and with a still greater proportional size of the ecrebrum to the rest of the brain, eharacterise the \boldsymbol{A} chencephalous subclass, from the lowest varictics (Australian, Boselisinan, Hottentot) to the highest. These proportions lanve thoroughly stowl the severest tests, as where the diminutive female in such varicties has been selected to exemplify the brain-characters, with a view of reducing the chasm between the gyr- and arehencephalous brains to a minimum.
lefore entering into the details of the complex convolutional surface of the human cerebrum, I may premise some recaritulatury remarks.
' We are guided to the homologous parts of the eerebral hemispberes througbout tbeir range of developement in the Mammalian class, in a great moasure, by their relations to other parts of the brain. The portions more immodiately surrounding the cerebral erura, ${ }^{1}$ those which overareh the corpora striata and thalami and overlie the olfactory crura, or at least their beginnings, ean hardly be doubted to be eorresponding parts in all Mammals. Tbe inferior prominences behind the "crura rbinencephali," forming the " protuberantix natiformes" of some antbropotomists (b^{\prime} basirhinal fold), the inverted hippocampal fold, its labia and fissure, are plainly determinable throughout the class, as is also the sylvian fissure, 5 , somewhat less constant, dividing the part of the hemisphere terminated by f^{\prime}, figs. 113 and 115 , and sometimes called "inferior lobe," from the part which is in front of it: the superadded eerebral substance to the above more constant parts of the bemispberes is tbat which, in Man, advances, overlaps, and extends beyond the olfactory lobe, and that which extends backward in like relation to the cerebellum.

If one can predicate bomology of any folds or fissures of the eerebral superficies, throughout the Mammalian class, it must be at the above-defined middle part of the more developed hemispheres, and especially at those fissures, viz. 2, ectorbinal, 4, hippocampal, 5 , sylvian, 7 , callosal, 7^{\prime}, supercallosal, that are the most constant throughout the series. The upper surface of the hemispheres, as we have seen, is subject to different ways of folding: in Echidna the plaits go across, in Felis along it, while in Bos and Simia they run askew, yet contrariwise; in one from bebind forward and inward, in tbe other forward and outward. It may seem, to some, that each leading division of Gyrencephala should have its own system of nomenclature and symbolism of brain-folds--that homologous eonvolutions can only be satisfactorily determined within the limits of such groups as Ungulata, Unguiculata, Quadrumana. In a degree this is true; the grounds of homology are such in regard to some folds (6 and r^{\prime}) as to leave room for difference of choice; but there are others that have a surer basis for bomologising. Take, for example, the "sylvian fissure," 5 : the fold e, that immediately overarches and forms it, is determinable: one part of the fold forms the anterior, the other the posterior, lip of the fissure: they are united or continuous by the overarching part in most Unguiculates and Ungulates. The bomology of the sylvian fissure and fold is not
ohscured hy the minor intersylvian eonvolutions, which are exposed in the Sheep and Elephant, and are concealed in higher Quadrumana and Man, where they constitute the "gyri breves" of Arnold; ${ }^{1}$ nor is that of the anterior lip hy the interruption of the eetosylvian fissure, 8^{\prime}, in the Cat, fig. 91, whereby the sylvian is divided into parallel vertieal folds, which, with the intervening sylvian fissure, are overarched hy the higher supersylvian fissure, ib. s. In Quadrumana the posterior part of the supersylvian fissure, fig. 109, 8 , sometimes runs into one, 9 , behind and parallel with the sylyian, s. In Stenops the detaehed "post-sylvian," 9 , is short and straight, as in the Cat.
' In the Marmozets (Midas, Geof. Hapale, Bl. Jacchus vulgaris) the sole superficial fissure on the exposed surface of the hemisphere is the sylvian, figs. $109,116,5$, and this dctermines the contiguous part of the hemisphere, e, to he the homologue of the sylvian fold. When the postsylvian fissure appears, as in Callithrix, fig. 109, 9, the postsylvian fold, f, is defined: it is certain that we now have the homologues of the folds so named and numhered in Unguiculates, figs. 90-92; and the advantage of their determination would be lost were we to apply new names to these folds and fissures as if they were distinct and superadded parts in the quadrumanous and himanous brains. The next fissure which appears, in the Quadrumana, answers to that marked 11, 8, in Putorius, fig. 87, which is longitudinal and bends more or less outward antcriorly: it divides, in fig. 116, Callithrix, 8 , the cerebral surfaee above the sylvian and postsylvian fissures lengthwise, in to two pretty equal tracts, and tends to mark off an anterior part or lohe of the hemisphere.
'Procceding with the more typical Quadrumana, we find that the progressive expansion of the cerebrum, which has earried it backward over the eercbcllum, and augmented the outward and downward extension of the part hchind the sylvian fissure, has also added so much to the antcrior lobes as scems to have pushed backward the rest of the hemisphcre, and gives the sylvian, e, and postsylvian, f, folds a more obliquc direction from ahove, downward and forward, than in most lower Unguiculates. In the Otter, indeed, and Lion, the sylvian and presylvian fissurcs are similarly oblique: but the postcrior part of the sylvian fold does not project outward so far heyond the anterior part as in Quadrumana: this development, together with the interruption of the supersylvian fissure, and the extension of secondary fissures at right angles and anterior to the sylvian fissure, tend
to mark the homology of the forcpart of the sylvian fold in Quadrumana. Its upper part is now defined from the forepart or "anterior lobe" of the brain, by the fissure 12 , figs. 109,116 , which, instead of being continued with or from the longitudinal one, as in Lemur, fig. 116, s, extends from without, obliquely inward and backward, to or near to the interhemispheral fissure. It is that which, from being first well defined by the Italian anatomist ' in the human brain, has been called "fissura Rolandi," but which I term " coronal," or "coronal part" of the medilateral fissurc, in Ferines, figs. 88-92, 12.'

In the side view of the human hemisphere, fig. 115, the fissures are indicated as follows:-2, ectorhinal, external to the crus rhinencephali, it is longer and more conspicuous in the lower Mammals, fig. 107, 2, 5, sylvian, 8, supersylvian, 9, postsylvian, 9^{\prime}, subsylvian, 12, coronal, 13 , lambdoidal, 14 , frontal (or postfrontal), 14^{\prime}, superfrontal, $14^{\prime \prime}$ midfrontal, $14^{\prime \prime \prime}$, subfrontal, 14^{*}, ectofrontal, 17, occipital (or superoccipital), 17^{\prime}, exoccipital, $17^{\prime \prime \prime}$, ectoccipital. The folds or convolutions are: $-d$, ectorhinal, e, sylvian, f, postsylvian, f^{\prime}, subsylvian, g, supersylvian, l, medial, m, modilateral (l and m, as in Quadrumana, are less distinct from each other, as well as shorter and more oblique, than in Carnivora), n, frontal (or postfrontal) n^{\prime}, superfrontal, $n^{\prime \prime}$, midfrontal, $n^{\prime \prime \prime}$, subfrontal, n^{\times}, ectofrontal, p, lambdoidal, q, superoccipital, q^{\prime}, midoccipital. Homologous fissurcs and folds in the brains of the

Chimpanzee.
Homa, Aduit.
infant, fig. 113, and chimpanzec, fig. 114, are indicated by similar figures and letters.

In the upper view of the human hemisphere, fig. 116, the following fissures are marked:-5, sylvian, 8 , supersylvian, 9 , post-
sylvian, 12, coronal, 13, lambdoidal, 14, frontal, 1+, superfrontal, $14^{\prime \prime}$, mid-frontal, 17^{\prime}, cxoceipital, and 17^{x}, postoccipital. The folds are: -e, sylvian, l, medial, m, medilateral, n, postfrontal, n^{\prime},

superfrontal, $n^{\prime \prime}{ }_{1}$ midfiontal, $n^{\prime \prime \prime}$, subfrontal, o, ectorbital, p, laubloidal, η, occipital, $q^{\prime \prime}$, suroceipital, $q^{\prime \prime \prime}$, suboccipital.

The primary fissures on the internal (mesial) surface of the hemisplere, fig. 118, are 4, hippocampal, with its long bifureate

posterior extension, 4^{\prime}, 7, callosal, 7^{\prime}, supercallosal, 6, marginal, ${ }^{\prime}$ 13^{\prime}, entolambloidal, here continued into the posthippocampal; the supercallosal fissure, 7^{\prime}, bifureates anteriorly, as in Papio, fig. 117, $7^{\prime \prime}$ and Pithecus (vol. ii. fig. 149). The surface applied to the fore part of the falx is impressed by falcial, 15 , and subfaleial, 15^{\prime},

This is seldam so distinct or continuous as in the larger ungulates,
fissures, morc or less parallcl with 7^{\prime}. The principal folds defined by the above fissures are:- a^{\prime}, posthippocampal, k, callosal, k^{\prime}, supercallosal, h, marginal, h^{\prime}, postmarginal, t, falcial, t^{\prime}, subfalcial (which is the inner surface of c, entorhinal), p^{\prime}, cntolambdoidal, s, scptal.

Anthropotomists have primarily divided the hemispheric masses

vertical nection, half nat. 日lze, Euman Brath. xL":
into groups of convolutions or 'lobes:' some into three, viz., the ' anterior,' 'middle,' and 'posterior' lobes; others into five. These latter are termed 'central' (lobus centralis), 'frontal" (lobus frontalis), 'parietal' (lobus parietalis), 'temporal' (lobus temporalis), "occipital' (lobus occipitalis).

The central lobe ('Stammlappen,' Huschkc) answers to the "Insel' of Reil, and is not visible outwardly; it includes the - gyri breves,' and is, by some, held to be peculiar to Quadrumana and Bimana (but see figs. 117, 118, f^{\prime}, f^{\prime}).

The 'frontal lobe,' fig. 119, f, includes so much of the anterior lobe as lies in advance of the 'frontal fold,' n, n, and is subdivided above into the superfrontal, n^{\prime}, midfrontal, $n^{\prime \prime}$, subfrontal, $n^{\prime \prime \prime}{ }_{1}$ ectofrontal, n^{\star}, and ' prefrontal,' $n^{\star \times}$, folds: it is an artificial division of the part, most naturally defined, both in Quadrumana and Man, by the coronal fissure, 12, from the rest of the hemisphere.

Tbe ' parietal lohe,' P , includes the frontal fold, n, n, the anterior and superior parts of the sylvian, e, and supersylvian, g, folds, with the medial, l, and medilateral, m, folds.

Tbe ' temporal lobe,' T , ineludes the posterior part of the sylvian fold, tbe postsylvian, and subsylvian folds, fig. 115, $f, f^{\prime \prime}$, and also part of the supersylvian fold, g.

The 'occipital lobe,' o, is a more natural division, including all the part of the hemisphere which lies behind tbe lambdoidal fissure, 13.

The anterior lobe has threc surfaces, one applied to the calvarial part of the frontal bone, another to the orhital plate, a third to the falx. Each of these are impressed by seeondary fissures, which I have ealled 'frontal,' ' orhital,' and 'falcial,' accordingly. The frontal fissures mainly affect a longitudinal direction, but run behind into a transverse one. This is the ' frontal,' or 'postfrontal,' fig. 119,14 ; it is more or less extensive and parallel with the coronal fissure, ib. 12. The most constant of the longitudinal fissures pretty cqually

Buperior surfaca of the right hemispture of the sdult buman brild. bwo-thirds nat. slac. biseets the frontal surface; it is the ' midfrontal ' fissure, fig. 116, $14^{\prime \prime}$; the fissure ahove or internal to it is the ' superfrontal,' 14 ', that bencath or extcrnal is the 'suhfrontal,' fig. 115, $14^{\prime \prime \prime}$; beneath this again and upon the outer and baek part of the frontal lohe is a deep and constant longitudinal fissurc, usually hifurcate, the eetofrontal, ib. 14^{x}.

The fissures on the orbital surface present much analogy to the frontal oncs. The posterior one is transverse and usually curved with the convexity forward; it is the orbital or postorbital, fig. 120, 16 ; the most constant of the longitudinal fissures which
extend forward from the orbital one, I call ' midorbital,' ib. 16^{\prime}; that to the inner side is the entorbital, $16^{\prime \prime}$; that to the outcr
 side, the ectorbital, $16^{\prime \prime \prime}$; a transverse fissure anterior to these is the antorbital one, 10^{x}. The ccto- and ento-rhinal fissures, 2, 3, distinct posteriorly, run into each otber where they form the groove lodging the slender 'crus rhinencephali' of the buman brain. Tbe cerebral folds thus marked out are tbc entorhinal, c (whicb is the under surface of the subfalcial, fig. 118, t^{\prime}), the ectorhinal, d, whicb, in $L y$ - and Liss-encephala, Ungulata, and most Carnivora, is continued backward, uninterruptedly, into the basirhinal tract, b; external to d, fig. 120, are tbe postorbital, o, midorbital, o^{\prime}, entorbital, $a^{\prime \prime}$, ectorbital, $o^{\prime \prime \prime}$, antorbital, o^{x}. The postorbital tract passes backward into 'Reil's Island.' The ectorbital, $\theta^{\prime \prime \prime}$, merges into the ectofrontal, n^{\times}, fig. 119, of which it may be called the under surface: attention bas been called ta tbe coincidence of loss or defect of speecb with lesion in that fold or locality of the brain. ${ }^{1}$ The tracts connccting some of the folds of which the homology with those of lower mammals is determinable, are noted, in anthropotomy, as ' annectant gyri ' (' plis de passage,' Lix").

On the falcial surface of the frontal lobe the most constant fissures are two that affect a longitudinal course; the upper one, which seems to be a continuation of the 'marginal' fissure, is the 'falcial,' fig. 118, 15 ; the parallel one hclow is the 'subfaleial,' ${ }^{15 \text { '. }}$

The posterior lobe of the hemisphcre, marked off by the lambdoidal fissure, 13 , has three principal surfaces: one applied to the superoccipital plate, one applied to the falx, and onc resting on the tentorium.

On the occipital surface are several but irregular fissures, which, from their position, may be termed mid-, super-, ent-, and post-occipital; thcy define, inore plainly in Quadrumana than in Nlan, the lambdoidal, fig. 119, p, suroccipital, $q^{\prime \prime}$, midoccipital, q^{\prime}, suboccipital, $q^{\prime \prime}$, and postoccipital, q^{\times}, folds. On the tentorial surface they affect a longitudinal wavy course, and are commonly three in number; of these, the middle one is the 'tentorial' fissure, fig. 120, 18, the inner one the 'entotentorial,' ib. 18 ', the outer one the 'ectotentorial,' $1 s^{\prime \prime}$. On the surface next the falx, or septum dividing the hemispheres, fig. 121, the fissures have a radiating tendeney from the anterior angle outward : the most constant and important of these, in Man, has already received the name of 'posthippocampal,' being a continuation of that deep fissure the corresponding fold of which partly protrudes into the posterior horn of the ventricle, as the 'hippocampus minor;' the rest I called 'septal' fissures, reserving the terin 'faleial' to those on the corresponding surface of the anterior cerebral

Inner or septal surface of posterfor lobe, human cerebrum. lolre. The fissure above the 'posthippocampal' is the 'septal fissure, 19 ; that beneath the posthippocampal is the 'subseptal,' $19^{\prime \prime}$; the fissure between the septal and entolambdoidal, 13^{\prime}, fissures is the superseptal, 19^{\prime}; their outer ends are frequently lost in a fissure following more or less extensively or interruptedly the posterior contour of the postcrior lobe; this is the postseptal fissure, $13^{\prime \prime \prime}$; it is peculiar to Man. The folds so defined on the septal surface are: the entolambdoidal, p^{\prime}, superseptal, s^{\prime}, septal, s, posthippocampal, a^{\prime}, subseptal, $s^{\prime \prime}$, and postseptal, $s^{\prime \prime \prime}$

The human brain, in its development, passes through stages in some degree like those which are permanent in and characteristic of the Qundrumana, in respect to its cerebral folds and fissures; but it early manifests its distinctive archencephalous proportions, fig. 109, Fœtus. Λ bout the twentieth weck the fissures begin to appear upon the upper surface of the hemispheres, fig. 116, three months' Foetus, Λ fter the 'hippocampal' and 'callosal 'have cleft. the inner surface, and the ectorhinal 'and'sylvian' the under surfuce, the entolambioidal ascends upon the mesial side of the 1 pper surface (fig. 116, 13); the postsylvian, 9, appears; theu a faint trace of the longitudinal fissure, fig. $116,14^{\prime}$, indicative of the midfiontal and ectofrontal tracts. The 'coronal,' fig. 113, 19, is
spcedily followed hy the 'postsylvian' 9 . A more or less interrupted fissure divides lengthwisc the sylvian or supersylvian fold, ih. g, from the median, l, and medilateral, m, tracts. The lamhdoidal fissure, 13, extends toward the outer part of the hemisphere: the pre-coronal tract of brain is fissured into subdivisions, chiefly longitudinal : the fretal hrain, at scven months, figs. 113,116, resembles, in superfieial cerehral marking, that of the latisternal apes, il., Chimpanzee, hut is hroader anteriorly, deeper and longer hehind.

In the foregoing summary we have scen that the fissures which hreak the surface of the mammalian hrain are of different kinds, degrees, and values. Some, in the course of development and elevation of the primary masses, divide onc from the other; as the cercbrum from the optic and olfactory lobes, the cercbrum from the cerehellum, and this from the macromyelon. Some subdivide primary masses into symmetrical halves, as e.g., the inter-hemispheral fissure, the inter-olfactory fissurc, and the shallower indent hetween the mammalian optic lohes or 'nates.' One or two fissures of the eerehrum make folds that project into the hemispheral cavity or ventricle, e. g. the hippocampal and, in Man, the posthippocampal: most are confined to its crust or wall, and of these, as I showed in 1833, some, from their relative constancy, depth, and symmetry, may be termed 'primary,' while others are of 'secondary' or inferior rank.
The following are those which are noted by figures in the illustrations of the present work:-

Cerebral Fissures, in the order mainly of their constancy in the Mammalia.

Figures.

1. Interhemispheral.
2. Eetorhinal.

2'. Basirhinal.
3. Entorhinal.
4. Hippocampal.

4'. Posthippocampal.
5. Sylvian.
6. Marginal.

6'. Postmarginal.
$6^{\prime \prime}$. Premarginal.
7. Callosal.

7'. Supercallosal.
8. Supersylvian.

8'. Ectosylvian
9. Postsylvian.

Figures.	Figures.
9'. Subsylvian.	$16^{\prime \prime}$. Entorbital.
10. Medilateral.	$16^{\prime \prime \prime}$. Ectorbital.
11. Lateral.	16^{*}. Antorbital.
12. Coronah	17. Occipital or Midoccipital.
13. Lambdoidal.	17'. Superoccipiral.
13'. Entolambdoidal.	17". Entoccipital.
14. Frontal or Postfrontal.	$17^{\prime \prime \prime}$. Ectoccipital.
14. Superfrontal.	17*. Postoccipital.
14". Midfrontal,	18. Tentorial.
14"'. Sublrontal.	18'. Entotentorial.
14*. Ectofrontal.	18 ${ }^{\prime \prime}$. Ectotentorial.
15. Falcial.	19. Septal.
15'. Subfalcial.	19'. Superseptal.
16. Orbital or Postorbital.	19'. Subseptal.
16'. Midorbital.	19". Postseptal.

$16^{\prime \prime}$. Entorbital.
$16^{\prime \prime \prime}$. Ectorbital.
16x. Antorbital.
17'. Superoccipiral.
17". Entoccipital.
$17^{\prime \prime \prime}$. Ectoccipital.
17×. Postoccipital.
18. Tentorial.

18'. Entotentorial.
18 ${ }^{\prime \prime}$. Ectotentorial.
19. Septal.

19'. Superseptal.
19". Postseptal.

The following are the cerebral folds whieh are indicated hy letters in the illustrations of the present work, with the synonyms of original lahourcrs in this field of anatomy :-
CEREBRAL FOLDS IN THE ORDER OF THEIR CONSTANCY IN MAMMALS.

Each hemisphere is a hag of neurine folded or laid upon its expanding stem, the hollow of the hag heing the ventricle. This, in the embryo, is capacious and simple, the wall heing very thin. It hecomes thickened in different degrees at different places, most so at the upper and outer sides. The wall, thus thickened, protrudes at certain parts into the cavity, dividing and shaping it into parts or recesses which Anthropotomy calls 'horns,' from theircurvature in Man. In lower Mammals the primitive cavity commonly retains more of the general shape of the hemisphere, and in most Quadrumana, the lower more especially, the part aceompanying the broad supracerehellar expansion of the hemisphcre is of corresponding capacity. The Orang, among Apes, still shows the primitive character of this part of the ventricle: in the Chimpanzee and Gorilla the growing walls reduce and begin to shape it as a 'horn,' slowing also a heginning of a protuherance within it. In Archencephala the moulding of the 'posterior horn' is completed by the predominance of the internally protruding wall ('partie enroulee,' Leuret), to which, now, the term 'hippocampus minor,' or 'pes hippocampi minor,' rightly applies. ${ }^{1}$ The fibres of the stem, augmented in number at each accumulation of grey reuniting matter, diverge into and form the main part of the wall in greatest proportion in the Lyencephala.

The stem or 'crus' is formed by the prepyramidal tracts, fig. 66, p, the olivary tracts f, the teretial and postpyramidal tracts, fig. $49, \mathrm{x}$, and so much of the cerehellar tracts, fig. 66, t, as may not have heen expended in the formation of the ' nates,' b, ' testes,' n, - geniculate hodies,' y, and their common hasis. Thus the crus or stem of the hemisphere includes tracts of the myelon, connected respeetively with the sensory and motory roots of the nerves. The part of the 'crus prosencephali,' below or in front of the 'locus niger,' consists of white fihres in a coarsely 'fasciculate ${ }^{\text {P }}$ arrangement, fig. 123, d : the part above, dexived from the terctial, postpyramidal, and cerebellar tracts, is softer, with mixed grey matter, and forms the 'tegmentum,' ib. c. The fasciculate fibres, after passing through and heing reinforced by the grey matter of the striated hody, divergc in curves, fig. 66, c, fig. 122, s,

[^23]of whieh many bend downward and outward, suggesting the term - fibrous' or 'radiated' cone; in Man they are traceable ehiefly in the sylvian, postsylvian, entosylvian, supersylviau, medilateral, medial, and marginal folds, and into the major part of those of the anterior lobe, fig. 122, a. The tegmental or posterior filres are, in Man, more direetly eonneeted with the transversely arehed

fibres of the great commissure: others, diverging to the posterior lobes, e, b, beeome connected or continuous with the longitudinal commissural system of the fornix. Figure 123 is a disseetion of the inner surface of the hemisphere. C is the seetion of the corpus callosum, the fibres of which diverge upon the roof of the ventricle, interseeting the radiating fibres, fig. 122, s, and passing into all the folds, whieh are thus brought into communieation with those of the opposite hemisplicre. The fibres of the 'eallosal'fold, fig. 123, ", o, are chiefly longitudinal, are eontinucd behind, into those of the hippocampus, and in front into those extending from the fornix upon the faleial surface of the anterior lohe : externally
they form the 'superior longitudinal commissure,' fig. 122,o; and fibres are traceable from both extremities to the 'perforated space,' figs. $82,120, x$. The dissection, fig. 122, shows also the longitudinal fibres extending from the anterior to the inferior and posterior lohes, and forming the 'external longitudinal commissure,' e, above which are scen part of the radiating fibres, s, interlacing with those of the corpus callosum, c; which is overarched by the outermost of the superior longitudinal commissural fibres, o. Above

Dhasection of the left hewisphere of the braln, from the finner side. xxxiti",
these are shown the fibres which mainly form the convolutions, but which include not only the 'radiating' fibres, but those of the ' transversely commissural' and 'longitudinally commissural'kinds: they terminate in or blend with the grey matter which forms the outer crust of the hemisphere. In a section of this substance in a recent hrain, a white line is seen to separate it into two layers, as in fig. 124. More closely scrutinised, the following strata have been defined from the surface downward :-a thin superficial white layer, a thick reddish grey layer, the intermediate white layer, a thicker grey laycr, a third thin white layer, and the deepest grey layer receiving the radiating finres of the white or medullary cerebral neurine. ${ }^{1}$

In the contemporary Reports of my Hunterian Course of Lectures, 1842, the chief conclusions of the comparative anatomy of the superficial grey substance in

The anterior commissure - the most constant of the transverse system-is relatively largest in Lyencephala, figs. 69, 73, c. In the human brain a similar transverse section of it shows its insignificant dimensions, fig. 123, a. Traced transversely, in them, it passes, as in a special canal, across the lower part of the corpora striata, bends backward, and expands as it radiates into the middle of each hemisphere. It indicatcs the small part of the human cerebrum which is bomologous with the main part of that of birds and marsupials. But the increase of the mammalian over tbe avian brain begets the added structures for association of added parts, already described. In Man, each anterior pillar of the fornix, after leaving tbe 'thalamus,' descends and is bent upon itself before ascending, the bend projecting at the base of the brain, behind the ' infundibulum,' as tbe 'corpus albi-

Suction of grey and wiste neurine of prosencephatic conyolutions. Man, cans,' or 'mammillare,' fig. 128, m.

In the Lissencephala, where a corpus callosum is first established, it might seem, in a dissection from below, that the outcr fibres of the 'radiating cone'curved over the lateral ventricle, and were constricted lengthwise as they ran into each other across the interhemispheral fissure, as in the dissection of the Beaver's brain, fig. 78: but it is deceptive. There is no actual continuity of any of the ascending radiating fibres of the crus cerebri with those which spread out in transverse curves from the corpus callosum. The two systems are everywbere closely interlaced; but tbe fibrous character of the commissural series is lost,

[^24]under the microscopc, hefore it quits the ventricular wall to descend, with the radiating fibres, iuto the crus. From this stage in tbe mammalian series the great transverse commissure grows with the growth and complexity of the hemisphere. It consists mainly of whitc or fibrous neurine, but some grey matter ('nucleus Ienticularis') is superadded to the inferior fibres extcrnal to the radiated cone, and between this and the 'island of Reil" there is also a thin layer of grey neurine (' nucleus tæniæformis ').

Always maintaining its closcst connection with the part of the fornix called 'lyra,' or hippocampal commissure, whence its development began, the increasing body of transverse fibres extends forward and upward, with a bend or * genu, fig. 123, c, o, corresponding in extent with elevation and expansion of the front lobes of the cerehrum. In Man its narrow anterior beginning is connected by the "lamina cinerea' with the optic commissure, receives a small part of the grey substance of the thalamus, and sends off two bands, called 'peduncles of the corpus callosum,' which, diverging, pass backward across the 'perforated space' to the lower part of the sylvian fold. The corpus callosum, expanding as it rises, bends backward, and presents on its upper surface a medial longitudinal groove, called 'raphe,' bounded laterally by the white 'striæ longitudinales: 'it terminates hehind in a slightly down-bent, thickened, free border or 'pad.' Some way in advance of this the attachment of the under surface of the corpus callosum to the fornix begins, and, as the hemispheres increase in the placental series, so does the extent of the filmy inner walls of the lateral ventricles ('septum lucidum,' Anthro., fig. 123, b) between the body of the fornix and the great superadded transverse commissure, the fibres of which extend over the roof of those ventricles. The most intelligible illustrations of the comparative anatomy of this interesting part of the cerebral structure is obtained by dissecting and exposing the lateral ventricle fiom the outer side, as in the views of the brains of the Opossum, Kangaroo, and Ass, showing the relative proportions of the bippocampus, and of the part of the inner wall distinct therefrom, called 'septum lucidum,' in LXX', pl. vii. In fig. 5 , the vascular fold of pia mater called 'choroid plexus' is shown passing beneath the fore part of the ' tænia hippocampi' through the canal of communication betweeu the latcral ventricles, in both marsupial and placental brains. The supraventricular neurinc, being folded upon its stem, the cavity is a reflection of the external surface, and is lined hy a continuation of the pia mater, although the fissure by which it
cnters the "ventricle' becomes contracted to a very small extent of the base exterior to the crus. From this point begins the fold cxtending, as 'choroid plexus,' from one ventricle to the other by the fissure called 'foramen Monroianum ' in Anthropotomy. On the intcrior surface of the hemisphere tbe pia mater is reduced to an epithelium, the cells of which are less flat in the lateral ventricles than in that continuation therefrom called 'third ventricle.' The part of the interhemispheral fissure overarched by tbe great transverse commissure is the 'fifth ventricle.' For other differentiated and definite parts in the archencephalous brainthe subjects of the 'bizarre' nomenclature of Anthropotomyreference may be madc to the minute and exact monograpbs which have been published on that part of tbe human structure.
§ 209. Size of Brain.-The brain grows more rapidly than the body, and is larger in proportion thereto at birth than at full growth. But there is a difference in this respect in different Mammalian orders. The brain of the new-born Marsupial is less developed relatively than in bigher Mammals, and grows more gradually or equally 'witb the subsequent growth of the body. ${ }^{1}$ So, in the degree in which a species retains the immature character of dwarfishness, the brain is relatively larger to the body: it is as 1 to 25 in the pygmy Petaurist, but is as 1 to 800 in the Great Kangaroo; it is as 1 to 20 in the Harvest Mouse, but is as 1 to 300 in the Capybara; it is as 1 to 60 in the little two-toed Ant-cater, and is as 1 to 500 in the Great Ant-eater. The brain weighs 6 grains in the Harvest Mousc (Mus messorius), and the same in the Common Mouse (Mus musculus); but the weight of the Harvest Mouse is 112 grains, whilst that of the Common Nouse is 327 grains. The brain of a Porpoise, 4 feet long, may weigh 1 lb . avoird. ; that of a Whale (Balcenoptera) 100 feet in lengtl does not exceed 4 lbs. avoird. ${ }^{2}$ In Artiodactyles the brain of a pygmy Chevrotain (Tragulus pygmeus) is to the body as 1 to 80 ; in the Giraffe ${ }^{3}$ it is as 1 to 800 . In Perissodactyles the brain of the IIyrax is as 1 to 95 , whilst that of the Indian Rhinoceros is as 1 to 764.4 The brain of the Elephant may be three times hervice than that of the Rhinoceros, but a full-grown malc would probably weigh down four Rhinoceroses. In Carnivora the brain of the Wersel is to the body as 1 to 90 ; in the Girisly Bear it is as 1 to 500 ; in Quadrumana the brain of the

[^25]Midas Marmoset is to the body as 1 to 20 ; in the Gorilla it is as 1 to 200.

But such ratios do not show the grade of cerchral organisation in the Mammalian class: that in the Kangaroo is higher than that in the Bird, though the hrain of a Sparrow he much larger in proportional size to the hody: and the Kangaroo's brain is superior in superficial folding and extent of grey cerehral surface to that of the Petaurist. The hrain of the Elephant bears a less proportion to the hody than that of Opossums, Mice, and proboscidian Shrews, hut it is more complex in structure, more convolute in surface, and with proportions of pros- to mes-encephalon much more nearly thosc in the human hrain. The like remark applies to all the other instances above cited.

The weight of the hrain, without its membranes, in a fullgrown male Gorilla is 15 oz . avoird. I estimate that of the entire body as being nearly 200 lhs : : in the relatively larger hrains of the small species of Quadrumana the convolutions are fewer, or may be absent, as in Midas.

In Man alone is a bulk of hody, greater than in any Quadruunana save Gorilla, associated with a large size as well as with the highest stage of complexity of the cerebral organ. This is, perhaps, the most notahle and significant fact in Comparative Anatomy.

The weight of the hrain in the adult male averages about 49 oz . avoird., and ranges from about 35 oz . to 65 oz . In the adult female the weight of the hrain averages ahout 43 oz . and a half, and ranges from 32 to 54 oz . The mean difference is thus ahout five ounces and a quarter. The hrain has advanced to near its term of size at ahout ten years, hut it does not usually ohtain its full development till hetween twenty and thirty years of age, and undergoes a slight decline in weight in advanced life. ${ }^{1}$

The brain, without dura mater, of an Australian female, of 5 feet 3 inches high, weighed 32 oz ; that of a Bushwoman, 5 feet high, is estimated, in LiII" ${ }^{2}$, at $30 \cdot 75 \mathrm{oz}$. In European females the hrain has heen found as low in size; hut the requisite ohservations to determine the range and the average of cerebral development have hitherto heen made only on Europeans. ${ }^{3}$ The weight of the hrain of the male Hottentot, 3 lbs .2 oz . avoird., dissccted hy Wyman, ${ }^{4}$ encourages the expectation of analogous

[^26]results. The human brain is excecded in weight hy that of the Elephant and the Whalc, but is ahsolutely heavier than in all other animals. In the proportionate size of the cerehrum to the cercbellum the human brain surpasses that of all MammaLia: it is as 8 to 1 .

Tbe brain in some individuals distinguished for intellectual power has been found of unusual size, and remarkable for the number and depth of the eerebral convolutions: the brain of Cuvier weighed upwards of 64 oz . The superficies of the cerebrum of the matbematician Gauss was estimated hy Wagner at 341 square inches, while that of an ordinary wage-man was 291 inches.

We know not the size of brain in the Melanian inventor of the 'throwing-stick,' or of that of the deductive observer of the properties of the broken hrancb bent at the angle of the 'hoomerang.' Such benefactors of their race were, perhaps, as supcrior to ordinary Australians in cerebral development, as the analogous rare exceptions in intellectual power have been found to be among Europcans. ${ }^{1}$
§ 210. Membranes of the Brain.-The encephalon, like the myelon, is immediately invested by an areolo-vascular tunic called 'pia mater:' it adheres to and follows all the foldings of the surface, is continued into the ventricles, and there forms processes called 'velum interpositum' and 'choroid plexus.' It is the area on which the vessels undergo the requisite dcgree of diminution for penetrating the cerebral substance; and, when withdrawn, the proportion of such vessels pulled out of that substance gives the flocculent appearance of the inner surface of the memhrane which Anthropotomy calls 'tomentum cerebri.'

The movements of the hrain are served by a delicate scrous sac, called the 'arachnoid.' The outermost membranc, ealled 'dura mater,' adheres to the iuner surfaee of the craninm, and consists of a dense inclastie fibrous tissuc. It sends a process or duplicature inwards hetween the eerehrum and cerebellum called 'tentorium,' and a second hetween the cerebral hemispheres called 'falx.' In the Ornithorhynehus a hony plate cxtends from the cranium into the falx (vol. ii. p. 323, fig. $204, \mathrm{~B})$. A ridge of bone extends a short way into the tentorium in some marsupials: it is thin in Kangaroos and Phalangers', thick in Thylaciucs, hut of less extent here than in the Wolf, (vol. ii. p. 504). In the Cachalot a bony plate projects from thei

[^27]superoccipital into.the back part of the falx ${ }^{1}$: the tentorium receives a bony plate in many Delphini. ${ }^{2}$ In Scals both the tentorium and hind part of the falx are ossified, and a thick ridgc enters the fore and under part of the falx between the rhinencephalic fosser. The tentorium is ossified in the Carnivora to the extent, and in the families, noted in vol. ii., where the conditions of such bony plate are diseussed at p. 506. ${ }^{3}$ A sbort tentorial ridge projects anterior to the cerebcllar fossa of the petrosal in Lemur macaco. ${ }^{4}$ The tentorial margin of the petrosal is slightly produced in Cebus, and to a greatcr extent in Ateles. In otber Quadrumana, as in Man, the sole ossifieation co-extended with any part of the dura mater is that called - crista galli' in Anthropotomy. An unossified process from the middle of the posterior border of the tentorium, extending from the internal occipital crest, projects into the notch bctwcen the hemispheres of tbe human eerebellum, and is termed ' falx minor ' and 'falx cerebelli.'
§ 211. Nerves of Mammals.-The olfactory nerves are absent in all the Cetacea save those with baleen, in wbieh they arc few and small; they are present in all other Mammals, and arc sent oft in greater number from their cerebral centre-the rhinencephalon -than in lower Vextebrate classcs. ${ }^{5}$ Tbe Ornithorkynchus is the

[^28]A more extensive series of comparisons of the interior of the skull has tended to rectify the physiological view entertained at the period of the publication of the posthumous edition of the 'Leçons d"Anatomie Comparée,' of Cuvier, vol. ii. p. 290 ; vol. iii. p. 155. ${ }^{2}$ xliv. p. 722.
${ }^{5}$ Anthropotomists still describe the connections and course of the "crura rhinencephali' as the origins of the olfactory nerve; although they recognise that, ' unlike otber nerves, a large proportion of grey matter is mixed with the white fibres,' \&c. (Lxir". vol. ii. p, 583, 1860), and might rectify the notion hy many weightier anatomical conditions. Some even maintain tho view by such remarks as the following: 'As it is known that in the first development of the ear the peripheral part or vestibular expanse, as well as the rest of the acoustic nerve, is originally formed hy the extension of a hollow vesicle from the first or hindmost foetal encephalic compartment, 80 in the case of the crus cerebri, although the peripheral or distributed part (crus rhinencephali or olfactory nerve) is of separate origin from the hemispheric bulb, this latter part is comparable in its origin with the acoustic vesicle.' I have paraphrased the argument of the editors of LXil' (vol. ii. p. 584), to show that development, as a vesicle in connection with nervous centres, is no ground of homology or homotypy. Whencver a faise homology has to be maintained, the earliest and ohscurest phenomena of emhryonal devclopment are usually resorted to in support of such vicw.

The terminal expansion of the acoustic nerve is in an organ which hegins as 'a follicle or hollow vesicle;' the terminal expansion of tbe optic rerve is also in a vesicle; and the true olfactory nerves expand terminally on what hegan as a follicle or vesicle, which form is retained, little altered, in Fashes. The vascular pituitary membrane supporting that expansion is the homotype of the choroid supporting the retina. No douht the ccrebellum is at first a vesicle, as is the optic lobe, and the hemisphere, and the olfactory lube; and each may claim to be regarded as the
sole known instance of the olfactory nerve quitting the skull by a single foramen, as in Birds and Lizards (i.e. one from eaeh rhineneephalon). In the Echidna the contrast in the vast number of nerves and the eoncomitant extent of the 'eribriform plate' is extraordinary. Those from the grey traet proceed to 'Jaeobmon's organ.' The number of olfaetory nerves and extent of the pituitary surfaee on whieb they spread is very great in Marsupials. In the Insectivora the Hedgehog is most remarkable in this respeet. Both IIcrbivorous and Carnivorous Gyrencephala have numerous olfaetory nerves: some of the Phocide sbow this charaeter in exeess. The number of the olfaetory nerves deereases, with the diminished size of the rhineneephalon, in Quadrumana, up to Man, where they seldom exeeed twenty in number, and are least in proportion to the size of the body. They beeome flattened and expanded where they spread upon the vaseular pituitary membrane.

The optie nerves are smallest in the Moles (Talpa), largest in the Giraffe. They arise from the bigeminal bodies, ehiefly from the nates and optie thalami, in Lyencephala and in some lissencephala, to whieh origin are superadded in other Lissencephala and in Gyr- and Archencephala, fibres from tbe corpora genieulata, along the traet marked d, fig. 68. In the groups in whieh the eyes are relatively largest, Ungulata and Rodentia, e. g., the larger proportional size of the homologue of the optie lobes, fig. $68, a$, is signifieant of its important relationship with the origin of the nerves of vision : the 'thalami' do not show the like inerease; their larger size in Quadrumana and Bimana relates more to their function as reeruiting ganglia of the prosencephalon. The optie nerves, nevertheless, seem to be derived more wholly from the 'thalami' in Man than in most lower Mammals, whenee the Anthropotomieal name of those parts. This eharaeter is shown in the foctal brain at the fourth month, fig. 125, where c shows the optie tract quitting the thalamus, e :
 the optie lobe, f, has not yet undergone its subdivision into ' nates and testes.' The liberated nerves bend downward and

[^29]forward, converging and meeting bencath the brain at their confluence, called 'chiasma opticum,' a, b. The fasciculi of primitive fihres are here arranged as shown in fig.
 126. The outer ones, b, pass onward to form the outer side of the nerve α, the middle fasciculi cross the chiasma ohliquely, and, after decussating the corresponding fasciculi of the other tract, contrihute to the formation of the opposite nerve: the inner fasciculi curve across the hack part of the chiasma, and are continuous with the corresponding fasciculi of the opposite tract, heing strictly "commissural: ${ }^{2}$ similar arrangement prevails with a few fasciculi at the fore part of the chiasma. The linder commissure is more common, and appears as a little trnial horder of the chiasma, in some Mammals, down to the rodents. Pathology gives evidence of a partial decussation, in some instances,

Atrophted rlght optie perve and tract; Human. corr. as in the preparation, fig. 127; in which the right optic nerve, a, was atrophied; the left onc, b, hcalthy; with a partially wasted left optic tract, c, while the right, d, retained more of its normal size. ${ }^{1}$

The Mammalian chiasma ceases to show the laminated arrangement (vol. ii. p. 122, fig. 47) common in Birds and Reptiles. The nerve, beyond the chiasma, has a strong neurilemma, which sends processes from its inner surface : in some, e. g. Cetacea, converging as longitudinal septa from the circumference to the centre of the nerve; in most forming longitudinal canals for the neurine, and giving it the character of a cylindrical aggregate of tubes. This is enclosed in a sheath of dura mater, extending to the sclerotic, into which it is partly continued, where the nerve pierces that coat of the eye-hall. Another peculiarity is seen in the small artery running along the centre of the nerve, and ramifying upon its terminal expansion as the 'arteria centralis retinæ.'

[^30]In some Marsupials the optic nerve grooves the orbito-sphenoid, escaping by a cleft continuous with the fissura lacera anterior ${ }^{1}$: in higher Mammals the nerve eseapes by a special 'foramen opticum.' The extra-cranial parts of the nerves are remarkably long in Whales, ${ }^{2}$ and in all Cetacea thcy diverge from the chiasma

128

Baso of human brala, with origine of perves ; hald antural dizo.
nt a wido nnglc, fig. 60,2,2. This bccomes less open as the Mammnls risc to Man, fig. 128, b.

The oculo-motor or 'third' nerve, fig. 60, 3 ; fig. 128, c, and xLIV PP. 323, $329 . \quad{ }^{2}$ xorv. p. 387.
the 'fourth,' fig. 128, d, have the same origin, distribution, and connections with the sympathetic, as in Man. The branch of the 'third'nerve, which runs along the lower part of the eye-ball, between the 'inferior' and 'exterual' rectus muscles, and supplies the 'obliquus inferior,' is connected, usually by a short thick cord, with a 'lenticular ganglion;' but this is not so well defined in some Mammals, and the ciliary nerves are usually fewer than in Man. The 'fourth' nerve supplies the 'obliquus superior" muscle. In the Sheep this nerve receives some branches from the ophthalmie division of the 'fifth' neerve. Besides the ' rectus externus,' the sixth nerve, fig. 128, f, in most Mammals, supplics an additional muscle, the 'retractor oculi.' The 'fifth' or 'trigeminal' nerve, fig. 128, e, e^{\prime}, is commonly the largest of the cerebral nerves, and resembles the myelonal nerves, fig. 136, in having a ganglionic, fig. 230, 9, 10, and a non-ganglionic, ib. 11, portion, the latter being ' motory,' supplying muscles, the former' distributed to sensitive and secerning surfaces. 'This distinotion is better marked in Mammals than in Birds and Reptiles: like which, however, the ganglion is single, not divided, as in most Fishes (vol. i. figs. 201, 202). The size of the 'fifth' nerve relates to the perfection or sensitiveness and application of those surfaces, not to the proportion of the facial to the cranial part of the head. Thus we find the fifth or trigeminal nerve of largest relative size in the Ornithorhynchus paradoxus, which uses, like the duck, its beak as a tretile instrument in tbe detection of its food. Emerging from the ganglion, fig. 51, a^{\prime}, anterior to the pons, ib. c, it soon divides into three branches, the first and second appearing as one. The first and smallest division divides into two equal branches: the superior or ethmoidal branch enters the nose, combines, in part, with the olfactory, for the service of the pituitary membrane; but mainly emerges from the nasal cavity, supplies the skin at the upper part of the face, and, by a branch continued from between the nasal and premaxillary bones, is distributed to the nostrils and contiguous integument. The second division of the fifth is two lines broad and one line and a half thick: after emerging by the foramen rotundum, the chief part of it passes through the ant-orbital canal, and divides into two branches, distributed, the one to the nasal or upper parietes of the face, the other to the lateral or labial integuments. The palatine branch divides into a posterior smaller nerve, which passes through the posterior palatine foramen: the anterior and larger branch emerges from the anterior palatine canal, and supplies Jacobson's organ at the floor of the nose and the palatine membrane.

The third division of the fifth is broader but thinner than the second; it leaves the cranium by the foramen ovale, and is distributed as usual, mainly to the sensitive labial integument of the lower jaw, fig. 3, a, a : its non-ganglionie part goes to the manducatory muscles.

In the Echidna the trigeminal is of smaller size, and its first and second divisions are much less in proportion to the third, which supplies, from its ganglionic part, the sensitive and secreting surface of the long tongue. This size of the lingual branch of the trigeminal is still more marked in the Pangolins and Anteaters, especially in Myrmecophaga jubata. A distinct gustatory nerve, communicating with a motory 'facial' nerve by a ' chorda tympani,' is a mammalian characteristic of the trigeminal. In the IIcdgchog the nasal branch is the largest of the first division: after dismissing a few ciliary nerves it quits the orbit and enters its special canal at the forc part of the large cribriform plate, and divides on cntcring the nasal cavity into the external and septal branches, the latter bcing the largest, and richly spread upon the pituitary membranc of the septum and inferior turbinal. The

Lowor Jaw of the Porcuplue (Eystrix erlatata).
bulbs of the vibrisse in the H edgelog and other Insectivora usc a large proportion of the facial branches of the maxillary and mandibular divisions of the fifth. In Rodents the dental branches of these divisions are large, and especially the nerves sent therefrom to the aetive and persistent pulps of the sealpriform incisors; and they show, especially in the mandible, a recurrent course, as I found in the dissection of the Porcupine, fig. 129, " i. 1 The nasal and labial nerves are large in Moles and Shrews, especially the long-snouted kind (Rhynchocyon). But the chicf peculiarity of

[^31]the trigeminal in Talpide is the share which the ophthalmic division of the 'fiftli "takes in the function of the reduced eye-ball, as

Trigeminal nerve ut Xole. Lx1H" a warner of light. In fig. 130, a is the trigeminal, b the ganglionic part, c the third or mandibular division, f the second or maxillary division, d the first or ophthalmic division, of which the branch going to the eye, e, is large, while that going to the nose, g, is small, reversing the proportions in the Hedgehog. In many Lissencephala the part to which the root of the trigeminal can be traced makes a small prominence on each side the fore end of the - calamus scriptorius.' In the Elephant the superorhital and superficial nasal branches of the "first" division, but more especially the ' facial' branch of the 'second ' division, which emerges from the antorbital foramen, present a large size in relation to the proboscis. The size of that foramen is not, however, always indicative of that of the nerve. In many Rodentia a part of the masseter traverses, with the antorbital nerve, the foramen in question, which is, then, enormous, as in figs. 234, 238, 241, v (vol. ii. p. 377). The dentary branch of the maxillary exceeds that of the mandibular division of the fifth in the Elephant, to meet the demands of the persistent matrix of the tusk. But this difference in the size of the nerves supplying the upper and lower jaws is maximised in the Balcenides, in relation to the active and extensive grow th of baleen in the upper jaw, and the absence of teeth or their suhstitutes in the lower jaw. The palatine nerves supplying the baleen-pulps are as thick as the finger in Balena mysticetus. In the Porpoise (Phocena) an orbital branch joins a plexus near the fore part of the orifice of the eye-lids, sentoff from the 'seventh' or facial nerve, from which union branches pass to the muscles and membrane of the blow-hole. The maxillary branch sends off a 'subcutaneus malx,' which combines with the facial nerves to supply the inferior palpebral muscle, and spread upon the hind part of the palpebral opening. There are five or six antorbital branches which run forward between the maxillary periosteum and the superincumbent muscular and tegumentary layer, emerging to spread upon the latter where it forms the upper lip or margin of the mouth, and also sending a recurrent branch to the blow-holc. A large branch of the maxillary passes
through the foramen near the upper opening of the nasal passage, and ramifies upon the plicated memhranes of the hlow-hole. The dental nerves are large from hoth maxillary and mandihular divisions of the fifth: the gustatory hranch is, relatively, small; and sends off a filamentary 'ehorda tympani,' which may he traced to the trunk of the facial, and is conneeted, in its course, with the earotid plexus of the sympathetic.

In Ruminantia the first division of the 'fifth' suhdivides into frontal and nasal: the latter supplies the upper part of the septum and the superior turbinal, and sends a few hranches to the fore part of the nose, which meet these filaments reflected from the seeond division of the fifth. The hranches to the lacrymal and harderian glands, to the eyelids, and the larger one which passes out of the orhit to the integuments of the temple, and which chiefly supplies the horn-core, or the growing antler, may he traced back distinctly to the Gasserian ganglion. The sccond division of the fifth, escaping hy the foramen rotundum, sends antorhital hranches to supply the upper lip, the nostril, and the pituitary momhrane at the lower part of the nose. It also sends off' the lateral nasal, receiving the "vidian' nerve, and supplying the inferior turhinal: lastly, the "palatine" and upper dental nerves. The ganglionic part of the third division gives off the 'buccal nerve,' connected with an "otic granglion,' supplying the superficial muscles and skin hehind the angle of the mouth, and communicating with brancles of the 'seventh' or facial nerve; the large braneh dividing into the inferior dental and gustatory nerves, the latter recciving the "chorda tympani:- lastly, the external auricular, passing hehind the mandihular ramus, joining the middle hranch of the 'seventh,' and supplying the muscles of the ear, hut mainly distrihuted to its sensitive surface. ${ }^{\text {b }}$ The non-ganglionic part of the fifth supplies the temporal, masseter, and pterygoid muscles, also the mylohyoid and antcrior part of the occipito-hyoid or digastric: the part going to the otic ganglion is continued therefrom to the internal pterygoid and to the muscles of the soft palate. A ganglion called 'submaxillary' and situated near the deeper part of the gland so named, is eonnected hy flaments with the gustator'y nerve.

In Swan's dissection of the cerebral nerves of the jaguar he found the superior nasal sending a hranch to join the one from the lenticular ganglion to form ciliary nerves, and then pass forward to send one branch into the nose and another to the skin

[^32]at the inner angle of the eye. The naso-palatine received the vidian nerve, and the ' spheno-palatine' ganglionic enlargement was conspicuous at the junction. ${ }^{1}$ The largest portion of the maxillodental nerve supplied the great canine tooth. The gustatory nerve gave a branch to the lining membrane of the mouth and passed forward dividing into branches which communicated with the ' ninth' in their course to the surface of the tongue.

Such Quadrumana as have heen dissected with this vicw show all the main characters, connections, and accessory ganglions, of the fifth, which are so fully described in late works on the anatomy of Man. The apparent origin or place of emergence of the fifth nerve is at the middle 'crus' of the cerehellum, fig. 128, e, e. The smaller, or non-ganglionic root e^{\prime}, being sometimes divided by a fcw of the commissural or 'crural' fibres from the larger portion e. This, fig. 131, 10, contracts as it goes into the suhstance of the macromyelon, and may be traced to behind the oli-

Macromselon and origin of the fifth nerve, Mum; natural size. coviri. vary body, ib. 3 , where it is continuous with the teretial and restiform columns, and apparently with the grey matter, fig. 57, g. The motor root, fig. 131, u', passes into the macromyelon anterior to the sensory root, and seems to go, in part at least, to the prepyramidal tract; hut Stilling traces it to grey matter at the floor of the fourth ventricle. The recession of the non-ganglionic from the ganglionic roots as they sink into the macromyclonal substance is more patent in some Fishes (vol. i. p. 302).

Hunter's dissection of the human trigeminal (xcliv. p. 189, in 1754), in which he discovered, independently of Cotumnius, the nasopalatine branch, led him to enunciate the important principle that werves from distinct origins, supplying a particular organ, give it distinct faculties. The nose receives the endowment of smell from its peculiar nerve--the

[^33]olfactory: "the other nerves of this part, derived from other origins, only conveying common sensation.' 'It is upon this principle the fifth pair of nerves may be supposed to supply the eye and nose in common with other parts, and upon the same prineiple it is more than probable, that every nerve so affected as to communieate sensation, in whatever part of the nerve the impression is made, always gives the same sensation as if affeeted at the common seat of sensation of that particular nerve,' ib. p. 190. ${ }^{1}$

The nerve which is homologous with the 'ramus opercularis seu facialis,' and some other branches of the non-ganglionic part of the 'fifth,' in Fishes (vol, i. p. 303), is more distinct in its origin, at least its apparent onc, in Mammals, and is reckoned in Anthropotomy as a separate cerebral nerve, under the name of 'facial,' or as a part, ' portio dura,' of the 'seventh pair,' with which it has less real relation or connection than with the fifth. It is essentially the complementary proportion of the motory or non-ganglionic part of that great myclonal nerve of the head. In fig. 131 is shown the point, behind the olivary tract, where the facial, 16, diverges from the smaller portion of the motor livision accompanying the sensory division of the trigeminal: its angle of divergenco is wide, and its place of cmergence is behind the 'pons,' close to that of the acoustic nerve, fig. 128, g. It enters, therewith, the internal auditory foramen, leaves the acoustic to enter its own canal in the petrosal, ealled 'aqueduct of Fallopius' in Anthropotomy, passes downward behind the tympanic bone (as in Birds), and emerges by a foramen called 'stylo-mastoid.'. The facial nerve supplics the muscles of the month, nose, eyelids, ear-conchs, and the cutaneous museles of the head and beginning of the neck. In the Porpoise, the facial nerve, on quitting the petrosal, gives small branches to the eutaneous museular layer of the ear-opening and parts behind, communicating with filaments of the eervical nerves: a branch ramifies on the mylohyoid musele. From the trunk of the facial a slender nerve passes to above the mandibular joint, then bends forward, enters into, and receives a filament from, a sympathetic plexus, and quits it to join the third division of the fifth: this answers to the 'chorda tympani.' The trunk of the facial is,

[^34]then, continued forward, superficially, along the slender jugal bone, toward the eye-opening, supplies the 'angularis oculi posticus,' and the muscles of the under eyclid: in advance of this it supplies the ' angularis oculi externus,' and forms a large plexus, in connection with branches of the trigeminal. From the plexus pass filaments to the muscles of the blow-hole and its plicated sacs.

In Mammals with a well developed parotid the facial traverses that gland; it divides there into three principal branches in the Calf ${ }^{1}$ and Dog; ${ }^{2}$ whilst in the Hog, the trunk is continued forward to near the fore part of the masscter, before dividing into maxillary and mandibular portions, and the auriculo-palpebral branches come off more separately from the long trunk. In Quadrumana, as in Man, the chief branching of the trunk takes place at the hind margin of the masseter after the post-auricular nerve is sent off: from the upper of the main divisions pass the nerves to the temple and eyelids as well as to the nose and upper lip. A slight enlargement of the facial near its entry into the 'fallopian aqueduct'-its petrosal canal-is called 'geniculate ganglion,' which receives a petrosal branch of the vidian uerve, and one from the superficial petrosal wbich unites the otic ganglion with the tympanic nerve. Prior to the ganglion the facial is connected by one or two filaments with the acoustic nerve : beyond the ganglion it receives a petrosal filament of the sympathetic. The 'chorda tympani,' fig. 259, c, leaves the trunk of the facial before it quits its canal, cnters the tympanum, crossing the tympanic bone and the ear-dr* *nd the handle of the malleus, b, to emerge by an aperi e inner end of the 'glaserian fissure:' then passing dow d and forward it joins the gustatory. In the Horse and Cair I traced, in 1836, ${ }^{3}$ the superficial petrosal branch, or backward continuation of the vidian nerve, fig. 132, h, into the seventh, penetrating its sheath, but remaining distinct, and separating into many filaments, ib. b, with which filaments of the seventh nerve, ib. b, k, f, are blended, and a ganglion formed, ib. g, by the superaddition of grey matter; the chorda tympani, ib. m, is here continued partly from this ganglion, partly from the seventh or portio dura, ib. b. I did not at that time distinguish the fasciculus, b, called 'portio intermedia' of the facial from the main trunk, a. The chief point, however, as to the 'chorda tympani' not being a branch of that main trunk

[^35]of the facial, rcceives corroboration from the special researches of Morganti ${ }^{2}$ into this intricate and difficult part of ncurotomy.

In the suhjoined diagram of the result of his dissections, fig. 132, the portio intermedia, b, is separated from the vestihular division of the acoustic c, and from the main trunk of the facial α, with hoth of which it lies in close contact. The filament d connects b with c, and receives one from the latter. Two filaments e connect the 'intermediate' with the main portion of the facial, a. The intcrmediate portion is resolved into filaments, b, hefore joining the ganglion, g, the nature of the 'grey or ash-coloured tissue' of which has heen estahlished hy the microscopic demonstration of

Hagrand of the 'portlo Intermedia,' with the ganglionle origin of the "chords tympani! Lxzit:" the 'ganglion-corpuscles' (Lxvi", p. 549). With this ganglion are connected the superficial petrosal hranch of the vidian, h, from the spheno-palatine ganglion, and the smaller nerve, i, from the ' otic ganglion:' filaments k, l, from the facial, a, and the chorda tympani, m. Morganti, however, traces a filament n to that nerve directly from the facial.

In the Sheep, fig. 133, the 'portio intermedia' b, is more closely connected, by d, with the acoustic nerve, c; and sends a shorter and thicker division to the 'geniculate' ganglion g, by which it is more directly continued into

Relatlons of the chnrda tympani and vidian nerve to the 'seventh" nervo Sheep, magnifted two da moters. mxyi" the ' vidian' branch e; tho 'chorda tympani,' f, being continued mainly from the ganglion, but also, in a smaller degree from the facial, a. The branch from the ' portio intermedia,' b, I described as the ' vidian ' crossing the 'portio dura,' α.

The acoustic nerve, fig. 131, 15, rises from the floor of the fourth ventricle, chiefly in connection with grey matter constituting the 'acoustic nuclcus.' The nerve consists of an anterior and postcrior portion the course of which is more oblique in Man than in most Mammals owing to the great thickness of the cerebellar crus, ih. 7. In the Cat the posterior root is very large, is a thickened band of fibre from the fusiform cells of the posterior portion of the nucleus; the hand passes along the floor of the
fourth ventricle, joining fasciculi from the cerebellar crus and those of the anterior root. This consists of two portions, of which the chief penetrates the medulla heneath the restiform body and enters hoth parts of the acoustic nucleus: the other portion runs hackward along the upper border of the restiform hody, which it accompanies over the superior peduncle to the inferior vermiform process of the cerehellum.' ${ }^{1}$ The 'flocculus,' fig. 64, n, with which the acoustic nucleus is connected, is large in the Cat, the Aye-aye, the timid Rodents, and all the small Mammals with acute hearing; it is relatively small in the Sheep and most Ungulates.

The acoustic nerve quits its oxigin in contact with the facial, fig. $128, g$, a small artery to the lahyrinth runs hetween them: it takes a short course to the 'meatus internus,' longer in Cetacea than in other Mammals, receives a filament or two from the intcrmediate part of the facial, figs. 132, 133, d, on entering the meatus, and then divides. The part penetrating the fore half of the crihriform plate supplies the cochlea; its large size is a mammalian characteristic, and is most remarkahle in the Cetacea: the posterior division, answering to the main part of the acoustic in lower Vertebrates, is spent upon the vestibule and semicircular canals.

The eighth cerehral nerve, in anthropotomical enumeration, includes the three nerves called 'glosso-pharyngeal,' 'vagal,' fig. 128, h, and 'spinal accessory,' ih. l. The roots of the glossopharyngeal are traceahle to a nucleus of grey matter at n, fig, 57 . The vagal nuclei, ih. h, are forward (in Man upward) extensions of the grey or vesicular myelonal columns from which the spinal accessory rises: they lie on each side of the hypoglossal nuclei, ih. g, on the floor of the fourth ventricle, hut are united hy the commissure forming the roof of the central canal hcfore this opens into the ventricle: higher up the vagal roots penetrate the ' caput cornu,' like the posterior or dorsal myelonal roots. There is a partial decussation at the raphe.

Both glosso-pharyngeal and vagal nerves emerge at the angle between the olivary and restiform tracts of the macromyelon, k, k, fig. 57 , and are soon joined hy the aggregate of the roots of the 'spinal accessory:' these, commencing at ahout the fifth cervical, advance, hetween the dorsal roots of the cervical nerves and the ligamentum denticulatum, gathering successive slender accessions, all of which, originating as ahove defined, emerge at the dorsal horder of the restiform tract.

The glosso-pharyngeal is relatively smaller in Mammals than
in Birds (vol. ii. p. 124), is mainly distributed to the back part of the tonguc and to the pharynx in all Mammals; passing thence to the 'flocculus' in its way to the jugular foramen, it retains its proper fibrous sheath, and usually presents the two enlargements called 'jugular' and 'petrous 'ganglions, before emerging from the skull. From the petrous ganglion a filament entcrs the tympanum, where it joins a plexus from the sympathetic, and supplics the membrane continued into the custachian tube. The pharyngeal branches arc joined by filaments from the vagus and sympathetic to form the pharyngeal plexus. Filaments are sent to the tousils and fore part of the epiglottis; those to the tongue supply the muscles at its base and the mucous membranc covering the base and sides of the tongue, some filaments terminating in the fossulatc papillæ.

In the Porpoise the glosso-pharyngeal divides at its exit from the skull into a smaller and larger branch. The former is distributed to the sphincter of the lower or palatal part of the nasal canal, and unites there in a plexiform way with a branch of the vagus. The larger division supplies the palate and base of the tongue, and the muscles between the pyramidal larynx and the lyoid. Some filaments pass to the anterior ganglion of the sympathetic.

The glosso-pharyngeal is figured, in Liv. pl. xxxi. fig. 2, 9 , and pl. xxxii. fig. 3, 2? ($B o s)$, , howing its communications with the " vagus ' and sympathetic; also ib. ib. fig. 3, 13 (F rilis) showing connections with the gustatory branch of the trigeninal. In fig. 134, from the human sulject, the cincrgence of the glosso-pharyngreal, 4 , from the post-pyramidal, c, and post-myelonal, g, tracts is shown at 2 : the petrosal ganglion and connecting filanents with that of theuper vagal ganglion at 8 and 10 :

Origins athal connertions of the constituebte of tho "elghth" or pieunogastric nerve, Man. Lxvit". 7 is the auricular branch of the vagus, 9 the 'ramus anastomoticus' of liarobson, 13 the trunk of the glosso-plaryngeal.
'The vigus, fig. 134,3 , or 'pncumogastric' from the important
organs-the lungs and stomach -which it supplies, sends branches also to the larynx, trachea, and heart. As in other Vertebrates, it has the longest course, widest distribution, and most numerous connections, of any of the cerebral nerves; but is noted, in Mammals, by receiving the accessory nerve, ib. 5, 11, 12, from a greater extent of the myelon : the recurrent branches of the vagus are more exclusively distributed to the trachea and laryox, and send a smaller supply of nerves to the œesophagus than in Birds or Reptiles.

From the remarkable length of the neck of the Giraffe, the condition of the rccurrent nerves attracted my attention in dissecting that animal: they were readily distinguishable at the upper third of the trachca, but when sought for at their usual origin, this was less obvious. Each nerve was not due, as in the short-necked Mammals, to a single branch given off from the vagus, continued of uniform diameter round the contiguous great vessel and throughout their recurrent course, but it received several small filaments derived from the trunk of the vagus at different parts of its course along the neck. ${ }^{1}$ Branches of the superior laryngeal nerve directly perforated, as in some other quadrupeds and in the Porpoise, the thyroid cartilage, and were joined, in a greater proportion than in Man, by branches of the recurrent, before distribution to the laryngeal muscles, of which, however, the crico-thyroid owes its supply chiefly to the upper laryngeal and the rest to the recurrents. In Quadrumana, as in Man, the internal laryngcal perforates the thyrohyoid membranc at the interval between the hyoid bone and thyroid cartilage. The upper laryngeal is proportionally larger in the Orang, Chimpanzee, and Gorilla, and mainly supplies the capacious laryngeal sac in those apes.

In the Porpoise the left recurrent winds round the end of the arch of the aorta, near the remains of the ductus arteriosus; the right recurrent winds round the subclavian immediately before the origin of the posterior thoracic: both recurrents send filaments to the resophageal plexus from the sympathetic on their forward course to the larynx. After the origin of the recurrents, the vagal trunk seads off the cardiac branch, which, uniting with sympathetic filaments, forms the plexus supplying the heart. Next are sent off the nerves to the bronchial plexuses; finally the vagal trunks pass with the œesophagus through the diaphragm, the left on the ventral, the right on the dorsal side, and combine
with branehes from the sympathetic to supply the complex stomach and the numerous spleens.

Most Mammals exhihit the grey enlargement of the vagus after its exit from the jugular foramen, but less distinctly divided into an upper, fig. 134, 6, and lower, ib. 18, ganglion, than in Man. The prineipal branches-e. g. 7, auricular; 10, interganglionic; 15, pharyngeal, deriving one filament, 16 , from the vagus, the other, 17, from the 'spinal accessory; ' 19,20 , superior laryngeal, the reeurrent, cardiac, pulmonary, cosoplageal, and gastric-are the same as in Man, likewise their connections with contiguous nerves, and especially, as hy the 'filaments,' 21,22 , with the upper sympathctic ganglion.

The spinal accessory, hesides its portion, ih. 11, hlending with the trunk of the vagus, distrihutes hranches to the trapezius, masto-humeralis, and sterno-maxillaris, in Ungulates; to the cleido-cucullaris and cleido-mastoideus, in Carnivores; and to the trapezius and sternomastoid in Quadrumanes and Man. The condition of existence of a spinal acccssory is not tbe extension of muscles from the skull to the thorax for the acts of respiration, but the general homology of the scapular arcb as the hæmal one of the oeciput: accordingly the nerve is found in all Vertebrates ${ }^{1}$; and only when the development of the appendage of that arch calls for its displacement, and attracts for the manifold motive and scnsitive requirements of the limb, successive nerve-hundles from the part of the myelon co-elongating with the neck, are the root-filaments of the 'accessory' drawn down beyond their normal, intercranial, place of origin, as at 5 , 5 , fig. 134 .

The macromyelonal, by some called ' respiratory,' centres, to which the origins of the several divisions of the 'eighth pair' have heen traced, are connected by means of longitudinal fasciculi and cell-columns, continuous with those in the eervico-dorsal regions of the myclon, with the trigcininal nerves, and with hoth anterior (lower and middle roots of the "aceessory') and posterior" cornua of the myelonal grey matter, fig. $40, g, h:$ thus ministering to a serics of motions, hoth direct and reflex, of high importance.

The roots of the nintlu or hypoglossal nerve may be traced to groups of nerve-cells in front of the central canal, ih. b, just above the upper eervical nerves, apparently a continuation of the cell-columas from which the ventral or motor roots of the spinal nerves arise: some of the roots dccussate at the raphe, hut most

[^36]of them sink deep into the nucleus. They are connected with each other, with the roots of the vagus, and with those of the spinal accessory hy means of large multipolar eells. In the Giraffe the lower roots emerge, like a small 'accessory,' from the cervical part of the myelon.

The main roots of each hypoglossal quit the macromyelon, hetween the prepyramid and olive, figs. $81,82,9$, usually in two hundles, which escape, in many Marsupials, hy two precondyloid foramina: but in most Mammals the hundles, perforating separately the dura-mater, pass out hy a single precondyloid foramen, and then unite. The nerve is closely connected with the vagus, and contiguous cervical ganglion of the sympathetic, passes hetween the carotid and jugular, then forward between the hasihyal and hyoglossus, and is continued into the substance of the geniohyoglossus heneath the tongue to its tip:

In the Porpoise a small branch of the ' ninth' is distrihuted to the sphincter muscle of the posterior nostril, before the supply to the muscles of the hyoid and tongue is sent off from the main part of the nerve-trunk, which is relatively small in Delphinide. In the Giraffe the motor nerve of the tongue is larger in proportion to the hody than in the Ox: it is largest in the Pangolins and Anteaters, in relation to the great length of the tongue, and frequency and extent of its muscular motions. As the size of the ' ninth' governs that of its special outlet from the skull, the precondyloid foramen indicates that the great extinct trec-uprooting Sloths (Mylodon, Megatherium) applied a long flexihle prehensile tongue to the plucking off the branches of their prostrated aliment, in a greater degree, even, than is now witnessed in the Giraffe. ${ }^{1}$

Among the connections of the ninth are some with hranches of the superior laryngeal to the sterno-hyoid and sterno-thyroid, associating the movements of the tongue with those of the larynx. ${ }^{2}$ In Quadrumana the cervical branch assumes more the characters of the 'descendens uoni' of Anthropotomy, and supplies the additional differentiated muscles of the hyoid. The ninth, like the 'accessory,' is esscatially a motor nerve, and I have not seen a distinct ganglionic or dorsal root in any Mammal.
The last, lowest, or hindmost, of the motory nerves of the head is that which supplies the muscles of the occipital or fourth hæmal, or scapular, arch; and the origins of which, fig. 134, 5, 5, in the course of growth of the neck and cervical part of the

[^37]myclon are drawn down beyond the cranium. In the Vertehrates, retaining the typical conncetions of the arch, the homologue of the 'spinal aeccssory' retains its cranial place of origin, as well as the connections with the ganglionic or sensory part of the nerve. The next cranio-motory nerve, in advance, is that whieh supplics the muscles of the parietal or third hæmal, or hyoidean, arch. Both ninth and spinal accessory have their ganglionic or sensory complement in the 'vagus:' and, with reference to the place of origin of that nerve, it may be remembercd that both heart and hreathing organs belong to the head in Fishes.

The sceond, or frontal, or mandibular, hemal arch has its ganglionic nerves from the third division of the fifth, its non-ganglionic hy that part of the trigeminal supplemented hy certain hranches of the 'facial.' The rest of the facial represents the motory portion, as the first and second divisions of the ganglionic part of the fifth are the sensory portions of the nerve of the nasal or maxillary hæmal areh and its clothing. The ' sixth,' ' fourth,' and ' third' are parts of the eranial motory nerve-system applied to a special organ of sense.

The myelonal nerves indicate the segments of the axis enelosed in their proteeting vertebral rings: both segments and nervepairs being called into being aceording to the requirements of the trunk and limhs of the species. The head-segments and trunk-segments direetly succeed each othcr in Protopteri and Teleostomi (vol. i. pp. 7, 14) ; but in Mammals, as in other airbreathing Vertebrates, neek-segments and ncrves are intcrposed; and, as the seapular appendage hecomes developed into a jointed limh, requiring a more backward position through its size, or onc of more freedom for the excreise of various movements, it attracts, as it werc, the requisite nerve-foree from the successive points or segments of the myelon, and chiefly from a post-cranial or cervical portion.

The development of nerves, as of vesscls, is not primary and indcpendent, hut secondary and suhordinate to the parts needing them. If the appendage of a hemal arch retain its archetypal simplieity, as in lrotopterus (vol. i. p. 163, fig. 101), one pair of nerves server it: if it grows to a maximum of size and number of digital divisions, it may attract its nerve-supply from fifty suceessive segments of the myclon (Lyv. pl. xi. Raia batis). In Mammals eight or ninc segments suceeeding the encephalon minister nervous power to the scapular arch and its appendage, the latter chiefly drawing upon the last three, four, or five pairs, which are proportionally large.

Because the neural arch and corresponding muscular segment have conditioned the beginning of the corresponding pair of spinal nerves, it does not follow that the specially enlarged and endowed appendage of such segment is archetypically an aggregate of as many appendages as the nerve-pairs from whicb it bas attracted branches in the course of its growth and development. But, on this assumption have rested the conclusions that the scapula was an aggregate of all the cervical pleurapophyses, and that the humerus was the coalescence of the five diverging appendages retaining their primitive and typical freedom in the five digits: and, by parity of rcasoning, the scapula of the Skate should be an aggregate of more than fifty pleurapophyses, \&c.

I assume that anatomists are agreed that the bone, vol. i. fig. 101, $B, 51$, is the homologue of 51 , in fig. 101, A : tbat the scapula of the Amphiuma answcrs to the bone so called in other Reptiles and in Birds: and that the occipitally attached scapula of the Lepidosiren is the homologue of the similarly named and connected bone in other Fishes. But the long cylindrical rib-like 'scapula' of the Lepidosiren is one element, and the diverging segmented appendage of the scapular arch manifests tbe like essential unity. Now, the bifurcation of the distal segment of the homologous diverging appendage in Amphiuma does not make the unsplit part (fig. 101, B. 53) an aggregate of two appendages, nor its scapula, ib. 51, an aggregate of two ribs. And the same may be predicated of five or any greater number of radiated divisions of the terminal part of the scapular appendage. But the pectoral fin of the Skate is the pectoral filament of the Mudfish, the fore-leg of the Quadruped, the wing of the Bird, the arm and hand of Man: i.e. they are homologous parts-though with a supply of muscles, nerves, and vessels, according to their respoctive sizes, shapes, and uses. Say that the appendage in Lepidosiren, fig. 101, A , 53-57, is a dermal development, and that tbe humerus, radius, \&c. in its higher homologues, are skin-bones, and not parts of the endo-skeleton: it does not follow that the scapular arch, ib. 51, 52, is, also, part of the dermo-skelcton. What, tben, is it? This question I propounded, in $1846,{ }^{1}$ in reference to all the parts of the vertebrate skeleton of which anatomists were at one in respect to their special homology: it applies to the basioccipital (vol. i. fig. 77, 1) and other elements of the occiput of the Fish, as well as to the scapular arch therewith connected. What is the basioccipital? Anatomists are agreed that the 'basilar process of the occipital bone' (Λ nthropotomy) is its homologue: in
other words, that the same bone or osseous element may be pointed out from the Cod-fish up to Man. But at tbis point the above question may be met by tbe averment, that it need not be asked: that there is no ground for bomological generalisation bigher than the special one. Such anatomists rest on tbe step beyond which Cuvier refused to pass. With him parts were bomologous because they served similar purposes, or were under like teleological conditions of existence. Neitber the final nor the mechanical causes of separate basi-, ex-, and super-occipitals, of basiand ali-sphenoids, parietals, \&c. in the skull of the foctal Bird or Kangaroo, have bcen explained ${ }^{1}$; and as I am unable to conceive of them, and am in no wise helped by the averment of inberitance, I retain my conviction that the basilar process of the human occipital bone is the centrum of the hindmost cranial vertebra; having, moreover, traced the scapular arcb and appendage to its extreme of simplicity in Protopterus and Lepidosiren, I accept the ligbt which such condition throws upon its general bomology, as the hæmal arch of the same (occipital) cranial vertebra.

If tbere be cartilaginous fishes that combine a foctal gristly condition of skull with a maximiscd development of scapular appendage, I conclude that the backward displacement of the sustaining areh, from its type-position, is a consequence of such development, and prefer to allow my reasoning as to tbe nature of a limb to be guided by the state and conditions of such appendage in the vertebrate series, rather than by the state of tbe cranium in one part thereof. It is not probable that the pectoral fin of Shark or Skate shows the condition under which the appendage of tbe scapular arch first appeared in fishes. ${ }^{2}$

On laying open the neural canal, and cxposing the myelon by slitting up and reflccting the 'dura-mater,' as in fig. 135, tbe roots of the nerves are scen, which go off in Iateral pairs, aud escape at the intervals of the vertebre: they are called the 'spinal' or ' myelonal' uerves. Onc bundle of the radical filaments proceed from the antero-latcral, the other bundle from the postero-lateral

[^38]fissure, and between the bundles passes a delicate fold of the arachnoid, which is attached by an angular process, d, to the dura-mater at the interval, usually, of each nerve (p.78).

Portion of mselon, with roots of nerves of one slde, Humad, Datural slze, The antcrior or ventral and the posterior or dorsal bundles converge, separately perforate the dura-mater, and unite, at the intervertebral foramen, into a single 'nervc."

In the Elephant the posterior roots come off abruptly in a few, large, and distinct bundles: the anterior roots emarge from a longer extent of their furrow, are numerons and small, and form several bundles before passing through the dura-mater. The same characters of the anterior and postcrior origins are seen in Cetacea, in which the two roots preserve their distinct course before uniting, after perforating the dura-mater, longer than in other Mammals. In the human subject, especially at the cervical part of the myelon, the anterior root, fig. $136, \mathrm{~A}$, is the smallest; its finer filaments form more delicate fasciculi, aggregating into two, before uniting, as a flat band, with the posterior root. Of this the filaments, P, are larger, and blend with the cell-substance of a ganglion, G, before uniting with the anterior root to form the nerve-trunk, c.

Roots of myelonal nerve, magn.

The capital experiment which has immortalised the name of Charles Bell was suggested by the above anatomical fact, and I quote his original account of it from the extremely rare little tract, which he printed for private distribution in $1811 .{ }^{\text {' }}$

Believing that he could 'trace down the crura of the cerebrum into the anterior fasciculus of the spinal marrow, and the crura of the ecrebellum into the posterior fasciculus, I thought,' he writes, p. 21, "that here I might have an opportunity of touching the cerebellum, as it were, through the posterior portion of the spinal marrow, and the cerebrum by the anterior portion. To this cnd I made experiments which, though they were not conclusive, cneouraged me in the view I had taken.'
'I found that injury done to the anterior portion of the spinal marrow convulsed the animal more certainly than injury done to the posterior portion, but found it difficult to make the experimont without injuring both portions.'
' Next considering that the spinal nerves have a double root, and being of opinion that the properties of the nerves are derived from their connections with the parts of the brain, I thought that I had an opportunity of putting my opinion to the test of experiment, and of proving at the same time that nerves of different endowments were in the same cord, and held together by the same sheath.
' On laying bare the roots of the spinal nerves, I found that I could eut across the posterior fasciculus of nerves, which took its origin from the posterior portion of the spinal marrow, without convulsing the muscles of the back; but that on touching the antcrior fasciculus with the point of the knife, the museles of the back were immediately convulsed' (ib. p. 22).

The ventral as woll as the dorsal roots of the spinal nerves are traccable to the contiguous parts of the grey tract, the latter more immediately, as at k, fig. 40. They are scverally connected with, but do not constitute, the white columns from which they emerge. Comparative anatomy testifies plainly against the antcrior and posterior columns being aggregates and brainward continuations of the motory and sensory roots. Thus, in the instance of such unusual elongating growth of the myelon as takes place in the neck of the foetus of the Giraffe, as many of the roots of a nerve, the origin of which may be so extended by interstitial myelonal increase, ineline tailward as headward (p. 75). And accurate experiment grives the same response, sensation continuing or leing heightened in parts supplied by nerves beyond the place of the myclon of which the dorsal or postcrior columns have been divided.

The most constant anatomical concurrence with sensory function is the ganglion, fig. 136, G, fig. 131, 9.

In all Mammals the trunk, fig. 136, c, formed by the union of the two roots soon divides into an anterior and a posterior pri-
mary set of nerves. The posterior or dorsal are usually the smaller division, and, hending backward, soon subdivide into cxternal and internal branches. The pairs of nerves are classified, according to the regions of the vertebral column where they emerge, into ' cervical,' 'dorsal,' ' lumbar,' 'sacral,' ' caudal,' and offer numerical differences corresponding with those of the vertebres, in the Mammalianseries. Each is anterior to the correspond.ing hony segment, and, for the most part, escapes between that and the segment in advance; hut the notch of the 'conjugational foramen is always deepest at the fore part of the neurapophysis answering to the nerve, and is directly perforated therehy in many instances; as, e.g. that of the atlas hy the first cervical in the Tapir, ${ }^{1}$ and also that of the axis hy the second cervical in the Hyrax. ${ }^{2}$ Most of the cervical and the dorsal vertebra are perforated by their corrcsponding nerves in the Hog and Pcccari; ${ }^{3}$ and some dorsals and lumhars are so perforated in most Ruminants.4 Therefore, I count the "suboccipital ' nerve as the first cervical one, and reckon the 'eighth cervical ' of Anthropotomy as the ' first dorsal.'

Some details of the distrihution of the myelonal nerves in Monotremata are given in Lxxxi. In the Cetacea they have been descrihed hy Stannius ${ }^{5}$ and Swan ${ }^{6}$ in Phocrena communis.

In the Porpoise, the first cervical has a distinct posterior root, smaller than the anterior one, but with a small ganglion; beyond which the two unite, as usual. The posterior or dorsal hranches supply the occipital and contiguous integument, and the tegumentary and other muscles passing to the occiput; supplying, also, small hranches to the ' masto-humeralis.' The anterior or ventral hranch passes along the scalenus, joins corresponding hranches from the sccond and third cervicals, and, in combination with the 'descendens noni,' supplies the sternohyoid and sterno-thyroid muscles. The second and succeeding cervical nerves are larger. A posterior hranch of the second perforates the masto-humeralis, and supplies the integument of the neck. Other posterior hranches of this and following cervicals supply the interspinales, spinalis cervicis, splenius capitis, and the more superficial muscles and integument at the fore and dorsal parts of the trunk: ventral branches go to the scalenus anticus, levator anguli scapulx, and contiguous muscles. The fourth cervical contributes the largest part of the ' phrenic nerve,' but it receives a filament from the third cervical, sometimes from the second; always from the fifth. The left phrenic passes a

Xliv, p. 501.	Ib. p. 522.	Ib. pp. 543, 563.
- Ib. p. 579.	LXXVI".	Liv, 2d ed. p. 156.

short way along the scalenus antieus; as it sinks deeper, it gives a filament to the peetoralis major, passes over the aortic areh and trunk of the vagus in entering the thorax, passes along the anterior mediastinum, and then along the pericardium to the left side of the diaphragm. The right phrenic crosses the subclavian, or trunk of the brachial artery, in entering the thorax, and supplies the right half of the diaphragm. A small branch of the anterior division of the fifth eervieal, a large hranch of that of tho sixth, a still larger one of the seventh, and a smaller contribution from the first and second dorsal nerves comhine to form the axillary plexus, prior to which are sent off nerves to the scalcnus anticus, subscapularis, teres major, and latissimus dorsi. From the plexus is continued a branch heneath the triecps, which quickly radiates small filaments, one of the largest of which is continued along hetween the radius and ulna; a second hranch passes along the inner side of the triceps to the olecranon; a third branch goes hetween the hind horder of the scapula and the trieeps outward and forward, it supplies the infraspinatus and deltoid, and ends in the periosteum and skin at the fore part of the humerus. Many small twigs are sent to the subscapularis muscle. The hindmost and strongest branch goes ohliquely outward and hackward, giving filaments to the latissimus dorsi, and hends over the ehest to the stcrnum, along the side of which it distributes itself to the serratus magnus and eontiguous muscles attaehed to the rihs; it answers to the external thoraeie nerve.' There are thirteen pairs of dorsal nerves, each dividing into a dorsal and intereostal part. The dorsal division hends over the rib-neck in the anterior vertehre, and over the lengthening diapophysis in the posterior ones, and subdivides into a superficial and deep part; the latter supplics the spinales, interspinales, and the fascia of the muscles of the haek; the superfieial nerves contribute to the longissimus dorsi, and levatores costarum, in their way to the skin of the hack and its muscles. The ventral divisions of these nerves are less distinctly subdivided into external and internal fasciculi than in quadrupeds. The first intercostal sends a communicating branch to the axillary plexus, before its normal distribution, as in the other intercostals, to the muscles so called, which are perforated toward the sternum hy the branches going to the ventral integument. The nerves answering to lumhar and saeral of Quadrupeds divide into dorsal and ventral fasciculi. The former go to the intertransversales, spinales, interspinales, sacrolumbalis, and longissimus dorsi; and to the superincumhent fascia and tegument. 'There arc intefommunieating filaments between the dorsal divi-
sions of the second, third, and fourth lumbar nerves. Some of the ventral brancbes picrce the intertransversalis bcfore penetrating the fascia of tbe psoas, on their way to tbe obliquc and straight abdominal muscles; but the main proportion is taken by the psoas. Anterior branches from the seventh, eighth, and ninth lumbar nerves diverge from the ordinary course or distribution, and partially unite with a plexus extending to and supplying the muscles which connect the ischial or pelvic bones with the abdominal and caudal muscles and those of the attached parts of the sexual organs. The above ncrves evidently represent the lumbar plexus developed in Quadrupeds for the hind-limbs, but tbeir chief distribution is as 'pudendal' nerves. Tbe anterior or ventral divisions of the caudal nerves mainly combine to form a nerve-trunk on that aspect of the tail, which is resolved into many small parallel transverse branches, from which are supplied the muscles and teguments of tbat part of the tail. Tbe dorsal divisions are similarly distributed, but only a very small proportion goes to the skin. ${ }^{1}$

In the Ungulate series the distribution of the spinal nerves has been followed by the hippotomists in the Horse and Cow; by Swan in the Ass; ${ }^{2}$ and I have made observations on that part of the anatomy of the Rhinoceros and Giraffe.

Several brancbes from the superior cervical ganglion of the sympathetic join, in a plexiform manner, the antcrior division of the first cervical; this also receives a filament from the descendens noni, which previously communicates eitber with the trunk or a filament from the par vagum; afterwards it joins the pharyngeal plexus, and is distributed to the sterno-hyoid and sterno-thyroid muscles. The nerve given to the serratus magnus proceeds from the sixth cervical with the phrenic; but tbe phrenic afterwards communicates with a branch of the seventh, given to the pectoralis major. The axillary plexus in the Ass, also in the Pig, is formed from the seventh cervical and the first and second dorsal nerves. Tbe superior scapular nerve proceeds chiefly from the seventh cervical; but in some degree from the first dorsal, and is scnt to the supra-and infra-spinati. muscles of the scapula. Branches procceding from all the nerves forming the plexus are given to

[^39]the great peetoral muscle; a nerve proceeding principally from the last cervical and first dorsal supplies the suhseapularis, teres major, and latissimus dorsi, then takes a eireumflex course to the deltoid, and external head of the trieeps, and finally passes down the limh to the skin. The external branches of the third and fourth dorsal nerves, also, supply the skin; the internal cutaneous nerve is sent off from the ulnar. The musculo-eutaneous is formed ehiefly by the last cervieal, aud partly hy the first dorsal; it contributcs to the formation of the median nerve, then pierces the coraco-braclialis to terminate on the biceps. The median is mainly formed by the first two dorsal nerves; it sends a branch to the hieeps, hrachialis internus, and supplies the skin on the posterior and inner part of the fore-leg. After supplying the flexors on the fore-leg, it sends a nerve close to the hone which gives filaments to the periosteum, and passes to a musele answering to the flexor longus pollieis: it then passes underneath the annular ligament, and sends a large hranch ohliquely over the flexor tendons to communicate with the ulnar nerve, and deseends, giving off branches to the skin at the inner side of the foot, which communicate with the inner portion of the dcep palmar hranch of the ulnar: it then passes to vascular lamellæ attached to the hoof, fig. 17, 17, to terminate on these, on the villous part of the sole and the ligaments of the joints. The ulnar nerve arises from the first and second dorsals; at the middle of the arm it sends off the internal eutaneous nerve, and at the elbow gives some branches to the short extensor and the elbow joint; it passes down, covered hy some fibres of the flcxor museles, and at the wrist sends off the dorsal hranch to the skin at the posterior and outer part of the forc-lcg; it passes underneath and to the inner side of the flexor carpi ulnaris, and then undcrneath the annular ligament, and gives off the deep palmar nerve: it receives the hranch from the median, and descends, siving branches to the skin and ligaments at the outer side of the foot, after these have communicated with the outer hranch of the deep palmar; it passes into the foot, covered hy the vascular lamellie connected with the hoof, and terminates on these, the villous part of the sole and the ligaments of the joint. The deep palmar gives some filaments to the ligaments, and divides into two principal hrancles, one to pass on the inner side to give filanents to the joints, the periosteum, and ligaments, and communieate with the branches of the median sent to the skin and ligaments at the inner side of the foot, the other to give filaments to the periosteum and ligaments, and communicate with branches
of the ulnar, having a similar destination on the outer side of the foot. The musculo-spiral nerve axises from the seventh cervical and first and second dorsal nerves: after supplying the heads of the triceps, it passes round the humerus, and gives hranches to the two large extensors at the back of the fore-leg, and sends a hranch, somewhat expanded, down to the carpal joints, hut not swelling into a ganglion, as in Man; it then pierces the rudiment of the short supinator, to supply a musele answering to the long supinator on the outer side of the hack of the fore-arm.

In the Pig, the median in the fore-arm is much larger than the ulnar; it receives a small communicating hranch from the ulnar near the wrist, and then supplies the inner small toe (ii), hoth sides of the inner large toe (iii), and the inner side of the next (iv). The ulnar gives off the dorsal braneh, and then sends the deep palmar to the interosseous muscles; it eontrihutes a small branch to the median, and then supplies the outer side of the large toe (iv), and the adjoining small toe (v). The greatest portion of the dorsum of the foot is furnished hy the radial hranch of the spiral nerve, and the rest by the dorsal hranch of the ulnar.

In the Ass there are eighteen pairs of dorsal nerves, the anterior or ventral divisions of which pass hetween the rihs, are distributed to the intercostal and abdominal muscles, the hindmost perforating the psoas muscle. There are five lumhar and six sacral nerves, besides four or five eaudal. The third lumbar sends off a hrauch, which gives a branch to the great psoas musele, and one to join the fourth for the anterior crural nerve; it then hecomes the external cutaneous nerve to pass on the outer side of the thigh; it sends off another large hranch corresponding with the external spermatic, which communicates with a large branch of the third lumhar ganglion of the sympathetic, gives a branch to the small psoas muscle, and then passes underneath the lower horder of the abdominal muscles, to which it sends a hranch, and hecomes distrihuted on the mamma. The anterior crural nerve arises from the third, fourth, and fifth lumbar nerves : the obturator arises from the fourth and fifth lumbar, and first sacral nerves: the sciatic arises from the tbree first sacrals: the principal part of the third and fourth sacrals, joined hy a small hraneh from the portion of the sciatic arising from the second, give off the internal pudendal to pass at the side of the arch of the puhes, distrihute filaments to the neck of the hladder, and terminate on the clitoris, vagina, and cxternal parts, and the connecting muscle and memhrane between these and the mamma. A hranch of the external sper-
matic may be traced downward, and a hranch of the internal pudendal upward, towards each other. Another part of the junction of the fourth and fifth, with sometimes a hranch from the sixth sacral, joins the hypogastric plexus, and sends branches along the inferior uterine artery to the neck of the uterus and vagina, and is then distrihuted to the hladder, urethra, vagina, and rectum. The remaiuing part of the fifth and sixth sacrals forms the beginning of the anterior caudal nerve, to which the anterior trunks of the remaining spinal nerves below it become united; the posterior trunks of these nerves form the posterior caudal nerve; hoth of these are continned to the extremity of the tail, communicating by branches, and supplying one-half of cach anterior or posterior surface. ${ }^{1}$ The gluteal nerves are sent from the two first sacrals at their junction with the sciatic, and terminate on the glutei and tensor fascia. A nerve given off from the sciatic supplies the gracilis and gemelli, and is continued down to the quadratus femoris. The anterior crural nerve supplics the sartorius, rectus femoris, vasti, and cruræus. The saphenus nerve descends with the vein, giving numerous filaments to the ligamonts and skin, and communicating at the side of the foot with the inner hranch of the deep plantar nerve, and through this with a branch of the inner plantar, to be distributed on the skin at the side of the foot. The obturator nerve supplics the adductors and the large muscle corresponding with the gracilis. The sciatic nerve gives branches to the semimemhranosus, semitendinosus, and biceps; it then divides into the posterior tibial and the peroneal, both of which give branches to the hiceps. The posterior tibial sends a branch down at the hack of the gastrocnemius, and on the outcr side of the tendo Λ chillis to the fascia, on that side of the hock: it then passes hetween the heads of the gastrocnemius muscle, to which and the large muscle representing the posterior tihial and the flexors of the tocs it gives hranches; it descends on the inner wille of the tendo Achillis, giving branches to the fascia, \&ce. on the inner side of the hock, near which it divides into the inner and outcr plantar nerves; the inner sends off a large hranch obliquely over the flexor tendon to join the external plantar nerve; it passes down on the inner side of the tendon, giving branches to the sheath, fascia, and integuments; near the foot it gives off a large hranch, which communicates with the inner branch of the deep plantar nerve, to be distributed on the skin at the inner side of the foot; it gives branches to the skin of the heel, and then passes domn to the hoof, covercd by the vascular lamelle, and distrihuting ${ }^{1}$ Liv, P. 160.
branches to these and the villous stratum of the sole. The external plantar passes hetween the flexor tendons, and then on the outer side of these, and gives off the deep plantar nerve; it is continued down on the outer side of the tendon, gives filaments to the sheath and fascia, receives the hraneh from the inner plantar, and gives off a hranch which eommunicates with the outer branch of the anterior tihial nerve, and is distrihuted on the side of the foot; its ultimate distribution resemhles that of the posterior tihial. The deep plantar gives filaments to the ligaments, then dividcs into two branches; the inner passes down beneath the tendon, then near the edge of the bone to the foot to communicate with a branch of the saphenus nerve, and of the inner plantar, to be distributed on the skin at the inner side of the foot; the outer branch passes near the edge of the bone, gives a branch to the ligaments, and then joins the outer branch of the anterior tibial nerve. The peroneal nerve passes to the outer side of the leg, and gives small branches to the fascia and skin; it sends the long hraneh downward which gives filaments to the fascia, and terminates in the skin covering the dorsum of the cannon-hone. It gives filaments to the ligaments and fascia on the outer side of the knee-joint, and branches to the peroneal muscle, the extensors of the tocs, and the anterior tibial muscle. It gives off the anterior tihial nerve, which passes down the leg between the peroneal and anterior tihial muscles, then hetween this and the hone along with the anterior tibial artery underneath the annular ligament, where it divides into two hranches; the outer one gives filaments to the joint, and is contained with the anterior tihial artery on the outcr side of the cannon-bone, giving filaments to the periosteum, and on the outer side of the foot receiving the outer hrauch of the deep plantar nerve; it then hecomes connected with a hranch of the outer plantar nerve, and is distrihuted on the ligaments and skin on the outer side of the foot; the inner branch of the anterior tibial passes down on the eannon-hone, gives filaments to the periosteum and fascia, and terminates on the skin at the inner side of the foot.

In the Pig, the posterior tibial nerve, having given hranches to the muscles of the leg, and sent the hranch down at the hack of the gastroenemius muscle to the outer side of the leg, gives filaments to the inner side of the heel, and near the part divides into the inner and outer plantar nerves; the inner is continned onwards, and supplies the small inncr toe (ii), the first large toe (iiii), and the inner side of the next (iv). The outer plantar nerve passes underneath the flexor tendon, and is eontinued on-
ward to divide for the outer side of the second large toe, and the outer small toe; it sends the deep plantar into the sole to supply the short museles situated there. The anterior tihial nerve gives hrancbes to tbe ligaments at the hack of the foot, and sends a branch to supply the toe, $i i$, and the inner side of $i i i$; the rest of it gives branches to the small museles on the back of the foot, and then passes forward to join the hranch of the peroneal given to the outer side of $i i z$, and the inner side of $i v^{1}$; the continuation of the peroneal after emerging just above the instep supplies the outer side of $i i i$ toe, hoth sides of $i v$ and v, the branch sent to the outer side of $i i i$ and the inner side of $i v$ reeeiving a hranch of the anterior tibial.

In the order Carnivora, the distribution of the nerves has heen described and figured hy Wwan, in the Fox (liv, p. 150, pl. 33), and in the Jaguar (ib. p. 16I), from which the following account is chicfly abridged. In the Fox the anterior trunk of the first cervical passes forward, and sends up two filaments to the junction of the trunk of the par vagum with the glosso-pharyngeal, the ninth, the accessory, and the superior ccrvical ganglion of the sympathctic; it gives branches to the recti antiei, and then joins the descendens noni, to he distributed to tbe sterno-hyoid and sterno-thyroid muscles. The postcrior trunk supplies the recti capitis postici and ohliqui sup. et inf. The anterior trunks of the second and third cervical nerves give branches to the recti capitis antici, then unite to communicate with the accessory, and divide into branches, which are distrihuted on the cutaneous muscle and skin at the side of the face and neck and external ear. The fourth cervical gives a hranch to join the accessory and others to the trapezins, and is then distributed to the cutancous muscle and skin at the side of the neck. The fifth cervical nerve gives a braneh to the accessory, and to the trapezius, and then pierces this to terminate on the skin at the lowest part of the neck. The postcrior or dorsal division of the sccond cervical nerve gives branches to the splenius, complexus, and othcr muscles, close to the postcrior part of the spinc, and then sends a hranch through the complexus towards the oeciput, which gives filaments to the muscles inserted into the hack of the ear, but is chiefly distributed on the skin of this part. The posterior division of the third cervical is similarly distrihuted. That of the fourth cervical gives hranches to the complexus and other muscles close to tho spine, and then terminates on the skin. The posterior divisions of the sixth and seventh also give hranches

[^40]to the museles and skin; the first dorsal supplies the muscles only. The phrenic nerve is formed by a branch from the fifth and sixth cervicals: it passes over the pericardium to the diaphragm, and on the right side is placed close to the post-caval vein. In the Jaguar, the phrenic also arises from the fifth and sixth cervicals, and receives a branch from the first thoracic ganglion. The axillary plexus is formed by the last two cervical and first two dorsal nerves. In the Fox the axillary plexus is formed by the sixth and seventh cervical and first and second dorsal nerves, but the greatest part of the sixth, after receiving a branch from the seventh, gives a large branch to the integuments on the anterior part of the shoulder-joint, and then passes to form the superior scapular nerve, and terminates on the supra- and infra-spinate museles. Branches from the sixth and seventh cervical and first and second dorsals are given to the pectoral muscles; a branch from the seventh cervical is given to the serratus magnus, and branches from the sixth and seventh go to the subscapularis. The circumflex nerve arises from the union of the sixth and seventh cervical nerves; it gives branches to the subscapularis and tercs major muscles, and then divides and sends a hranch to the infra-spinatus muscle and the deltoid, and hranches to the integuments on the outer side of the arm.

The internal cutaneous nerve is sent off by the ulnar; it passes down the arm, and, near the inner condyle of the humerus, divides into branches to be distributed to the skin at the ulnar side of the fore-arm. The smaller intcrnal cutaneous nerve is the external branch of the third dorsal after its cgress from between the ribs; it pierces the broadest muscle of the back, and divides into hranches, to he distributed on the skin at the inner and posterior part of the arm. The musculo-cutaneous nerve arises from the seventh cervical with the outer portion of the median, gives a hranch to the pectoralis and coraco-hrachialis, and then passes off to terminate on the biceps. The seventh cervical, having given off the homologue of the musulo-cutancous, the remaining part gives off a branch which sends one back to the brachialis internus, hehind the tendon of the biceps, and then gives branches to the skin of the fore-arm, in the place of the cutaneous portion of the musculo-cutaneous nerve in Man; it then joins the hranch from the first and second dorsal nerves, ahout an inch above the elhow, to form the median nerve, which is small as compared with that in Man. The nerve thus formed passes under the origin of the pronator teres, and gives branches to this, the flexor carpi radialis, and the superficial and deep flexors of the digits; it then passes,
hy the side of the radial flexor and between the digital flexors, through the annular ligament; it is continued in the fore-paw between the tendons of these muscles, at the division of which it sends off branches; it gives filaments to the skin of the palm, and a branch to the rudimental pollex, ${ }^{1}$ another to the inner side of the index (II), and a branch to be joincd by one from the deep palmar for the outer side of the index and the inner side of the medius (111); another branch also to be joined by a branch from the dcep palmar for the outer side of the medius and the inner side of the annularis (IV). The ulnar nerve is formed by the first and second dorsals; it descends behind the inner condyle of the humerus, covered by thick fascia and hy part of the flexor sublimis; it then passes down the fore-arm between the flexors of the fingers and the ulnar ${ }^{2}$ exor of the wrist. In the fore-arm it is larger than the continuation of the median nerve: it sends a branch to the ulnar side of the superficial and deep flexors of the digits and the ulnar flexor of the wrist : near the hand it sends a branch to the back of this part to communicate with the radial branch of the musculo-spiral nerve, and then proceeds to the outer side of the fifth digit (\mathbf{v}); it passes deeply, confined by a ligament at its entrance, into the palm, and scads a branch for the inner side of the fifth digit and the outer side of the fourth ; the rest of the nerve, forming the deep palmar, divides into branches, which terminate on the interosiseous and other small muscles situated in the palm, and give branches to join those of the median sent to the outer side of the index and the inner side of the medius digit; also to the outer side of this and the inner side of the annularis. The distribution of the median nerve is ncarly the same in the Fclines, hut the trunk traverses the entocondyloid canal. The musculo-spiral nerve has a slight communication witb the sixth cervical, hut is principally formed from the seventh and first and second dorsals; it gives branehes to the different heads of the trieeps muscle, and winds round hetween the inner and large heads of the triceps to the outside of the arm, and dividcs into two large branches; one gives off a cutaneous branch to the outer side of the fore-arm, and then deseends in the place of the radial, giving branchcs to the skin, and dividing to terminate on the skin at the hack of the paw and the side of each digit, except the outer side of the fifth, and communicate with the dorsal branch of the ulnar ; the other, in passing to the back of the fore-arm, gives a branch to the long and the short supinator museles; it then divides to terminate in the extensor carpi radialis

[^41]and the extensor digitorum, whilst a long hranch passes on and gives filaments to the extensors of the pollex aud to the wristjoint, hut does not terminate on this part in a ganglion, as in Man and Quadrumana.

There are thirteen pairs of dorsal nerves, and their principal deviation from those in Man consists in a smaller sizc, a more direct course, and a less distrihution on the ahdominal muscles, and hy those at the lower part of the thorax heing covered hy an extension of the origin of the psoas muscle, also in the anterior cutaneous branches supplying the different portions of the elongated mammary glands in the female, as well as the skin. The posterior or dorsal divisions, after supplying the muscles connected with the spinc, the sacro-lumhalis and longissimus dorsi, send a hranch between these and the latissimus dorsi to the skin. The anterior or ventral divisions of the Iumbar and sacral nerves supply principally the parts connected with the lower extremity, the hladder and rectum; the dorsal divisions of the second and third lumhar nerves supply the skin as well as the sacro-lumhalis and other museles connected with the dorsal parts of the vertehra; the dorsal divisions of the succeeding lumhar nerves are distrihuted to the muscles only; the dorsal divisions of the sacral nerves supply the muscles on that surface of the tail. The nerves are not very different from those in Man, except in their numher, and consequently in their conjunction a little higher or lower for forming the nerves of the lower extremity. The anterior divisions of the three first lumhar nerves give filaments to the psoas muscle, and then pass forward to terminate in the ahdominal muscles and skin. The fourth gives filaments to the psoas and internal iliac muscles, and sends a hranch to join one from the third to form the external spermatic on the external iliac artery, which passes through the external ahdominal ring to the spermatic chord; in the female this was distrihuted on the posterior division of the mammary gland; it sends off another branch which gives a filament to the external iliac artery, and then joins the sixth; the rest of the fifth passes down on the exterior of the thigh to the skin, and forms the external cutaneous nerve. The sixth receives a hranch from the fifth, gives filaments to the internal iliac muscle; part of it is then joined hy a large hranch from the seventh to form the anterior crural nerve; the other part, after receiving a large and small hranch from the seventh, hecomes the ohturator nerve. The seventh, having given off the preceding branches, joins the first and second sacrals and a branch of the third for forming the sciatic nerve. The
junction of the first and second sacral gives a branch to the pyrifirm muscle, and a larger one to pass out at the iscbiatic notcb to supply the gluteal muscles and the tensor fascire. Some branches derived from the second and third sacral nerves combine with the hypogastric plexus for supplying the bladder and rectum, and others from the pudendal nerves for tbe muscles connected with the anus and tail. A branch of the second sacral nerve joins the third for forming the antcrior caudal nerve, which receives the anterior trunk of each remaining spinal nerve, and passes deep in the anterior part of eacb side of the tail, giving off brancbes into its course; the posterior or dorsal trunks of the same nerves form a nerve, which also sends off brancbes to the dorsal muscles and skin of the tail.

The anterior crural nerve passes between fibres of the iliac muscle, then under Poupart's ligament at the inner side of tbe sartorius; it gives brancbes to tbis, to the rectus femoris, the external and internal vasti, and the cruralis, and sends off the saphenus nerve, which descends across the thigh to the inner part of the leg, communicates with a filament from the obturator, and is continued to the foot, giving filaments in its course to the fascia and skin. The obturator nerve, on emerging from the pelvis, gives branches to the pectincal muscle, the triceps, and gracilis, and sends a branch to communicate with the saphenus nerve; several fine branches pass down on the inner side of the thigh for the fascia and integuments. The sciatic nerve, on emerging from the pelvis, communicates with the internal pudendal ; it sends a branch to the internal obturator muscle, and onc which gives a filament to the upper portion of the gemelli, and then passes bchind the tendon of the internal obturator to the lower portion of the gemelli and quadratus muscles. The sciatic passes close to the insertion of the intcrual obturator muscle, and upon or bebind the gemelli and quadrati muscles, then behind the trocbauter covered by the origin of the biccps to which it gives a branch : it sends off a large branch which divides into otbers for the semimembranosus and semitendinosus muscles. About the middle of the tbigb it separates into the posterior tibial and peroneal nerves.

Tbe posterior tibial nerve sends off a long slender brancb which descends on the posterior part of the gastrocnemius muscle to the outer side of the leg, sends a branch behind tbe tendo Achillis to the posterior tibial nerve, and is distributed on the skin at the outer side of the lcg and hecl. It then gives
branches to the gastrocnemius, and passes between the heads of this and gives branches to the flexor of the toes, the tihialis posticus and the flexor longus hallucis'; it then passes down the leg on the inner side of the tendo Achillis, and receives the branch from the long slender branch sent underneath this tendon. It passes hehind the inner condyle of the tibia, and divides into the inner and outer plantar nerves: the inner plantar gives a hranch to the inner side of the second toe, and then communicates with a hranch of the deep plantar, and divides for the outer side of the second and the inner side of the third; it also communicates with a branch of the deep plantar given to the outer side of the third toe and the inner of the fourth; the outer plantar nerve passes hetween the flexor tendons, and scnds a nerve to the outer side of the foot and the last toe; it gives off the deep plantar, which passes underneath the short flexor of the toes, and divides into branches, and gives filaments to cach of the small muscles situated in the sole of the foot, and a branch to communicate with one from the inner plantar nerve: it then divides for the outer side of the second toe (the innermost in the Fox and most digitigrades) and the inner side of the third, and one for the outer side of the third and the inner of the fourth, and another for the outer side of the fourth and the inner of the fifth toe. The peroneal nerve gives a small hranch to the hiceps and filaments to the fascia near the knee; it then divides the anterior tihial nerve, sends off branches to the anterior tibial muscle, the long extensor of the toes, and the long peroneal, and descends with the anterior tibial artery, heneath the annular ligament, and gives branches to the ligaments of the foot; it passes onwards, and is joined by a hranch from the continuation or dorsal hranch of the peroneal, and divides for the outer side of the second and the inner side of the third toe. The continuation or dorsal hranch of the peroneal, gives branches to the short and third peroneal muscles, and passes behind the long peroneal, and emerges hetween this and the long extensor of the toes; it passes over the annular ligament, and sends a hranch to the outer side of the foot and the fifth toe; on the back of the foot it sends the hranch to join the anterior tihial nerve; it separates into two hranches, the first divides for the outer side of the third and the inner side of the fourth toes, the other for the outer side of the fourth and the inner side of the fifth or outernost toe.

The chief characters of the minutely detailed distribution of the myelonal nerves of Man, in works on his anatomy, are found in most Quadrumana. Mr. Swan has remarked that the saphenus
nerve is proportionally larger in a Baboon: and he also notices the large size of this nerve in the Jaguar. The nerves of the palm are proportionally smaller in Apes than in Man, and do not terminate in such thick brushes of filaments at the tips of the fingers; but the branches from the musculo-spiral and ulnar nerves to the back of the hand are larger in proportion tban in Man. ' Many Quadrumana have the ganglion on the termination of tbe spiral nerve. at the back of the wrist; but in the Felida there is only a slight enlargement at that part of the nerve.
§ 212. Sympathetic system.-This, as an addition to the general nervous system, is a speciality of the Vertebrate subkingdom: as such it dawns in Myxinoids, at the confluence and intestinal production of the two vagal trunks, and is differentiated by progressive steps, till it attains tbe general condition defined in vol. i. p. 318, §57.2

Where it begins in the series there the chief centres are afterwards established, as the semilunar ganglions and solar plexus, so called from the multitudinous rays that diverge therefrom; they are carly and distinctly visible in the mammalian embryo. The ganglions of the sympatbetic vary in the proportion of the grey or collular and filamentary or tubular constituents. The cellular part forms a greater proportion of the semilunar ganglions in Man than in most lower Mammals: and it is greater in Carnivora than in hoofed quadrupeds. The filaments radiating from the semilunar ganglions collect themselves into interlaced groups named after the viscera they mainly supply, as, the 'gastric,' ' hepatic,' 'splenic,' ' mescnteric,' ' renal,' 'spermatic,'
 to thic arterics of the several organs: in the large gastric plexus of the Ruminants they accompany these to the several divisions of the complex stomach. In the Carnimora branches of the superior mesenteric pass in a more definite form to the aggregate of mesenteric glands at the root of the mesentery. In Perissodactyles, in which the cacum and colon are remarkable for size and complexity, the supcrior mesenteric plexus, supplying these parts of the large as well as the small intestines, is proportionally larger than in other Mammals, especially as compared with the inferior mesenteric plcxus in Carnivora and Quadrumana. In

[^42]the Baboon the cxecum and about one foot of the colon is supplicd by the superior mesenteric plexus, and the remaining five feet of the large intestine by the inferior one. In Carnivora this supplies about the terminal half of the large intestine. In the baboon Swan noticed a communication between the right phrenic nerve and the semilunar ganglion. ${ }^{1}$

The trunk, advancing or ascending from each semilunar ganglion, is an aggregate of cords ('splanchnic nerve,' Anthropotomy), which, perforating the diaphragm, separate to form communications with a variable number of the thoracic ganglions of the sympathetic. In the baboon Swan traced the origins or connections of the right splanchnic nerve with two thoracic ganglia in advance of the left, this extending

Slath thoracle ganglion of sympathetle, Rabbit. LXXYII:". over the heads of five posterior ribs, and the other over seven, each expanding into a small ganglion at the bottom of the chest. In the hedgehog the splanchnic nerve extends over the heads of the four last ribs, and, receiving filaments from the sympathetic, forms a plexus on the sides of the vertebre, as in the baboon; but separates from the trunk of the sympathetic higher in the chest. In the jaguar this separation occurs a little above the diaphragm: in the hog at the passage through the diaphragm. But' these variations do not seem to make any difference either in the formation of the semilunar ganglion, or the branches preceding from them. ${ }^{2}{ }^{2}$

Kölliker has given the snbjoined view, fig. 137, of the communication of the splanchnic, $S p l$, with the myelon by the 'rami communicantes ${ }^{2} R c, R c$, and with the ganglion of the sympathetic, a, from which it derives its grey fibres. From the trunk of the sympathetic T_{r} and the ganglion the nerve s to the intercostal artery is sent off.

In Mammals the parts regarded as 'trunks,' or ' main chords ${ }^{3}$. of the sympathetic, form a symmetrical pair extending along the sides of the centrums, forward to the basioccipital, and backward

[^43]to the coccyx : antcriorly, or ahove, they pass to ganglions and plexuses, within, or ahout, the cranial cavity; below or behind, they converge and unite, generally, in a terminal coccygeal ganglion. In their course the cords cross, ventrally, the issuing trunks of the spinal nerves, with which they are connected hy short threads, including grey and white filaments, and there

Section of sixth intercontel with compunicating bmach to Eympathetic. Rabblt (mas. 60 diam,). Ixxyir". usually swelling into ganglions. The grey or gelatinous thread is most probahly a contribution from the ganglion to the myelonal nerve, the white thread is sent from the nerve to the sympathetic ganglion: it consists of tubular nerve-fihres, and these predominate in the rami communicantes' of the rabbit and cat. ${ }^{2}$ Under a power of sixty diam. after addition of dilute solution of soda Drummond found such fihres continued mainly from the myelonal end or origin, fig. 138, c, of an intercostal nerve, and converging to form the communicating hranch, re, with the sympathetic ganglion. A few filaments, a, α, disappear among thosc of the intercostal nerve rather in the dirction of its outward course. Traced to the sympathetic ganglion, us iu fig. 139, they diverge,

Fuarilt thararle gangllon, will course of fibrea recelred Hy the conmanitating brasich, C , from the inyelon. (Mag, To diam,) Loxxvir ${ }^{-1}$,
hxxfli', p. 446.
spreading over its cellular part g, most of them passing eithcr forward at b, or backward at a, and thus adding to the suhstance of the main trunk, A, B.

These ganglionic enlargements are more distinct from, and proportionally larger than, the cords in Man and Unguiculates, than in Ungulates and some lower Mammals. There is also some difference in the character of the cords themselves. In the Quadrumana and Carnivora, dissected by Swan, as well as in the hedgehog and rabbit, the cord was 'thick and narrow' as in Man : but in the ass, calf, and goat it was broad and flat, and composed of parallel threads communicating with each other. In the ass it continues of almost the same hreadth nearly throughout the thorax. 'In the calf, after the thoracic plexus is given off, it hecomes narrower; it then, in descending, gradually gets broader after its communication with each intercostal nerve, and appears rather to have had a hranch added to it hy, than to have given one to, each ncrve.' ${ }^{1}$ The thoracic portion of the sympathetic supplies nearly the same parts as in Man. In the jaguar, hranches from several of the thoracic ganglia of the right side unite and communicate with the right posterior pulmonary plexus, and then cross the spine to communicate with the left posterior pulmonary plexus. In the calf, a similar plexus gives off the more inferior cardiac nerves to the left auricle and ventricle: it proceeds from four or five of the thoracic ganglia of the right. side, and communicates with the vagal nerve: hranches extend across the spine hehind the gullet, and communicate with some from a similar plexus on the left side. The first or anterior thoracic ganglion is commonly notahle for its size, and seads off filaments of communication with the vagal, recurrent, and phrenic nerves. The cord hetween the first thoracic and last cervical gauglion is short, and usually divided, or traversed, by the 'subclavian' or 'trunk of the brachial' artery. In Man the two ganglions seem to hlend into one. The lower cervical is always a notahle ganglion: the inferior cardiac nerves proceed from it. The sympathetic trunk divides and passes forward along the ueck: the smaller portion, along the vertebrarterial canal, answers to the cervical part of the trunk in hirds: the larger portion extends in close connection with the trunk of the vagus, and 'in the calf it has sometimes very small ganglia" imhedded in it, which give filaments to accompany the small arteries.' ${ }^{\prime 2}$ In the hedgehog and rabbit this connection hetween the sympathetic and vagus is less intimate. In this part of the sympathetic there

[^44]is an anterior or superior cervical ganglion as well as the inferior one; but, in Man, a small 'middle cervical' is added. In the vertebrarterial tract communications are made with the successive spinal nerves, as in the thorax, but without the ganglionie enlargements, at least so conspicuous. This seems to be more truly the forward continuation of the trunk than the cord connected with the vagus.

In the hog branches from the superior cervical pass forward to the second division of the fifth and to the sixth nerve: 'there is not a distinct vidian nerve passing in a canal of bone, as in the calf and ass; but the branch most resembling it can be traced on the second trunk of the fifth to the place where the palatine and lateral nasal nerves proceed." ${ }^{1}$ In the sheep two small and two larger filaments ascend from the superior cervical ganglion and form a plexus, from which the vidian nerve passes to the lateral nasal and two branches to the gasserian ganglion. In the ass the superior cervical ganglion has a more elongate form, and sends branches which form a plexus round the entocarotid: some filaments, joining others from the glossopharyngeal, supply the lining membrane of the tympanum. The chief offsets communicate with the second division of the fifth, the sixth, and facial nerves; the vidian passes forward at the inner side of the eustachian tube, traverses its bony canal, and joins the brauch from the second trunk of the fifth, which divides into the lateral nasal and palatine, but there is no 'sphenopalatine ganglion' at the junction. The chief plexuses in the cephalic part of the sympathetie are the ento- and ecto-carotid and the cavernous. These are more directly derived from the superior cervical ganglion. The plexus about the vertebral artery formed by the accompanying portion of the sympathetic is continued to the basilar artery and its cerebral branches. From the lower part of the supcrior cervical ganglion the superior or long cardiac nerve is scnt off: also nerves to the common carotid, the pharyngeal plexus, and to communicate with the vagus, spinal accessory, nintl, and suboccipital nerves. Swan remarks that the superior cervical ganglion, 'in many' (mammalian) 'instances corresponds in bearing a proportionate size to that of the second trunk of the fifth." The greatcst proportion of the sympathetic continued from that ganglion, passed to the front of the gasserian, giving off the first and second trunks of the fifth. He failed to find a distinct sphenopalatine ganglion in the monkey and baboon.

In thic baboom and ass the three first lumbar ganglia of the

$$
\text { Liv. [. } 112
$$

${ }^{8}$ Ib. p. 110.
sympathetic send hranches to the semilunar ganglion, to the renal, spermatic, and aortic plexuses. ${ }^{1}$ The uterine nerves are derived from the hypogastric plexuses; they accompany the vessels along the hroad ligaments; most separate therefrom hefore reaching the uterus: others retaining a plexiform arrangement ahout the vessels, show minute ganglia in their course, fig. 140. In long-tailed Mammals the sympathetic is continued beyond the

Smali ganglion from posterior wall of the cervix of an impregnatid uterus of a Cow, mexpis". azygous ganglion on the caudal artery, sometimes as a pair of cords (jaguar). ${ }^{2}$

In all Mammals examined to this end filaments of the sympathetic have been traced, with those of the third and fifth, to the ophthalmic ganglion, sending off theciliary nerves: and the general result of this hranch of Comparative Neurology tends to estahlish the conclusion that every myelencephalic nerve contains some proportion of filaments from the sympathetic, whilst every sympathetic ganglion, reciprocally, receives some filaments from the my elencephalic system. These, however, are so modified as to he unequal to the transmission of volitional influence to the organs mainly supplied from the sympathetic ganglions: but they may be the modia of conveying thereto involuntary influence and the stimulus of violent emotions : and, conversely, they may convey the sensations of pain from the iuritated ganglion to the encephalon. The sympathetic system mainly governs nutritive and secretive processes and involuntary movements; it influences the contractile power of bloodvessels, the coats of which, in all Mammals, show a considerahle plexiform supply from the sympathetic system.
§ 213. Organs of Touch.-In considering such parts in Mammalia, the sensihility of their highly organised integument, exemplified hy its agitation in the horse on the contact of a fly, must he distinguished from the special adaptations of parts or appendages of the skin for purposes of tactile exploration. Increased supply of bloodressels and nerves to a part of the tegument

$$
\text { Luy. p. } 117 . \quad \text { Ib. p. } 117 .
$$

which is thin, soft, or papillose, exalts its sensihility; as, for example, in the lips, at the end of a teat, of a clitoris or penis, and to a degree, in the latter instances, approaching the eharacter of a special sensation. In land-mammals the hair is not developed on the more sensitive surfaces, and the skin there is commonly thinnest. Man exemplifies the maximum of dermal scnsihility through the comparative thinness and general nakedness of his integument. That which covers the hroad tips of the fingers is unusually vascular, and richly supplied with penicellate plexuses of nerves: the filaments to the papille seem to terminate in condensed corpuscles of cellular tissue, certainly continuous with the terminal neurilemma-the 'corpuscula tactus' or 'axile' corpuscles,-occupying, each, the centre of a papilla. The digital papillæ average in Man $\frac{1}{100}$ th of an inch in length, with a basal diameter of $\frac{1}{250}$ th of an inch; they are conical with a rounded apex. Each is supplied hy a branch from the arterial plexus of the cutis: they do not project, like the lingual papillæ, beyond the epithelial level. Tactilc papillæ, usually of a larger or coarser kind, are developed on the digital integument in Quadrumana, and on the naked surface of the skin of the prehensile tail (Ateles); also on the naked terminal integument of the nose of quadrupeds, especially when, as in the pig, mole, and shrew, it is produced as an exploratory 'snout,' fig. 297, or forms, as in tapirs and elephants, a 'proboscis.' Certain of the papillæ of the prominences commonly so called, Gig. 149, on the surface of the tonguc are tactile, but whether also gustatory, or distinct from those that taste, is undetermined. The marginal integument of the upper and lower mandible of the Ornithorhynchus is eminently tactile.

Certain hairs acquire a size, length, firmness, and such a connection of their sclerous hasal capsule and bulb with sensory nerve-filainents, as to receive very delicate impressions hy contact witli extraneous whjects or impulse: they are termed 'vihrissæ' or whiskers. The hulb and capsule ${ }^{1}$ of the whisker is sunk deep ${ }^{1}$ into the substance of the derm, and is inclosed in a selerous capsule, ${ }^{2}$ which in the walrus ${ }^{3}$ shows an almost cartilaginous hardness. The bristles, in that marine earnivore, have the firmness of horn, and act. as a staff, in a way analogous to that held and applied hy the hand of the blind man. ${ }^{4}$ The varieties in the

[^45]claracter of vibrisse are, in like manner, adapted to receive and communicate the impressions affecting particular species, or special localities-eyebrows, cheeks, lips-where they may be developed. Whiskers are long and fine in the crepuscular cats ; still longer in the nocturnal aye-aye.

The corpuscular thickenings of the neurilemma with the soft centre to which the terminal nerve-filament may be traced ('Pacinian bodies,' vol. i. p. 324, figs. 213, 214) are related to the present simplest and most diffused kind of sensation. The degree in which any given part of integument can discriminate two distinct contacts is shown by the intermediate distance at which they begin to be felt as a single impression. Obtuse points of a pair of compasses, e. g. applied, to the skin, with successive degrees of approximation until they feel as one point, have shown the different discriminating power of different parts of the surface of the human body, which, in the main, is expressive of the degrees of general sensibility of such parts. The following are instances in the decreasing ratio of acuteness of feeling or discriminating power:-tip of the tongue, palmar surface of terminal joint of finger, red surface of lip, tip of nose, palm of hand, skin of cheek, sole of foot (parts of), buttocks and adjoining part of thighs, loins, back. ${ }^{1}$

As the seats of special sense are almost devoid of common sensation, so surfaces witb peculiar kinds of the latter, as the teat, penis, or the skin of the axilla, palm and sole susceptible of the sensation called 'tickling,' have low degrees of tactile discrimination. For the phenomena and relations of the sense of temperature, see LXVIII".

The horn-cased feet of the Ungulates, devoid of prehensile power, need uo nicety of touch ; but they have a sensitiveness by which the degrees of firmness of soil, e. g., may be appreciated; and this is due to the disposition of a highly vascular and nervous stratum into fine and long villi on the sole, and into numerous close-set lamellæ, fig. 17, ${ }^{2}$ 17, which, interdigitating with soft horny lamellæ in the inner surface of the wall of the hoof, relate, at the samc time, to its renewal and firm attachment to the terminal phalanx.

In Cetacea the peripheral surface of the derma is produced into fine and long papillæ, highly vascular, and connected with nerve-

[^46]filanents from the subdermal plexus. Hunter placed his demonstrations of this structure in the series of tactile organs, and remarks:-‘These villi are soft and pliable, they float in water, and each is longer or shorter according to the size of the animal. In the Spermaceti Whale they are about a quarter of an inch long; in the Grampus, Bottle-nose, much shorter; in all they are extremely vascular;' they are sheathed in corresponding hollows of the epiderm.'

The naked skin in Cetacea is even, smooth, and polished, in most instances: the numerous longitudinal plaits along the under and forepart of the body in fin-whales (Balcenoptera, fig. 217, o), would allow of transverse expansion; yet the thorax which they eover needs not such provision. It is peculiar to the swifterswimming whales that pursue mackerel and herring, and may serve to warn them of shoals, by appreciation of an impulse of the water rebounding therefrom, and so conveying a sense of the propinquity of sunken rocks or sand-banks. Sensitiveness to movements of the ambient ocean is indicated by certain observed phenomena. Thus whale-fishers aver that when a straggler is attacked its fellows will bear down from some miles' distance, as if to its assistance; and it may be that they are attracted by perception of the vibration of the water caused by the struggles of the harpooned whale or cachalot. But, in the main, tactile or discriminative sensibility is very low in the Cetacean order. The thick hard and short vibrissx on the lips of Sirenia, appear to relate rather to prehension than exploration of food.

The extent of surface and delicate organisation of the parts of the skin forming the wings and ear-conchs of those of the Battribe that pursue volant insects (vol. ii. fig. 156), and the antennal nose-leaves of many species (Rhinolophide), relate to the perception of atmospheric impulses rebounding from surfaces near which the Bat approaches in flight. Thus, when deprived of sight, and with the ears and nostrils plugged up, as in Spallanzani's questionahle experiments, he avers that the Bat was capable of directiug its flight with the same security and accuracy as before, guiding its course through passages just large enough to admit it without coming into contact with the sides, and cven avoiling numerous small threads which were stretched across the room in various directions, the wings never touching any of them. The delicate sensibility of the membranous integument meets all the conditions of the crepuscular or nocturnal flying of the bat, without involving a new and peculiar "sixth sense,' as deduced

[^47]hy the narrator of the ahove experiments. Like the antennæ of some insects, the ear- and nose-leaves of some Bats have rapid vibratile movements; such, at least, have heen ohserved in captive specimens, each pinna moving independently of the other: 'it looked as if he were fceling for sound and smell.' ${ }^{1}$ The nasal leaf is livid or flesh-coloured in Rhinolophus. In the bats of passive food, such as the Vampires (Desmodi) that are attracted by scent in a dircet flight to the large living body they suck, and, when gorged, flit lazily back to drowse away a long digestion in their murky retreats; or such as the Roussettes (Pteropi) that wing their way to fruit trees, and, after fecding, suspend themselves in sleep to the hranches; the auricular and nasal tegumentary appendages are small and simple: such sensitive tactile guides or warners in flight are only necded in the hats of active food,

Human tongue, gustatife surface, or ' dorsum." cexs. which must follow in swift evolutions, like the swallows, but in gloom, the volatile insects that people the summer air at dawn or dusk.
§ 214. Organ of taste.-The tongue attains in mammals its full development as an organ of taste; and, as respects the extent and organisation of the gustative surface, in the highest degree in Man, fig. 141. The chief distinction of this from a tactile surface is that the sensitive papillæ are on processes rising above the epithelial level, said processes heing commonly called 'papillx.' As we descend in the mammalian series the mechanical offices of the tongue predominate over the sensitive ones. In the Giraffe, Pangolins, Anteaters, and Echidna, its most ohvious office is that of prehension; and in the Ornithorhynchus it supports teeth, horny like those of the jaws, and it has mechanical modifications in relation to the cheek pouches. In all Mammals the dorsum of the tongue is more or less papil-
lose, and in most the papillx offcr the three conditions called ' conical,' fig. 150, ' fungiform,' fig. 149, and 'fossulate,' fig. $148, f$.

The tongue is well developed and freely movahle in all Marsupials, and the epitbelium covering the conical papilla is rarely condensed into spines. In the carnivorous species, as the Dasyuri, the conical papillæ are minute and soft, but directed backward, so as to give a slight roughness to the tongue when stroked in the opposite direction: under a lens they appear like fine shagreen. Near the base of tbe tongue in Dasyurus viverrinus there are three fossulate papillæ, in triangle, with the apex toward the epiglottis. A small fihrous or sclerous rudiment of the 'glosso-hyal,' called 'worm,' or lytta, lies lengthwise heneath the tip of the tongue. In the Peramelcs, hesides the minute and generally diffused simple papillæ, there are fuugiform ones, of larger size, placed at distances of nearly a line apart, and raised about a third of a line ahove the surface of the dorsum. The fossulate papilla correspond in number and arrangement with those of the Dasyures, but the entire tongue is relatively longer and more slender, especially in $P e r$. lagotis. In some species of Opossum, as Didelphys Philander, the margin of the tongue is fringed with a series of fine long papillæ. In Didelphis virginiana the eonical papillæ of the fore part of the dorsum are retroverted and sheathed with hard epithelium. In the Phalangers there is a thickening at the edge of the fronum lingux, but no true lytta: the dorsal papillæ resemhle those of the Dasyures, but are somewhat more ohtuse. In the Kangaroo there is a callous ridge along the middle of the under surface of the free extremity of the tongue, and a corresponding furrow along the dorsum: the latter is common to all the Marsupials. In the Wombat and Koala the dorsum of the tongue rises somewhat ahruptly from a furrow surrounding its hase; its form is narrow, moderately deep, diminishing in this respeet to the tip, which is rounded. In hoth the Kangaroo and Koala there is a single large fossulate papilla near the base of the tongue. In Dendrolagus there are three such, arranged in a triangle with the apex turned forward.

Most Rodeutia show two well-marked divisions of their usually deep and compressel tongue : an anterior, which from its vascular aud papillose surface is the main seat of taste, and a posterior or intermolar tract, which rises somewhat abruptly ahove the level of the preceding and brings the food to that of the triturating surface of the molars.

The tongue scems to fill the narrow mouth of Rodents more eompactly than usual, commonly beariug the impress of the
palatal furrows on its dorsum and of the grinding tecth on its sides: the free apex is short and usually obtuse, seldom if ever protruded beyond the scalpriform incisors. In the coipu (Myopotamus) it is acuminate and covered with small retroverted shining velvety papille; the free part is three quarters of an inch in extent: the basal portion of the dorsum is less abruptly elevated than usual : it has but two fossulate papillæ, as in the capybara and Leporide. Tbe squirrels and most other Rodents have tbree fossulate papillæ forming a triangle, but in marmots they range almost in a line. In Capromys tbe apex is rounded, free for half an inch, and impressed by small follicular apertures : the conical papillæ are minutc, but ncar the base become larger and retroverted: here numerous delicate lines converge toward the epiglottis: the intermolar part of the dorsum is less elevated. The Agoutis (Dasyprocta) differ from the Cavies, Beavers, and Hares, in the gradual elevation of the intermolar part of the dorsum: the apex is subacuminate, minutely papillose above, with a middle longitudinal furrow: at the root are many elongated processes covered by a thickish epithelium. In the beaver the membrane on the sides of the tonguc descends a very little way, and is reflected upon the inside of the cheeks, in advance of the molar teetb. In the porcupine (Hystrix) one sees a series of scale-like or wedge-shaped processcs, with the free margin divided in to two or tbree points, on each side of the tongue.

In Insectivora the tongue offers littleworthy of notice: most have three basal fossulate papillæ, in triangle witb retroverted apex. Tupaia shows a long frænum continued to near tbe apex, and having, on either side, a thickisb fimbriate fold. In Vespertilio murinus, among tbe Bats, the papille at tbe fore part of the tongue have a firm epitbelium; some soft obtuse fungiform papillæ show a serial arrangement: two fossulate papillæ are near the base. In Phyllonycteris Poeyi the papillæ are retroverted and especially long and setose on the edges of the tip; which is narrowed and canaliculate. In Artibeus the fore part of the tongue is roughened by very short papillæ; those behind are larger. In Monophyllus the apical papillæ are so long as to give a pennicellate character to the tip of the tongue, but tbis relates rather to its prehensile function, as in probing night-blowing flowers for minute insects. The same brush-like cbaracter is observable in the conical papillo of many other Bats: in the Vampires (Desmodus) such modification is subservient to suction. In some kinds of Pteropus the conical papillæ have a bard epithelium and terminate in many points: the fossulate papillæ at the base are three in number in this genus.

The eontrast in extensibility of tongue is very great in the Lisseneephalous group, as, c. g., hetween the Rodentia and Bruta. Viewed as orders, the first offer the least, the latter the greatest, power of protrusion and mobility of the lingual organ in the whole Mammalian elass: but the unimportance of this character as telling against affinity is shown by a similar contrast hetween the two representatives of the Monotrematous order, Ornithorhynchus and Echidna. The characteristics of the tongue in Brata are due to the development of its motory rather than its sensory attributes, are attended with increase of the hypoglossal more than of the glossopharyngeal or trigeminal nerves, and relate to the acquisition rather than to the discrimination of alimentary matters. In the family (Loricata) of the order including the most promiscuous fceders, the tongue is bettcr endowed with the power of testing the sapid qualities of the miscellaneous organic substances in the rubbish of the forests among which the Armadillos are habitually poking their piglike snouts. Relegating, thereforc, the notice of the tongue of the purely phyllophagous and myrmecophagous Bruta to a future chapter, I shall here merely state that, in the Armadillo, the tonguc tapers to the free end, has a convex dorsum, transversely wrinkled and finely papillose: at about an inch from the root, in Dasypus Peba, there are two fossulate papilla ${ }^{1}$ on the same transverse line, behind which a medial furrow extends to the epiglottis.

The tongue has but little mobility and a small extent of free margin in any Cetaccan. In the Porpoise the tip is fringed by obtuse processes of varying length, but all short, fig. 296, h, the dorsum is flat, devoid of papillous processes, and smoothly covered by a level of thick epithelium. In the Grampus a similar fringe extends some way back on each latcral margin of the tongue. Anteriorly these margins are made irregular, in the Caehalots, ly fissures and warty prominences. The Whales have not the finged or verrucose marginal structure. The tongne in them is chicfly remarkahle for its huge size even relatively to the body; und this is mainly in breadth and depth. When swollen by putrulaction the fore part may be protruded a little way as in lig. 21\%. The dorsum, devoid of papillæ, has its membrane thrown

[^48]VOL. III.
into numerous minute wavy or subparallel folds. The root of the tongue, in Hyperoödon, shows many pores of glandular follicles, anterior to which are four large fossulate papillæ, with a few obtuse conical papilla at the sides: a similar structure here oceurs in the tongue of the Caehalot, which Hunter compares to ' a feather bed:' but the eomparison is more applicable to that in the whale-bone Whales: for the tongue is firmer and more muscular in the Cachalot and other toothed Cetacea, than in those with baleen. Most Cetaeea offer a marked contrast to the other Mammals in having the skin of the tongue separated from the flesh by a layer of blubber. As a rule, in Mammalia, the vaseular and sensitive lingual membrane adheres as closely to the museular tissue as does the very similar skin of the snail: its sanguine tint in Balænidæ is not obscured by pigment: but in some Delphinida this is present of a leaden colour.

In Sirenia the tip of the tongue, fig. 142, a, projects a little more freely, but does not

Tongae nf Dugong (Atticore). reach the fore part of the mouth: the tongue is narrower in proportion to its length; but is ehiefly remarkable for the excess of development of the epithelium. In the Dugong this covering of the conical papille at the fore part of the dorsum gives it the appearanee of being beset with spines. A large, but short thick, retro--verted horny process projects from each side of the base of the tongue, ib. b, b. The conical papillæ in Manatus have a less firm epithelium, and are longer and finer than in the Dugong; they are limited to the apex and part of the dorsum. The fossulate papillæ are numerous, extending on each side the dorsum from the anterior third to near the base of the tongue. The lingual epithelium appears to have reached the maximum of devclopment in the now extinet boreal Manatee (Rhytina Stefleri).

The tongue of the Elephant is tied down, as in the Cetaeea, and a part of the dorsum is made by muscular action to represent the tip when it projeets: in relative size to the head it offers the extreme contrast to the tongue of the Whale: it is not only short, but narrow, and represents, apparently, the intermolar part of the tongue in Rodents. It is, however, eminently gustative: the membrane is lighly vaseular, with very numerous minute and
rather obtuse conical papillæ, and a few large fossulate ones near the hase.

In the Rhinoeeros the tongue is broad and flat, a little expanded anteriorly, and becoming narrower and deeper as it passes hackward: there is a small protuberance on tbe dorsum, between the posterior grinders, divided by a median furrow: tbe large fossulate papille are principally collected, in a group of ten or twelve, on each of these risings; the fine elose-set pointed papille on the fore part of the tongue resemble sbort hairs; bchind tbese papille the epithelium is condensed into a thick callous stratum, and becomes thinner at the posterior glandular part of the tongue. There is a 'lytta' beneath the anterior flattened freely projecting part or tip of the tongue. ${ }^{1}$ The horse has a relatively longer and narrower tongue, with a greater extent of free-tip, with much and various motion and prehensile power: the base of the tongue is steadied and the origin of the ' linguales' extended by the glossohyal (vol. ii. fig. $305, \mathrm{E}, g h$): the surface of the dorsum is sunooth and firm, the conieal papille being minute and close-set; there are a few fungiform papillw along the sides, and three large fossulate ones at the base; the free ends of the former kind are subdivided or papillose. The tongue of the Hippopotamus is remarkable for its terminal expansion and fatness: it is slightly notched at the middle of the broad tip: the conical papills are numerous and small; the prominent part of its large fossulate papillw are eleft into smaller ones. In the Hog the edges of the fore half of the tongue are fimbriate: near the lase are two fossulate papille; belind whiel are numerous coarse retroverted eonical papillio, subserving deglutition. The lingual margins are not fimbriate, in Placocherrus: the fossulate papille are two, as in Sus, and the anterior two-thirds of the dorsum are beset with firm gnstative papilla. ${ }^{2}$ Numerous small conical papilla give a villous charncter to the dorsum of the free fore-part of the tongue of the Camel ; among which larger obtuse fungiform papillx are dispersed here and there; mostly at the under side near the margin: the dorsum rises at the intermolar region, the conical prillw inerease in size, and very large fossulate papilla are placed in a row on earh side: the mid-prominence is here, also, subdivided; and the sccondary papilla usually surround a seeondary fossa, fig. 143, b. The tongue of the Llama is similarly divided into a free, gustative, and prehensile part, and a decper intermolar masticatory and deglutitional part. The conical or filiform papille are most delicate and minute, extending over the dorsum of

$$
v^{\prime \prime}+\text { p. } 39 . \quad{ }^{2} \text { Lxxxix" p. p. } 64
$$

the anterior division, and upon the sides of the fore part of the posterior one. A shallow longitudinal ehamel impresses the middle of the dorsum of the free part. The fungiform papillæ are

Camel. In true Ruminants the conical papillæ in the fore part of the tongue arc elongate, retroverted, and sheathed by an epithelium barder than in the Camelida: the fungiform papillæ, and the large irregular callous projections on the intermolar part are repeated: the fossulate papillæ are usually rounded and less in size. In some ruminants, e. g. Aurochs (Bison europcus), the tongue is of a decp leaden eolour. The muscular, vascular, and nervous struetures of the long, prehensile tongue of the Giraffe, fig. 144, are described in detail in xovir' (pp. 221-224): and in relation to the gustative function it need only here be noted that the epithelium is thickest at the apex, on the upper surface of which it shcathes the conical papillee, scattered along its margins, being largest at their under part, and here also appear in a distinct longitudinal group at the middle in advance of the frænum. The callous processes and fossulate papillæ in the intermolar part resemble those in the

and forms minute retroverted spines, which occasion the rasplike roughness which is felt in the tongue of the living animal. The upper superficial layer of the lingualis, which acts more directly on these papillæ, and is by some called ' notoglossus,' is conspicuously differentiated from the main mass at this part of the tongue. The deeper transverse fibres decussate with tbose of the opposite side, the 'septum albescens' being but partially present in the tongue of Ruminants. In the Giraffe a dark leaden-coloured pigment is developed beneath the cpithelium, covering the anterior half of the tongue, in relation, perhaps, to its frequent exposure, under a tropical sun, in the prebension of the leafy food: the pigment assumes a black colour over the prominent round fungiform papillæ, which are somewhat sparingly scattered, like coarse grains of gunpowder, over the dark-coloured portion of the tongue; from fifteen to twenty fossulate papilla are arranged in an irregular longitudinal row on each side of the raised intermolar part of the tongue. As the organ is mainly a prehensile one, its structures thereto adapting it, will be described in connection with the preparatory instruments of digestion.

In most Carnivora the septum is complete, and the 'fibre transversw ' are firmly attached to it, instead of decussating. The lower margin of the septum is thickened, and in many species includes the long cylindrical fibrous hody, representing the 'glosso-hyal,' called 'lytta,' and in Dogs, where it attains its largest size, " the worm." It may help by its elasticity, and that of its shcath, in the act of lapping. In the Seals the apex of the tongue is hifid and fringed with delicate papillæ; they are less marked on the upper flattened surface: towards the base are the ' fossulate papillæ,' behind which the lingual membrane is puckered into rugre and beset with numerous follicles. In the Bears the apex of the tongue is entire, expanded, and impressed above by a medial longitudinal groove: the conical papilla are minute and closenset, with soft epithelium : thosc at the under part of the margins are coarser. In Subursus Thibetanus witb the simple papilla are intermixed small white petiolate papillæ: near the bnsc are eleven large fossulate papilla forming two sides of a triangle whose apex is turned backward. The tongue of the Kinkajou (Cercoleptes) shows seven fossulate papilla similarly placed and arranged; but it has a long and large 'lytta,' ligamentous anteriorly, cellular posteriorly, in a sbeath of circular fibres. ${ }^{2}$

[^49]In the IIyæna the tongue bas a circular group of conical papillæ near the fore part of the dorsum sheathed by borny epithelium, forming retroverted spinules. In Felines they cover a larger proportion of that part of the tongue, forming a powerful rasp in the great species. ${ }^{1}$ The gustative papillæ are very fine and setose, intermingled with the horny ones, and more abundant towards the margins, wbere also the larger petiolate papille are: scattered. In the Lion the tongue appears of considerable length in consequence of the distance between tbe byoid and the bony palate. ${ }^{2}$ The soft palate is of proportional extent, and all that part of the tongue co-extended tberewith is represented by a smooth faucial membrane: as it advances it becomes covered with large soft retroverted papilla; then tbere appear four large fossulate papillæ, anterior to which the simple conical papillæ continue, increasing in size to near the tip. In the Jaguar there intervenes between the epiglottis and the proper base of the tongue a smooth faucial mucous tract, like that in the Lion, of threc incbes extent. In the Leopards, Ounces, Lyexes and Cats, the larynx and tongue are in close proximity. No Carnivore shows a raised intermolar part of the tongue. It is equally absent in Quadrumana. In this order Hunter noted in a Lemur Mongoz, L., which be dissected, that ' the tongue has a part underneath, sbaped like a bird's tongue, sn that it might be called doubletongued.'3 This long flattened process, bifid at the apex, is shown to be continued forward from the frenum in the prep. No. 1516.4 A like structure is sbown in Loris (No. 1518); and two smaller frænal processes are shown in the tongue of another Lemurine species (No. 1517). This lingual character has since been found to prevail throughout the Strepsirhine group ${ }^{5}$ down to and including the Aye-aye (Chiromys). In this animal the frenal or sublingual plate ${ }^{6}$ has a short and simple apex, behind it a filamentary longitudinal gristly ridge or 'ly tta,' projects from the middle of the under surface of the tongue. A narrow free fold of membrane is contiuued backward from each side of the base of the frenal plate to the corresponding side of the pharyox: a like structure obtains in the Galagos and Pottos, and supports the terminations of the ducts of the submaxillary and sublingual glands. In Perodicticus the broad apex of the frenal process is jagged. ${ }^{7}$ The conical papillæ are short, subobtuse, and

[^50]rather large, proportionally, in the Aye-aye, beeoming more so toward the fauces. The fossulate papil laform a transverse pair. In Galagos and most other Lemuride there are tbree fossulate papillx, in a triangle, with the apex backward.' Obtuse or fungiform papillæ are interspersed with the conical kind in Lemur proper. The tip is sharp-edged in Lemur and Microcebus, round and obtuse in Galago and Aye-aye.

In some of the Platyrhines the tongue is long, slender, and somewhat pointed, e.g., Callithrix: in wbich the fossulate papillw are three in number, with the apex of the triangle backward. The 'sublingua' is rudimental or obsolete in these and in catarhine Quadrumana, in whieh the tongue gains in thickness and deptb: the fossulate papillæ continue to be three in number, but the general structure of the tongue elosely resembles that in Man.

The human tongue, fig. 141, mainly differs from that in Quadrumana in being, so to speak, less massive, less deep relatively to its length and brcadth, with a greater proportion of its margin free, and for a grcater extent. It is the most perfect of all tongues in its gustative and other sensibilities, and especially in the rapidity, freedom, and varicty of its movements ; whence its applieability to the numerous exigencies of articulate speech, as wcll as to prehension, mastication, insalivation and deglutition of alimentary substanecs.

Of the muscles moving the tongue some, e.g. 'stylohyoid;' ' digastricus,' mylohyoid,' 'geniolyooid,' 'sternobyoid,' act upon it through the medium of the hyoidean areh: others, e.g. 'styloglossus,' ' genioglossus,' ' hypoglossus,' palatoglossus,' arising from extrinsic points pass or are inserted into the tongue's substance: a third elass of fibres mainly constitute that substance in which they botb begin and end, and are ealled the intrinsie museles,' and collectively 'lin-

Trnosverae seation of Eutran tongre, at the foropart of the fremum cex L . guales.' In the transverse section, fig. 145, the genioglossi, d, are seen decussating vertically with the contral intrinsie fibres, c : these are nominally distinguishable from the 'peripheral mass' of thesc fibres, b, owing to their greater number and more compact arrangement at this

[^51]part; in a section anterior to the genioglossi the periphcral layer is uninterrupted. The central mass consists of transverse and vertical fibres, the latter not wholly intrinsic but partly derived from the genioglossi: the peripheral mass mainly consists of longitudinal fibres, of which those along the upper and under surfaces are intrinsic, those on the sides of the tongue in part derived from the styloglossi.

As exemplified in the plan, fig. 146, the vertieal and transverse fibres dccussate in the centre, and there exclude the longitudinal fibres: the vertical ones diverge and sprcad as they approach b, b, and cease near the margins a^{\prime}, a^{\prime};
 the transverse also diverge, as they approach b, b, and disappear near the upper and under surfaces a, a. The vertical emerge from the transvcrse as they come near the upper and under surfaces a, a, and the transverse extend freely from the vertical to attain the lateral margins c, c. The longitudinal fibres, which appear as discs in transverse section, fig. $147, c$, are seen near the periphery, where the diverging vertical and transverse fibres leave room for them, as at b, b, and in greater proportion at the surfaees $a a, c c$. Thus, at certain portions of the tongue, three sets of fibres traverse the same area, in as many distinct directions and at right angles one with the other; the arrangement being so that the crossing of the fibres of any two sets forms
a net, the meshes of which in successive layers hecome canals through which the fibres of the third set pass ; hence in whatever plane they be viewed, two sets are seen, in profile, crossing, and onc, in section, perforating; by which a rrangement they mutually support and conduct each other, independently of connective tissue, the dispensing with which allows for the aggregation of so much more muscular tissue in the tongue's substance. In fig. 147, a magnified view is given of a section from the upper surface, a, in fig. 145: a are the vertical fibres extending to that surface, beyond the uppermost transverse fibres, b, and decussating with the longitudinal fibres shown in section at c. This complex arrangement becomes simplified toward the apex: the longitudinal fibres first ccasing, next the vertical ones, and the transverse alone being continued to the tip. ${ }^{\text {b }}$

The skin of the tongue is divided into the papillose, glandular, and smooth, mucous, or faucial arex: the latter, fig. 141, d, has about half an incb of longitudinal extent when not stretched, and answers to the much more considcrable tract in the Lion. The glandular area is defined anteriorly by the fossulate papillæ, ib. f, here arranged 'en chevron,' four on each side converging' toward the backwardly turned point: behind this is sometimes seen a fossa devoid of papilla, the 'foramen ceccum' of Anthropotomy. The papillose area extends over the major part of the tongue to its tip and down the sides along part of the under surface; it is rougbened by papille which extend from the medial groove in oblique series forward and outward, repeating. in the main the arrangement of the fossulate or glandular papille.

The tongue-skin presents a basal areolar tissue, so dense in the glandular and papillose ares as to resemble the corium: at the faucial area and under surface of the tongue it softens into the character of that of the mucous membrane of the cavity with which it is continuous: where it overlies the muscular part of the tongue, as in fig. 145, a, it is closely adherent thereto, and is thickest at the middle line: peripherally it projects as ' prpillix,' sinks into 'fossulx,' and is inverted to form the ducts or orifices of mucous follicles. The cpithelium is scaly, thick and distinguishahle into a decp layer adherent to the corium and a supcrficial layer which readily desquamates. The so-called 'papillæ' arc processes of the corium, rather analogous to the

[^52]villiform ones in the iutestinal mucous membrane of some animals (vol. ii. p. 170), and suhdividing, as in those, into the 'villi' or papille truly answerahle to those of the skin; the tonguepapillæ or processes differ, therefore, from the true dermal papillæ in standing freely out from the surfaee of the epithelium, which is moulded upon them, and does not plaster them over to its own level. The so-called lingual papille are of three kinds, 'fossulate" or eircumvallate, 'fungiform,' and 'conical,' many of the latter being also callcd 'filiform.'

The fossulate papilla, fig. 148, a, is large, obtuse, subpedun-
 culate, and arises from a fossa, b, by the thickened and often crenate borders of which, c, it is surrounded. The nerves and vessels enter the papilla at its pedicle ; and the expanded summit suhdivides into the secondary true papillæ, plastered over by the cpithelium. The average number of fossulate papillx in Man is eight, arranged as in fig. 141, f : there he sometimes ten, rarely more; often fewer than eight, but not less than four. Their arrangement may vary to that of an almost transverse line. They are supplied by branches of the glossopharyngeal; are very vaseular; and, from the thinness of the epithelium, appear red when injeeted.

The 'fungiform papillæ,' fig. 149, B, are subpedunculate, hut
149

smaller than the fossulate and rounder: they are seattered over the sides and tip of the tongue, and on the dorsum anterior to the fossulate series. They are rather larger than the filiform, and conspicuous hy their red colour. They arc covered hy
sccondary papilla, ib. A, in which the capillaries diverge and divide to form their brush of loops, as in fig. 149, B, receiving each its capillary loop, into the fasciculus of which the branch of the artery a and vein v subdivides on entcring the mushroom-like papilla or process.

The conical papillæ elothc as in a close-set pile the anterior two-thirds of the dorsum : they arc longest at the mid-line near the centre of the tongue, smallest ncar the sides and at the tip. The cone-form, with secondary papillæ down its sides, fig. 150 , merges into the cylindrical form, fig.

Contcal panalis. ocxz. 151 , with a terminal brush of filaments. The execss of the sealy covering of thesc, ib. a, b, c, forms the so-called 'fur' of the tongue, which beeomes separated from the decper layer of epithelium, d. In the conical variety, fig. $150, \alpha$ is the basal membrane, b, c, the ' processes,' subdividing into secondary or true papille, e, the deep layer of epithelium, f, the superfieial layer, h, the points from which the filamentary prolongations would have projected: thesc sometines rescmble fine hairs. The function of such filiform papillo appears to be 'portative' and 'protective,' that of the conical praille mainly ' tactile,' that of the fungiform and fossulate ones 'gustative:' bchind the latter are the principal mucous follieles.

The so-called gustatory branch of the fifth supplies the fungi-

Flliform paplliag. coxd. form, conical, and filiform papillæ; the glossopharyngeal serves
the fossulate papillie and the mucous tract hchind: the ninth or hypoglossal is expended upon the muscular tissue.
§ 215. Organ of Smell.-Most Mammals are remarkahle for the degrec in which the sense of smell is serviceahle. The class is characterised hy the extent of the pituitary surface and the size and number of the olfactory nerves; neverthelcss, both extremes are therein exemplified, although the family (Delphinidळ) in which the organ is wanting is exceptional and maximised dcvelopment the rulc.

The progress is not, as with the organ of taste, pari passu with the rise in the class: both Man and monkeys are helow most quadrupeds in olfactory endowments. In hoofed ones smell is important in the the discrimination of wholesome from noxious food: taste would be a tedious test, the sapid matter needing to be moved ahout or masticated, mixed with fluid, and more or less dissolved, before the tongue can exert its gustative power; hut 'smell is done at once.' 1 Most flesh-feeders scent afar their food.

In Mammals, as in all air-breathers, the odorous atoms strikc upon the olfactory memhrane at the entry of the hreathing passages, where the atmosphere is filtered, as it wore, through the organ of smell hefore reaching the windpipe; and most effectivcly and instructively in the pinnigrade Carnivora.

The olfactory organ in Mammals receives its special endowment from nerves which rise in numhers from their proper encephalic centre, fig. 46, 47, R. They pass out hy as many holes in the plate of the prefrontal, which is thence called the 'crihriform,' or, from the Greek-root, ' ethmoid:' but the sieve-like structure is a strictly mammalian peculiarity consequent on the multiplicity of olfactory nerves, and is only affected by a single exception in this class, the Ornithorhynchus adhering to the wider Vertebrate rulc.

The nerves carry out with them, each an investment of the hrain-memhranes; the dura matcr losing itself in the periosteum, the pia inatcr in ncurilemma, the arachnoid heing reflected back. The nerves are grooped in all Mammals into a set for the septum, and a second for the upper or ethmo-turbinals, a third or middle short set being, in some, distinguishable for the labyrinth or roof of the nasal chamber. The branches of the second set, after expanding on the ethmo-turbinal, usually converge to become connected with the lateral nasal branch of the 'fifth.' Their mode of distribution is hest seen on the ethmo-turbinal:
here they divide, subside, expand, and anastomose with each wther, forming a reticulate nervous expanse, with long and narrow ineslics, and becoming impacted in the central or inner layer of the olfactive membrane. This membrane is continued in to the pituitary one, covering the inferior spongy bone or 'maxillo-turbinal' supplied mainly by the fifth. Both tracts, and especially tbe latter, are richly supplied with arteries opening into numerous large plexiform veins on the peripheral side of the membrane, occasioning or resembling, there, a cavernous structure, and admitting of such change in the quantity of blood therein as must be attended with concomitant degrees of laxity or tension of the scenting membrane itself. ${ }^{1}$ This at the attacbment of the turbinals is continuous witb the lining of the nasal chamber; which itself becomes modified into the more delicate and still less vascular membrane of the contiguous or accessory air-sinuses. Tbe nasal membranes are finally continued at tbe posterior aperture into the mucous membrane of the fauces and pharynx, and at the anterior one into the integuments of the face. The pigmental layer of the skin is soon lost within the nose, the colour of tbe pituitary and olfactory membranes being due to the abundant blood sent to tbem. Numerous mucous crypts are imbedded in the pituitary part of the nasal membranc.

The cavity containing the organ of smell is formed by the prefrontal, vomerine, nasal, sphenoid, pterygoid, palatine, maxillary, and premaxillary bones, and may be continued by extension of air-sinuses into all the bones of the cranium, figs. 154 and 157. The cavity is divided by a medial partition of bone and gristle in varying proportions, the bone being contributed by the prefrontals, the vomer, and by ridges of the nasals, palatines, maxillarics, and premaxillaries, with which the vomer may articulate. Each half of the cavity is a passage for the respiratory currents of air, opening anteriorly upon a more or less produced and mobile part called 'nose,' 'snout,' or 'proboscis,' and posteriorly into a cavity containing the larynx or beginning of the windpipe; sometimes, as in Cetacea and in Marsupials at their mammary stage, coutaining tbe larynx exclusively, but commonly comnunicating also with more or less of the pharynx. In the section of the human skull, fig. 152, the outer wall of the right nasal passage is shown, with the communicating frontal, s, and *phenoidal, 4 , sinuses; 1 is the nasal bone, and a the nasal spine
Lxx.11". p 278, nad liv. p. 12s. (The second edition of this raluable and origima work, 4 to, 1864 , is the oue cited in the present volume.)
of the frontal, forming the fore part of the roof, c, the basisphenoid, forming its back part; the 'cribriform plate and spine ' of the prefrontal completing the roof: b is the nasal plate of the maxillary bounding laterally the anterior aperture; d, pterygoid, similarly bounding the posterior aperture: the floor of the passage is formed by the premaxillary, 7 , the maxillary, k, and the palatine, 6. At the upper part of the outer wall is a tbin quadrilateral part of the prefrontal sculpturcd by grooves and apertures for the olfactory nerves; the posterior part, f, is a little curved, and leaves a space into which the sphenoidal sinus opens. The convolute, thin, reticulate, bony, and gristly lamina, ealled 'superior turbinal,' is here attached, below which is the division of the general passage, ealled 'superior meatus.' This is bounded below by a similar longer and larger -turbinal, called 'middle spongy bone' in Anthropotomy, but usually less distinct from the upper part of the 'ethno-turbinal' in lower Mammals. Tbe part of the passage between the middle and lower turbinal is the 'middle meatus,' into whicb the antrum or maxillary sinus opens. The lower turbinal is the largest of the three, and longest retains its individuality: below it is the 'inferior meatus,' k, into which the laerymal canal opens.

In most lower Mammals there is a turbinal process from the frontal and nasal bones; wbieh, from its relative position in their horizontally elongated nasal chamber, is called the 'superior spongy bone ' (oberste muschel, Gurlt), by Hippotomists; it is not the homologue of that so called in Anthropotomy.

At the floor of the lower meatus, close to the premaxillomaxillary ridge supporting the fore part of the septum, is a depression or groove lined by a glandular tract of the pituitary mombrane which, in Ungulates, is extended upon a long and narrow gristly sheath at that part, and communicates with the palate by the foramen incisivum. From ne to three of the scptal branches of the olfactory, traccable from a ycllowish grey
part of the rhinencephalon, are continued down to this tract; but it is principally supplied, like the lower turhinal, hy the nasopalatine nerve. ${ }^{1}$

Charaetcristic of the mammalian organ of smell is the great provision made by bony and gristly lamine for the support of the olfactory membranes. The original extent of these primitive capsules is augmented, as in a branehial organ, hy manifold plica and processes, usually so curved and contorted as to suggest the resemblance to turbinate univalves. The neurapophyses transmitting the nerves of the nasal segment of the skull are reduced, as has been shown, in Mammals, almost to their essential function; as sueh they appear in Cetacea (vol. ii. 1. 421 , fig. 287,14). So reduced and withdrawn from outward vicw, they are further masked in the rest of the class hy the aggrlutination thereto, or outgrowth therefiom, of the turhinal olfactory capsules: the whole, as agglomerated in them, receiving the name of 'sieve-bone" (wthmoid), from the exceptional peculiarity of the number of olfactory nerves in the Mammalian class. In fig. 153 is given an oblique view of this complex bone with the anchylosed sphenoid in the Iog. The confuent mesial

Ospene parts of ulfuctory capsules. Hog.
laminæ of the prefrontals projeet as 'crista galli' dividing the rhinencephalie fossse: to the under or outer part of the eribriform or perforated lamine of the neurapophyses the parts of the olfactory eapsules called 'labyrinths,' q, and ethmoturbinals, s, are anelyylosed: the maxilloturbinals, p, remain longer distinct, and ultimately conlesce with the superior maxillaries. The convolute plates attached to the roof of the nasal clamber, fig. 157, b, here (alled 'nnso-turbinals,' are in most quadrupeds added to those shown in figs. 152 and 153.

[^53]In the Ornithorhynchus one olfactory nerve quits each rhinencephalon and escapes from the skull by a single foramen at the fore part of the prefrontal plate: it divides on entering the nasal cavity into septal and turbinal branches. The membrane receiving the former is supported wholly on a bony plate: the turbinals are partly bony, and partly gristly: a prenasal ossicle is formed in the forepart of the nasal septum.

The olfactory nerves in the Echidna are extremely numerous, and the cribriform plate is large and encroaches upon the fore part of the cranial cavity as a convex prótuberance. The ethmoturbinals are of corresponding size, composed of a series of vertical processes which expand and subdivide as they pass toward the floor of the very long nasal passage. I have shown the lateral expanse of these turbinals by a horizontal section in No. 1707, xurv. p. 318.

The olfactory nerves and the osseous cavities and lamina destined for the protection and support of the pituitary membrane offer a remarkable proportional development in all the Marsupials, and more especially in the Insectivorous and Caraivorous tribes. Certain species of Kangaroo, of the subgenus Osphranter, Gould, remarkable for their acuteness of smoll, have the turbinated bones so large that the lateral expansion of the nasal cavity forms a marked feature in the skull. The characters of the osseous parts of the nasal cavity, in this order, are given in vol. ï. p. 348. Through the defective ossification of the palate the convolutions of the inferior turbinals are visible in the dry skull at that part; e.g. in Perameles Tagotis (vol. ii. fig. 222) and in Thylacinus. In the latter marsupial the fine lacework perforation of the inferior turbinals is well shown.

In the Hare the inferior turbinal is large, longitudinally lamellate, and shows in well-injected specimens the highest degree of vascularity: the complexity of its medial or septal surface contrasts with the simplicity of that in Felines. The ethmoturbinals are divided into three principal lamellæ: the nasal carity is long but narrow : the maxillary sinus is small. In tbe Agontis the nasal chamber is more expanded: the ethmoturbinals which consist each of four rather short longitudinal lamellw, are divided from the maxillo-turbinals hy a protuberance from the mesial wall of the large maxillary sinus: there is a small "Jacobson's, process from the premaxillary at the lower and fore part of the nasal cavity. In the Paca (Coelogenys) the olfactory eavity extends backwards beneath the rhinencephalic one. In the Porcupines through the enormous development of sinuses from the olfactory eavity it extends backward beyond the rhinencephalic
one, which it appears to encompass. The latter cavity is defined by a well-marked ridge from the prosencephalic part of the cranium. The vomer is decply cleft posteriorly, and coalesces with the ethmoturbinals. The fore part of the vomer articulates with the median ascending process of the premaxillary arching over the wide vacuities which lead from the nasal passages to the prepalatine apertures. Besides the maxillary sinuses others are developed in the frontals, squamosals, alisphenoids and orbitosphenoids, with bony septa converging to the rhinencephalic fosse. No nasal sinuses or aircells are developed in the skull of the aquatic beavers. In the voles (Arvicola) a canal leads from the crescentic orifice at the fore part of the antorbital aperture into the lower part of the nasal meatus, above the propalatine fissurcs. In the rat (Mus decumanus) it terminates below the attachment of the anterior turbinal to the premaxillary. In all Muride the olfactory cavity is very narrow; the ethmoturbinal small and but little divided; the lower turbinal is elerated in position. The external nose is short and, as in most Rodents, is clothed with hair save at the middle of the septum.

In Insectivora the olfactory organ is better developed than in Rodentia. The cthmoturbinal of the mole has not fewer than eight primary lamcllx; but the maxilloturbinal is coraparatively simple: the external nose is developed into a snout, with wellmarked muscles for various and powerful movements. The development of this part is such in some African Insectivora, fig. 297, as to have earncd for them the name of 'Elcphant-Shrews.' The naked outer border of the nose in the common hedgehog is dentated : and the edge of the snout is fringed in Condylura with a circle of soft processes. But these, like the still more extraordinary dermal appendages in certain bats (Rhinolophus) relate to touch.

The armadillos and anteaters enjoy an acute sensc of smell. In Dasypus sexcinetus the rhinenccphalic almost equals the epencephatic division of the cranial cavity: but the olfactory chamber extends backward to bencath the prosencephalic division, and the ethmoturbinals are remarkably extensive and complex: the maxilloturbinal is comparatively simple. The turbinal plate of the nasal almost equals the facial plate in extent. The chief expansion of the cranium is caused by the large olfactory cavity, and the part extending therefrom into tbe frontals raises them in Chlamyphorus into a pair of domes (vol. ii. fig. 272, a). In most Armadillos the external nose or snout is strengthened by a pair of prenasal ossicles. The rhinencephalic chambers are large iu

Orycteropus (ih. p. 404); hut the olfactory ones are far more remarkahle for hoth size and complexity. In the true Anteaters (Myrmecophaga) the ethmoturhinals, though large, are less de. veloped than in armadillos. The inferior turbinal is a long slightly rolled up lamina. In sloths, as descrihed in vol. ii. p. 406 , the olfactory chamher extends backward ahove the rhinencephalic one into the frontal hone, and below it into the sphenoid. The extension of air-sinuses therefrom is still greater in the extinct megatherioids (ih. 407).

The haleen-hearing whales are those of the Cetacea which alone have olfactory nerves, although all possess the crura rhinencephali.' The pituitary memhrane supported hy the turbinal hone is remarkable for the plexus of large vessels behind it. The cetacean modifications of the nasal passages will be descrihed with the respiratory organs, to which they mainly relate.

In Sirenia the nostrils are suhterminal, at the top of the ohtuse muzzle, and provided with movahle gristles: the nasal passages contain hoth ethmo- and maxillo-turhinals, the latter, like the . former, gristly; the small almond-shaped bones wedged into the

Section of glephant's skul, showing nasal pasage. fore part of the frontals are, as Cuvier held, nasals, not turbinals. ${ }^{1}$ Thenasal passages are short, narrow, subvertical: the ethmoturbinal is shortand longitudinally lamellate. The olfactory nerves are fewer and the cribriform plates smaller in the Dugong than in the Manatee.

In the Elephant that part of the nasal cavity, fig. 154, which is appropriated to the essential parts of the olfactory organ is contracted and narrow, and the passages, a, b, are relatively short: they are, however, much prolonged by the accessory appendage, called 'trunk,' at the extremity of which open the nostrilk (vol. ii. p. 282, fig. 162, n), and are as much expanded

[^54]by the surrounding air sinuses, which pervade every bone of the cranium. The bony nasal passage is continued in almost a straight line from the anterior aperture, a, to the posterior one, b. The vomerine part of the septum, 13 , extends from the presphenoid about half-way to the anterior aperture. At the upper part of the cavity, so divided, the ethmoturbinals are situated, which are moderately plieated: the maxillary turbinal is, also, romparatively simple in charaeter.

In the Tapir the shorter proboseis terminates by a small pointed extremity between the nostrils. The snout is covered with hair to the base of the terminal appendage; the hair ou the upper part tending up ward or backward, that on the sides toward the tip. The eribriform plate is not simply perforate, but is retieulate, witb long radiating meshes, the latter closed by dura mater: it sends down curved lamellæ, sheathing the olfactory nerves. The ethmoturbinal consists of as many convolute divisions attaehed to, or continued from, those processes, in a peduneulate way; and each is perforated by many foramina through which branches of the olfactory pass to the pituitary membrane. The maxillary turbinal is elongate and simply convolutc. The nasal cartilages show the chicf modifieation, the alar portions, fig. 155, n, being continued backward, expanding, and filling the peculiar grooves of the skull (vol. ii. p. 449) between the nasal bones

Alhasal corthage (n) ahd mascles of trunk, Tapir. scrı": and orbits, o : here the cartilages are semiconvolute, convex, and entire outwardly, cxeavated on the inner side, the cavity being eontinued by a groove into the nasal one at the sides of the outer aperture: from the character of the lining membrane, it may be regarded as an extension of -Jacobson's fossa.' The 'levator rostri,' or raiser of the short proboscis, fig. 155, a, arises from the process of the lacrymal, runs in a fibrous shcath, eonverging to its fellow, and is inserted into the upper or fore-side of the part which, together, they raise, or, neting separately, draw to their own side. A broader muscle, 'retractor labii,' b, from the same origin expands to its insertion at the side of the labial part of the base of the proboseis. Beneath this is the musele, c, which rising from the lower border of the lnerymal, spreads upon the
side of the proboscis, and is intimately connected with the 'orbicularis oris,' $d d$; e is the zygomatic, f the depressor anguli oris, g the huccinator. ${ }^{1}$ The external nose of the Rhinoceros is combined with the upper lip and prolonged in a minor degree, but with a like arrangement of muscles, for prehensile purposes. The nose of the Horse is chiefly peculiar for the power of the dilating and contracting each nostril, such movements heing sub-

Muncles of nostrils and upper lip, Horse. served by a lateral semilunar cartilage, fig. $156, h$, ; by a depression or fold of contiguous skin, called 'false nostril' in Ifippotomy, and by the homologues of the muscles of the combined nose and lip of the Tapir. In fig. 156, a is the ' levator rostri ;' b is the 'retractor labii alæque nasi;' \boldsymbol{c} is the muscle called 'transversus nasi,' in Hippotomy; e is the zygomaticus; f marks the insertion of a muscle, ' pyramidalis' of Hippotomy, which arises by a slender tendon from the maxillary, and gliding beneath the labial part of b, expands to he inserted, fleshy, into the outer border of the nostril and contiguous skin-folds.

The Horse is remarkable for the size of the rhinencephalon and the extent of the cribriform plate transmitting its nerves to the nose: they pass upon a scries of about ten short longitudinal folds directed forward and a little downward, forming the ' ethmoidal labyrinth' of Hippotomy, the upper larger division being the 'cthmoturbinal ;' a longer, larger, more simply disposed plate, attached to hoth prefrontals and nasals, and chiefly descending from the latter bones, forms the ' nasoturhinal:' beneath this is the maxilloturhinal,' of about the same vertical extent, and almost the same length. The bony septum contrihuted by the coalesced prefrontals, forms, superiorly, about one-fourth of the general partition: the vomer
extends, beneath it, along ahout three-fourths of the lower third of the septum, hut subsides to a point; the major part of the septum is gristly.

In the Hippopotamus the nostrils are relatively small, prominent, wide apart, and arc served by muscles which open and close then like the eyelids, besides protruding and retracting them. The accessory sinuses of the nasal chamber are very little developed. Their extent and size offer a great contrast in the Hog-tribe, in which the essential parts of the olfactory organ are also relatively larger and more complex. The rhinencephalon is large, with many nerves, and the crihriform plate of great extent: the 'labyrinthic' part of the capsule attached to its under or outer surface forms nine or ten longitudinal, slightly diverging folds, fig. 153, q, the thrce or four uppermost of which coalesce to form the ethmoturbinal, which is long, slender, subconvolute, and attenuated to a fine point forward, ib. s. This figure gives an oblique view of the 'labyrinth,' q, and ethmoturbinal, s, of the right and left sides. The nasoturbinal is of moderate length. The somewhat deeper and more convolute 'maxilloturbinal is shown at p : the accessory 'nasopalatine' fossa, at k. The pterygoid, f, bounding the posterior nasal opening is excavated and expanded above by a sinus continuous with those of the sphenoid, n. The accessory sinuses of the nasal chamber are very considerable in the Hog-trihe: the frontal ones (vol. ii. p. 468, fig. 315, il, young Pig) extend backward over the calvarium to the occiput in the Boar: a structure well shown in the Babyroussa, No. 3346, ${ }^{1}$ in which preparation the extension of the sphenoidal sinus (ib. fig. 315, f) into the hase of the pterygoid is demonstrated, where it is divided into an external and internal compartment. In Phacochorrus the pterygo-nasal fossa is simple, and the frontal are almost separated from the parietal sinuses hy the near approximation of the inner to the outer tahle of the skull. The pterygo-nasal fosse are absent in Dicotyles. In all Suidce the external nose is somewhat prolonged and truncate, the nostrils opening upon a naked disc: the cartilages of the nose form a complete tube, which is a continuation of the bony nostrils, and near the end of the snout the cartilaginous septum becomes ossified, and forms the prenasal ossicle (ib. fig. 315, o).

In the Ox the cribriform plate is relatively smaller and the olfactory ncrves fewer than in the Horse: the labyrinthic part of the ethmoid consists of about six short narrow longitudinal

[^55]folds, most of which eoalesce to form a larger and more simple ctbmoturbinal than in the Horse; the nasoturbinal is very long and slender : the maxilloturhinal of much greater extent, especially in vertical diameter: it terminates forward obtusely. In the Sheep the nasoturhinal is relatively deeper and less pointed than in the Ox. The nasal passages, from the lower border of their anterior outlet, traverse nearly three-fourths of the longitudinal extent of the long and slender skull of the Giraffe, fig. 157. The upper folds of the 'labyrinth' coalesce, and are produced into the moderately long and deep etbmoturbinal ${ }^{5} a$: the ' nasoturbinal,' b, dcepest behind, is longer and more poiuted

Left half of hasal cavity and turbluais, exposed Jn sectlou of cramum ; Giratie. xovi'
anteriorly than in other Ruminants; the 'maxilloturbinal,' c, is large and deep, finely reticulate or perforate; it is crossed by part of the vomer in fig. 157. The extent to whicb the airsinuses communicating with the nasal chamber are extended is sbown in this section, and noted in vol. ii. pp. 477, 478. The nasopalatine nerve entering the cbamber below the fore-cnd of the ethmoturbinal receives some part of the olfactory filaments converging toward that end, then sends upward and forward a small hranch to the nasoturbinal ; a larger branch downward and outward to the chamber-wall and its lining; the main part heing expanded on the long nasoturbinal.

In the Ruminants a gradation may be traced in the extent of the glandular and, in health, moist part of the skin of the external nose, from the Sheep, where it is a mere linear tract from the mid-furrow of the upper lip bifurcating to each oblique nostril,
through the Roebuek, Fallow-deer, Red-deer, to the Ox, where it ronstitutes the broad naked muzzle. ${ }^{1}$

The organ of smell in Carnivora mainly differs from that of hoofed Ilerbivora in the greater relative size and strength of the ethmoturbinal, the shorter, deeper, more massive and mucb more subdivided ' maxilloturbinal.' In the Lion the ethmoturbinal is of a pyramidal form, its broad base continued from the short labyrinthie part attached to the cribriform plate, its apex terminating forward, between the naso- and maxillo-turbinal. The mesial surface of the ethmoturbinal shows numerous furrows, two of which are longitudinal and parallel with the upper margin of the bone, the others radiating from the lower part of the attaehed basc: the lateral or outer surface is less complex and extensive; but, on removing the outer layer, a series of concentric curved folds are exposed. The ' nasoturbinal,' bolding as in Ungulates the highest position, is an clongate cone, coextensive with the roof of the nasal cavity and with its base opposite to the frontal sinus: the mesial surface shows a serics of deep arehed folds; the lateral one seems more even, but when the peripheral lamella is removed a series of longitudinal folds of the bone is brought into view, beneath which are eoncentric folds arched or curved in the opposite dircetion to those in the etlumoturbinal. The maxilloturbinal is fusiform; the hind end is attached to the outer wall of the nasal ehamber below the middle of the nasoturbinal; whence the bone rises and expands, crossing the anterior end of the ethmoturbinal, and again diminisling to its anterior and upper attachment behind the external bony nostril. From its position, therefore, the odorous atoms, in inspiration, must first impinge upon this bone, and the pituitary membranc is thicker and more vascular than on the other turbinals. Its mesial or septal surface presents one curved groove, parallel with and near to the lower margin of the bone: the outer surface has a like character. The more glandular part of the pituitary membranc is at the fore part of the floor of the nasal chamber, not occupying so deep a fossa as in Ungulates.

The sources and distribution of the nervous supply corresponds with that noted in the (iirnffe: the septal branches of the olfactory enrve down toward the thickened base of the partition. In the Dog, the longitudinal folds of the 'labyrintli' are about four, fewer in number but larger than in the Sheep: the athmoturbinal is continued from the undermost and eurves upward slightly to

[^56]the nasoturbinal as it advances: the maxilloturbinal is shorter, relatively broader and deeper, and much more extensively folded than in the Lion: This is the part of the olfactory organ that reaches the extreme of turbinal development in the Seal-tribe. In the large species dissected for the preparation, No. 1557, the maxilloturhinal is attached by its contracted extremities, the intervening enormously swollen mass is divided by a deep longitudinal furrow into two parts; the free surface of which is singularly complicated by folds, radiating from hoth extremities of the bone and suhdividing dichotomously. ${ }^{1}$. These turbinals seem to hlock up the entry of the nasal respiratory passages, and must warm the air in arctic latitudes as well as arrest every indication from the effluvia of alimentary substances or prey. The nasoturbinals, in some Otaria, extend backward, with the nasal chamber, above the long rhinencephalic compartment of the cranium.

In the Quadrumana the nasal chamber loses length and gains, but in less proportion, depth and breadth, from the Lemurs up to the Apes: the maxilloturbinal ceases to be suspended by its extremities, and acquires a linear longitudinal attachment externally to a ridge on the maxillary wall of the nasal chamher. This turbinal is divided into two chief parts lengtb wise, in Lemuridœe, where it is longest: the nostrils are here terminal, the anterior expansion of the septal cartilage curves outward and downward on each side, and, with a corresponding degree of curvation of the principal alar cartilage, gives a subconvolute form of nostril to most Strepsirhines. In the Ayc-ayc they describe a semicircle; and the nasal chamber by its shortness, depth, and predominance of tbe ethmo- over the maxillo-turbinals excmplifies the quadrumanous affinities of the species. ${ }^{2}$ In Platyrhine monkeys, the septal cartilage is remarkable for the transverse extent of its anterior terminal expansion between the nostrils, pushing them and their alar cartilages outward. In Catarrhines this expansion is much reduced; and the nostrils are obliquely approximated. In both groups the nostrils cease to be terminal; in a Bornean Douc (Semnopithecus nasicus), the nostrils are produced upon an ill-shapen prominent subcylindrical nose. In the Gorilla each nostril is surmounted by a broad prominence, arching outward from a lower part impressed by a median furrow; a deeper indent divides the nasal ala from the cheek: the aspect of the nostrils is forward and a little outward. Tbe septal cartilage extends to the tip of the interalar prominence.

[^57]In Man the number of olfactory nerves varies from fifteen to twenty: after traversing the cribriform plate, they divide into two chief sets, 'septal' and 'turbinal,' and ramify between the periosteum and the pituitary memhrane before terminating on the latter. The septal nerves, fig. 158, a, are about twelve in number, are quickly resolved into brushes of filaments, which unite together to form 153 plexuses, and send off branches forming

Branches of the olfuctory and nasopalntine nerven on the septum of the nose. xety-.

Alar cartlieges, human nese. xCLV"。
finer plexuses, traceable to near the hase of the septum. The posterior fourth of the septal memhrane is chiefly supplied by the nasopalatine nerve, b. The 'turbinal' or labyrinthic olfactory nerves are more numerous, rather smaller, and more plainly anastomotic in their course over the upper and middle turhinals, lying in grooves of the former, and extended chiefly upon the inner and lower front of the midturhinal ; a few combine with that part of the nasopalatine which supplies the lower part of the middle turhinal. The lower turhinal is almost exclusively supplicel by at branch of the 'nasopalatine.' The main characteristic of the human organ of smell is the prominence of the fore-part of the chamher, having the nostrils on its lower surface, and constituting the fenture emphatically called the ' nose,' figs. 159, 161. The formative fold of integument is supported hy cleven cartilages, of which one is medial, the others lateral, in five pairs. The medial or 'septal' cartilage, fig. 160, is usually tringular, with three unequally curved margins: the upper one,
α, is fixed in the groove of the 'perpendicular plate of the ethmoid,' the lower border, b, fits into the front groove of tbe
 vomer; the anterior border, c, extends from the nasal bones, where it is thickest, as at $2, d$, and grows thinner down toward the apex of the nose. The varying proportions and form of the septal eartilage mainly govern the shape and prominence of the nose: it is least developed but thickest in the Negro and Papuan races. The lateral cartilages vary in size and shape, the upper onc, fig. 159, a, is triangular, continuous in front with its fellow,
 where they are closely connected with the upper half of the anterior border, fig. 160, c, of the septal cartilage. The largest of the "alar' or ' pinnate" cartilages, fig. $159, b$, is bent upon itself, almost surrounding and governiug the shape of the nostril: it is movably connected with the lower and outer part of a. To the onter and hinder apex of the cartilage b, is joined the first of the three small cartilages, c, d, e, wbich suppolt the posterior convex part of the 'ala ' or wing of the nose. The flexible fibrous tissue connecting these clastic cartilages allow of the movements of the parts to be readily produced, and the muscles are accordingly feeble. The "pyramidalis nasi," fig. 161, c, is continued from the medial portion of the 'frontalis,' fig. $28, f$, which descends over the upper part of the nose to the cellular tissue covering the cartilage, a, and thence onward to combine with fibres of the 'triangularis nasi,' fig. 161, e, and fig. 29, n. The levator labii superioris alæque nasi " is shown at $d d$, fig. 161 ; in the degree in which the alar is distinct from the labial portion, or has been distinctly exercised, the wings of the nose can be cx-
panded independently of any other movement of the facc. The "depressor alæ nasi,' ib. f, ariscs from the outcr border of the sockets of the canine and contiguous incisor: the fibres ascend to the alæ, many of them arching over the outer and back prominence of the nostril. The 'depressor septi,' ib. k, is detached from the upper part of the 'orbicularis oris,' fig. 29, oo, the filbres converging from each side toward the nasal septum. The small triangular patch of pale fibres, fig. $161, g$, is the 'compressor narium minor:' the larger quadrilateral muscle, h, is the 'levator ala proprius.' In races, like the Mincopies of the Andaman Islands ${ }^{1}$ who scent the ripeness of indigenous fruits, moving the thick alæ of their squab nose, as they explore their dark forests for this purpose, the nasal muscles may be expected to be well and instructively developed.
§216. Organ of Hearing.-The advance in this sense-organ in the mammalian class is seen in the extension of the cochlea, fig. I62, f, into coils suggesting the name; in the greater proportion of the perilymph; in the ossification of the cartilages between the stapes and tympanum forming the ' malleus,' and commonly also the 'incus;" and in the presence, save in most swimmers and burrowers, of an external car or conch, served by muscles for various movements to catch the sound. Besidcs the cochlea, the labyrinth, fig. 162, includes, as in other Vertebrates, the semicircular canals, c, d, e, and the interme-

Onsend lalyyinth of the left slde. Human, dat. slze. diate spaec or 'vestibule,' a, by which they now communicate with the cochlea. The semicircular canals form a smaller proportion of the labyrinth in Mammals than in lower Vertebrates; they retain, however, their posterior position to the vestibule and cochlea.

The larger opening in the bony wall of the labyrinth is called, from its shape in Man, the 'foramen ovale,' or, from its situation in the labyrinth, 'fenestra vestibuli,' fig. 162, a : it is closed by the base of the stapes. A smaller 'round aperture,' ib . b, is callcd 'fenestra cochlex,' bccause it forms the terminal orifice by which one of the turns of that part, 'scala tympani,' would open into the tympanum, were it not naturally closed by membrane.

A depression in the petrosal or bony case of the labyrinth receives the facial and acoustic nerves, and terminates in a cul-desac, one division of which gives passage to the facial, fig. 165, k; the others reccive divisions of the acoustic nerve, and transmit

[^58]them, by sieve-like plates, to the lahyrinth; an anterior main one, ih. r, going to the cochlea, and posterior ones, ih. g, m, supplying the vestihule and semicircular eanals.

The labyrinth is lined hy a delicate membrane closing, as it passes, the fenestra tympani, whence it is plainly continued into the cochlea, and completes the spiral septum of that part: continued over the vestihnle, the lining membrane is applied to the base of the stapes which closes the 'fenestra vestibuli,' and it lines the semicircular canals. This membrane also extends along two very narrow canals continued from the labyrinth to the exterior of the petrosal, where it passes into the peri-

The labyrintlic envity of the right alde, magniffed two diameters, Human. xcyir". osteum or dura mater of that paxt. One of the canals commences at the vestibule, at p, fig. 163; the other from the tympanic 'scala' of the cocblea, at v : the serous fluid of the lahyrinth passes through these canals to the general arachnoid receptacle of the cerehral serosity, and tbey were accordingly termed 'aqueducts,' and distinguished as 'vestibular' and • cochlear.' Minute bloodvessels are continued along hoth canals; hut their constancy and their relation as the intercommunicating medium hetween the acoustic and cranial serosity indicate a function which justifies the precision with which they have heen described hy Cotugno. ${ }^{1}$ The anthropotomical 'aqueducts' show the last trace of that community, so extensive in fishes (vol. i. fig. 227), in the differentiation of the cranial from the otocranial cavities.

The mammalian cochlea consists of a spiral tube, fig. 163, d, r, t, usually descrihing two turns and a half, and narrowing toward the apex, the vaulted roof of which forms the 'cupola,' fig. I64, c. The internal wall of the cochlear spire and the space it includes form the 'modiolus,' ' columella,' or hollow eentral pillar, ib. 1, 2, which, from the wider sweep taken hy the first turn, is hroadest below. Here enters the trunk, ib. a, α, of the cochlear division of the acoustic nerve, and the foramina hy which its fihrils penetrate the spiral canal extend along a part of the modiolus called 'tractus spiralis foraminulentus.' The tuhe of the cochlea is divided into two passages or 'scalæ' hy a delicate plate of hone, fig. $163, q, q$, attached to the inner or modiolar wall of the turns, and projecting freely into their cavity toward the outcr wall: the
lining membrane extends from this plate to the outer wall, fig. 164, d, e, and completes the scparation of the two sealæ. The attachment of the base of the 'lamina spiralis' is not solid, but indicates its constitution by two confluent layers, wbich here separate and intereept the minute channel called 'eanalis spiralis modioli.' Towards the apex of the cochlea the spiral plate becomes free, and forms the part called 'hamulus,' fig. 164, 7. Here the two seala intercommunicate, as shown hy the bristle in fig. 164, which emerges above at the opening termed 'helicotrema,' ib. 8: the apical part of the spiral lamina is formed by an onward extension of the lining membrane of the

Stection of Cuchlen, parallel with hes axis, magn, xcri" cochlea, bounding the upper part of the columellar canal called 'infundibulum,' ib. 2. In the section here exhibited the lower, 5 , is the tympanic, the upper, c, the vestibular, division of the whorl divided by the partition, b, e, which is thus seen to be formed by the osseous plate supporting the nerve-filaments, b, the layer of membrane lining the tympanie seala, s, and that lining the vestibular scala, 6 ; the two eoalescing beyond the bone, and beeoming thickened at e, where they again pass into the parietal lining. The eochlea is essentially a develop, ment of the petrosal capsule imnuediately related to the bone of the liead and its vibrations. The membranous labyrinth, fig. 165, retains, in Mammals, its common vertebrate character, extending

165

 Mingtilhere, Euva**。 through the semicireular eanals and vestibule, but not beyond the part of the latter whence the cocblea is prolonged to its mammalian extent: the sacculus, ib. f, retains the bomologue of the otolite of that part in fishes and reptiles; the second otolite, e, is also commonly present in the body of the vestibule: both are in
the condition of pulverulent aggregates of combined carhonate and phosphate of lime, the latter in greater proportion in Mammals than in Fishes: the particles are held together by a mucous tissue. The momhranous labyrinth has a ciliate inner surface, and contains a thinner ' endolymph' than in fishes: it is suspended in the common serosity of the hony lahyrinth, which is distinguished as ' perilymph.'

Taking a retrospcct of the course of the ear-organ, the primitive, constant, and essential elcment is the 'sacculus'' fig. $165, e, f$, with its otolites, which receive the proportion of the nerve-supply not resolved into the pulpy lining of their bag: this simple condition ohtains in Cephalopods. ${ }^{1}$ In the Myxine something like one hent canal, and in the Lamprey two, are continued from the sacculus: in all higher Vertebrates the three semicircular canals are established; hut in most fishes they float, as shown in vol. i. p. 342 , fig. 227, in the common serosity of the cranium; their special hony cases, intercepting so much of the arachnoid fluid as now forms the 'perilymph,' are subsequently developed: finally is added the complex cochlea, into which the primitive memhranous lahyrinth is not extended.

In fishes, where the acoustic nerves are affected hy vibrations of the endolymph propagated from the cranium or the body generally, the otolites are large, and usually of crystalline density. In air-breathers the sonorous vihrations of the atmosphere arc more directly received : they first strike upon a membrane set in a frame and stretched across the opening of an air-chamber, like a drum. In Mammals the 'memhrana tympani' is more delicate than in Reptiles, and, with few exceptions, is concave outwardly. Sound is usually collected into a conch, the hollow of which can he directed to its source. The medium of acoustic communication between the drum-memhrane and the lahyrinth under-

Fuman otosteals, magn. xcris". goes also, in Mammals, that instructive course of ossification and development which converts the avian columella and its cartilages into the chain of little hones called 'otosteals.' These, after the external ear, are the seat of the chief modifications of the organ in the present class. They retain, in Mammalia, the names suggested hy their shape in Man, viz. "stapes,' fig. 166, c, 'incus,' B , and 'malleus,' A : a small epiphysis betwecn B e and $\mathrm{c} a$, when separate, is the 'orbiculare' civ. P. 294, and note cexLix. T. 619.
or 'Ienticular' ossielc. To maintain an equable pressure on both sides of the membrana tympani, and facilitate the movements of the otosteals on each other, atmospheric air is admitted into the cavity, as in other air-breathers, by the tube called 'custacbian,' fig. 167, c, continued from the back of the nose or mouth to the tympanum. In passing through this tube the air is warmed, and a proper atmosplieremaintained in front of the membranous parts of

Tympanum and custachinu tabe, Ifusian, bat size. xayile. the walls of the labyrinth.

The structure of the car-organ in Cetacea is highly suggestive and interesting: it is, as Hunter remarks, ' upon the same principle as in the quadruped;: yet the outer opening and passage leading thercfrom to the tympanum can rarely be affected by sonorous vibrations of the atmospherc, and indecd they are reduced, or have degenerated, to a degree which makes it difficult to conceive how such vibrations can be propagated to the ear-drum during the bricf moments in which the opening may be raised above the water. In a full-sized Cachalot it is a longitudinal slit one inch in length, admitting with difficulty the ond of the fore-finger. In our common porpoises and dolphins this opening is so small as to require searel in detecting, fig. 168, a : it leads to a flexible membranous canal capnble of receiving, in

Delphinus tursio, a hog's bristle: having passed through the skin and blubber, it makes a sudden bend upon itself, at b, and is then continued by a course of about an inch and a half to the ear-drum, where it rather suddenly expands: in the subcutaneous part of its course the walls are strengthened by a few longitudinal cartilages with elastic connections, allowing of slight changes in length and disposition; hut the walls are in contact throughout most of the narrow part of the tube. The ear-drum is concave externally in Delphinida and Physeterida; but in a Balanoptera Hunter found it projecting with an unusual degree of convexity into the dilated inner termination of the meatus.

The density of the osseous tissue of the tympanic bone, $\mathrm{ib} . \boldsymbol{c}$, recalls that of the large otolites of fishes, and the almost free suspension of this singularly shaped subconvolute mass suggests that it may be affected, like those otolites, by the sonorous vibra-
 tions which are propagated through the water and strike upon the outer surface of the head of the Cetacea. Howsoever the ear-drum may be agitated, whether by a possible entry and propagation of air-vibrations through the meatus, a, b, or by an affection of the dense and massive hone, fig. 169, a, supporting it, the vibrations are conducted by a triangular plate of fibrous tissue, $\mathrm{ib} . f$, to the handle of the malleus, g, one nargin of the transmitting plate being attached to about threefourths of the long axis of the inner surface of the ear-drum; but this is extended at e beyond the circumference of the inner termination of the bony meatus. The mallcus articulates in the usual mammalian way with the incus, h, and the inner crus of this with the stapes, i, the thick, marginally rounded, elliptical base of which is deeply sunk into the 'fenestra ovalis:' there it is arrested by and presses against the continuation of the lining membrane of the vestibule, which, like the drum-membrane, is affected by the movements of the attached ossicle: these arc due to a 'stapideus' muscle, fig. $169, o$, inserted into the neck of the stapes so as to pull it at
an angle of 45° with the plane of the base: and, by depressing this into the 'fenestra,' to make tense the closing curtain and set in motion the perilymph. The muscle, ib. n, which secms to answer to the 'tensor tympani,' degenerates, in most Cetacea, into tissue which beeomes ossified and fixes the malleus to the wall of the tympanum. In all Cetacea the otosteals are dense and massive. In Ir l_{p} himus leucas the stapes is imperforate, as in the Wallus, fig. 170, c: in Phocena commuris, ib. в, there is a small hole, From the inner or mesial and anterior end of the tympanum the Enstachian canal is continued, which terminates, as shown by the probe, d, in fig. 168, in the fauces above the posterior part of the bony palate which has been cut away to expose it, the parts being displayed from below. The tube is membranous throughout, not traversing any lony eanal. In the porpoise its inner surface is provided with folds like valves, with the free margin directed to the nasal outlet of the tube: this part communicates with sinuses, some leading to a cellular structure, others compared by Hunter "to the large bag on the basis of the skull of the horse." ${ }^{1}$ The cetacean labyrinth is excavated in a petrosal capsule, fig. 169, b, m, of the same dense kind of bone as the tympanic, but of an irregular shape, and attached by a short, thin, easily fractured plate to the tympanic. The usual mammalian characters here 1revail: the coehlea, k, is indced relatively larger, compared with the semicircular eanals, than in other Mammals, and differs, in Delphinide, in the greater extent and form of the 'seala vestibuli,' which more resembles a complete tube than the half of such divided in the direction of its axis: it also describes an oblique sigmoid curve on leaving the vestibule before it comnences its spiral turns, which are two and a half in number, and mather more depressed than ustial. The aqueduetus cochlead is large in Delphinidec. The fenestra ovalis is bordered by a rim for the stapes. The fenestra rotunda is relatively large, and is divided, the lower canal passing along the wall of the scala vestibuli and conveying a part of the cochlear nerve. The acoustic nerve is large.

In M lan it has been found that the fall of a drop of water on that with which the meatus has been filled affects the air in the tympanum, so as to produce a sensible impression of sound. ${ }^{2}$ The membrane elosing the fenestra cochlere transmits its vibrations to the fluid filling the corresponding cone or 'scala,' which would be propagated at the apical commmication along the other cone to the sestibule: the Cetacca, with their meatus and ear-drum in a

[^59]like condition, would thus be affected by any sonorous vibrations that might be propagated to the tympanic cavity; and the share which the cochlca would take in their application to the acoustic nerves may explain the large proportional size of that part of the labyrinth and of the foramen rotundum.

In Sirenia the acoustic capsule is small, but dense in structure; it coalesces with the tympanic and mastoid, and the compound ear-bone is partly lodged in a large hemispheric cavity of the squamosal, and partly projects into the wide vacuity between that bone, the basisphenoid, and basioccipital. The otosteals are relatively large, especially the stapes, fig. 170, E (Manatus), which forms a massive, elon-
 gate, conical, subcompressed ossicle, truncate atop and obliquely perforated above its oval convex base: the incus is a much smaller bone with one crus thick, the other short and styliform: the malleus has a large irregularly globose head and a handle terminated by an abrupt point. The massivencss of the malleus of the Porpoise, ib. в, and Walrus, ib. c, has already been referred to: in the Scal, ib. D, the bone has lost less of the character of the mammalian stapes. In the Ornithorhynchus the avian type, ib. A, is retained, and the prolongation of the column has not developed the processes marking out the incus, as in the marsupial, fig. 171.

In Monotremata the acoustic nerve is expended upon a labyrinth remarkable for the small relative size of the semicircular canals and the free projection of their bony wall into the cranial cavity. The cochlea is wide, but not high; it is bent in two turns, divided as usual into a vestibular and tympanic scala. The foramen ovale is nearly circular and opens into the wide but shallow tympanic cavity. It is closed by the base of the columelliform stapes, fig. 170, 1 ; the incus being represented by a prolongation and expansion of the handle or neck of the columella, as in Birds. In this class such incudial expansion is joined to an obtuse angled triangular plate of cartilage, the longest side of which is attached to the membrana tympani. In the Ornithorhynchus the homologue of this cartilage is ossified, forming a bent plate which performs the office of the manubrium of the malleus and also contributes to the frame of the membrana tympani. This membranc is concave externally, and forms the inner
extremity of a long and narrow meatus auditorius externus, which is strengthened by a cartilaginous incomplete cylinder, protccted by a valve, but not provided with an external conch. This is equally wanting in the Lichidna, in which the external aperture of the auditory canal presents the form of a vertical slit, shaped like the italic f, one inch and a half in length: the margins of the slit are tumid, and support a row of bristles which protect and cover the orifice when rccumbent. The meatus is remarkably long; the tube is strengthened in this Monotreme by a series of incomplete cartilaginous hoops, connected together by a narrow longitudinal cartilaginous band, so that its structure closely rescmhles that of a trachea, fig. 301, α, α. The tympanic fossa is almost entirely encircled with a slender hoop of bone, vol. ii. fig. 197, 28, consisting of the anchylosed tympanic bone and mallcus. The portion which represents the tympanic bone, ib. a, and which can be separated from the malleus in the young subject, is a slender osscous filament bent into three-fourths of a circle, and placed upon the inner margin of the tympanic fossa, its concavity looking outward: this concavity is impressed with a fine groove for the insertion of the membrana tympani : the posterior part of the hoop passes across the commencement of the Eustachian canal, and terminates in a free point upon the posterior wall of the tympanic fossa: the anterior end of the hoop is applied to and usually anchylosed with the longitudinal bar of the malleus.

Only a small portion of this ossicle is contained within the cavity of the tympanum; the principal portion, ib. o, forms the cxtcrnal and part of the posterior boundary of the bony meatus auditorius, and is then continued forward in the form of a slender pointed process; the bone slightly expands as it extends backward, and its broadest part is abruptly bent inward until it nearly meets the postcrior end of the tympanic hoop. From the extrenity of this inflceted portion a slender compressed process, c, extends to the centre of the space encircled by the bony hoop: it is attached by its whole length to the membrana tymprani, and represents the handle of the malleus. At the posterior margin of the broad incurved part of the malleus there are two minute ossifications in an incudial cartilage: the short and simple columelliform stapes, $i b$. d, ascends vertically from the innermost of thesc tubercles, with the upper surface of which it is articulated; itw opposite extremity closes the foramen ovale in the form of an cxpanded plate. The membianu tympani is concave outwardly at its middle part.

In Mursupialia the chicf instruction from the ear-organ is
afforded by the suecessive steps by which the ordinary mammalian eondition of the otosteals is attained. In most, as in Pera-

Otostenls, Peramelea meles, the stapes is still colunelliform, fig. 171, e : its base oval, supported on an imperforate stem; its apex more expanded than in Monotremes, sending off the process, d, and developing the articular eup for the malleus, $a-c$. This representation of 'incus" hegins, as in Echidna, by a scparate ossifieation. In Macropus, it more eommonly retains its individuality, and the stapes, fig. 172, is minutely perforate above the dise: however, in same instanees, it also shows the proeess, d. The resemblanice of the malleus, fig. 171 , to the 'cartilago columelle' of birds is instructively elose in most marsupials: but the parts called the 'bead,' c, ' body,' b, and 'handle,' a, are definable. The largest proportional external ears are tbose of the Perameles lagotis, the shortest those of the Wombat. The tympanic cavity in Perameles is very extensive, but is formed by the sphenoid and petrosal bones; the tympanie bone is limited to the funetion of supporting the ear-drum, and forming the internal commencement of the meatus auditorius externus. The internal extremity of the tympanic eylinder projeets ohliquely into the posterior and outer part of the sphenoidal bulla. In many other marsupials the tympanic is prolonged into a bony support of more or less of the external ear-passage, the extent and direetion of whieh are noted in vol. ii. p. 340 : the species in which the tympanie cavity is supplemented by excavations in the squamosal are also there mentioned.

It is interesting to find, in some Bats, a retention of the columelliform confluence of stapes and incns, as in fig. 173, a (Vespertilin noctula). All insectivorous Cheiroptera likewise show the semicircular eanals projecting from the rest of the acoustie bony capsule, whieh is relatively large and free. The coehlea, however, departs far from the Bird-type, being of unusual relative size, and in some species describing more than three turns: divided as usual into the two scale, of which the tympanic one, as in Whales, is much the largest. The divisions of the meatus internus for the cocblear and vestibular branches of the nerve are unusually deep and distinct. The tympanic is here mainly subservient to the support of the drum-ncmbrane: it is deeply sunk into the tym panic eavity, and very concave outwardly. One branch of the stapes is thicker than the other; the two crura of the incus are
wide apart, and the artieular one is the longest. The ear-conchs are large, delicate; in some genera of Bats enormously expanded: they have been noticed, together with their vihratory movements, under the 'Organ of Touch.' In the frugivorous kinds the eonch is sunall; but with tragus and antitragus very distinet. A large and expanded malleus ohtains in Pteropus fuscus, with the proeess and handle of almost equal length. The stapes is narrower in proportion to its length than in true Bats.

In most Inscr-tiourn the bony semieireular canals projeet from the petrosal eapsule within the eranium, and conspieuously so in the mole, in whicll the petrosal is large and cellular. Part of the osseous wall of the lahyrinth conduets a vessel and nerve through the opening of the stapes, as shown in fig. 173, c. The

base of this ossiele is very thin at the middle; it has a wide opening: the malleus has an elongate tuherous head. The eareoneh does not projeet. In Shirews it is generally broad, thin, maked, and complex, rounded, and hut little projeeting. In Sorex fodiens, Pall., the free margin is folded and coneealed by the surrounding hair: in the Water-Shrews the proteeting hairs are longer; there are two folds within the eoneh; the upper one has is marginal row of hairs; the lower one-a kind of antitragus-ean be folded over the auditory eanal. When the outer margin of the conch is unfolded it reaehes to the level of the top of the liead. In the great groove-toothed shrew (Solenodon) the auricle is slaped as ahove, has the free margin unfolded, has fine short lairs on hoth surfaees; and the protecting folds of the meatus at the hottom of the eonel are relatively small, hut complex.

The lamelliform typo of inalleus prevails in all Shrews: it is figured from Sorex araneus, in fig. 173, $, ~ u, d$. In the Hedgehog the oval and round apertures of the labyrinth are approximate: the eochlea makes a slight projection into the tympanic eavity. The basisphenoid enters, as in Marsupials, into the formation of the tympunie envity, and the tympanic bone retains its freedom and is almost restrieted to the support of the drum-menlrane: the stapes, fig $173, \mathrm{D}$, bas slender, unequal erura, and
a wide aperture; it is as large as the incus, the attaebed crus of which is short, its free one long: the malleus equals both bones, and its head and body, as in Shrews, are unusually expanded. In Centetes it is less broad, with a longer process and shorter and thieker handle. The membrana tympani is almost horizontal; there is no bony meatus externus. The ear-coneh is short, broad, and rounded: two of its museles are derived from the strongly developed dorsal panniculus carnosus, fig. 7. In the Tenrec the tympanie extends into a short ' meatus externus.'

In the Rat (Mus decumanus) the orifices for the cochlear and vestibular divisions of the acoustic nerve open separately on the petrosal surfaee, not into a common 'meatus intcrnus.' In sections of the cranium of some Rodents I observed that the tympanic cavity was divided by a horizontal partition into an upper and lower eompartment, intercommunieating, in the Porcupine, posteriorly above the membrana tympani; this is situated in the lower compartment, the external meatus terminating in a narrow oblique slit at its upper part. In the beaver the upper compartment of the tympanum is much smaller; the bony meatus eontracts to a transverse slit as it approaches the membrana tympani, the planc of whieh is almost parallel with that of the meatus itself: from the membrane the hony meatus extends outward and curves forward and a little upward. ${ }^{1}$ In the Paca (Coelogenys) the horizontal septum divides only the antcrior half of the tympanie bulla into an upper and lower compartment, the meatus terminating, as usual, in the latter. The tympanie cavity is remarkably developed in most members of the present active timid order: it is enormous in Ctenomys. ${ }^{2}$ In the Chinchilla (Lagotis) the mastoid portion rises to the upper surface of the cranium, where it is girt by a slender hand of the combined superoccipital and squamosal: the petrosal part of the tympanic bulla describes a curve downward and baekward circumscribing a large foramen which opens into the bulla beneath the meatus auditorius externus. This is long, wide, funnel-shaped, with the outlet obliquely truneate and directed upward and a little backward. In the Capyhara the hony meatus externus is unusually contracted, is cleft helow, and hounded there by two small tuberosities. In the Hare the meatal part of the tympanie is long and ascends obliquely haekward from the frame of the drum-membrane. This is a long ellipse; the handle of the malleus extends from above down its long axis to ahout one-fourth from the lower border ; the fibres of the 'membrana propria,' diverging from nearly the

[^60]whole length of the handle, affect, for the most part, a transverse course. The stapes has a wide vacuity and slender crura, and in many Rodents (Squirrels, Cavies, Marmots, fig. 173, E) it is traversed, as in Moles, by the bony canal of a vessel and nerve. The ear-conch shows a wide range of variety, from some swimmcrs (Castor) and hurrowers (Mole-rat, fig. 174) where it is hardly visihle, to the Flying Squirrels (vol. ii. fig. 154), Jerhoas and IIares, wherc the ears are eonspicuous appendages to the head.

The Sloths contrast with the Rodents in the degree in which they enjoy the sense of hearing: the conch is rudimental; there

HaChyorgus maritimus.
is no bony meatus; the tympanic is reduced to its function as the frame of the drum-head, and long retains its individuality. The stapes is small and imperforate, in the two-toed species, fig. 173,F. The crura of the incus are thick, of equal length, very divergent. The handle of the mallcus is bent at the middle; it is short, as is also its process. The tympanic cavity extends into the squamosal and pterygoid.

In the Armadillos (Dasypus) the meatus internus is subspiral; the cochlea projects into the tympanic cavity: this is large, hut owes little to the tympanic bone. The malleus is bent, almost as in Monotromes, completing the circle for the drum-mombrane, and expanding for its attachment thercto: the part articulated with the incus is very hroad and flat. The ear-conch is contracted and tubular at its base; hut expands to a length of nearly two inches and a hreadth of one inch in Dasypus Peba, in which the apce is rounded off. In Orycteropus, also, the external ears are very large for a burrower. In the true anteaters (Myrmecophaga) they arc much smaller: the tympanic bone retains its freedom and is chiefly suhscrvient to the support of the drum-
membrane, which is placed very obliquely. In the pangolins (Manis) the ear-conch is presented by a small scale-like fold of thin integument.

In the Elephant the petrosal is small in proportion to the size of the animal: its apex is grooved by the entocarotid. The post-tympanic part of the mastoid meets the postglenoid process below and circumscribes the outer auditory aperture: the tympanic contributes the lower wall of the meatus, internal to which it expands into a 'bulla,' which unites with the petrosal. The tympanie cavity communicates with the air-sinuses so extensively developed in the cranium, fig. 154. The stapes, fig. $175, \mathrm{G}$, has a thin convexo-concave base; its branches are of unequal length; the incus and malleus are large in proportion: the drum-membrane is a full oval, the radiating fibres of its proper

Stapen, in Onoulata.

tunie diverge from the end and sides of the handle of the malleus, which, terminating near the great end of the oval, causes a corresponding diffcrence in the length of these fibres. The earconch is large, prodigiously so in the African species, and extremely mobile in both kinds.

In the Hippopotamus the free part of the petrosal is of a compressed pyriform figure; the tympanic is expanded, at the cavity, and prolonged obliquely and almost vertically upward into a meatal tube, which becomes almost concealcd between the zygomatic and paroccipital in the old animal. The otosteals are small and massive; the stapes has a very small perforation, fig. 175, A; the handle of the malleus is short: the conch is very small and little prominent.

The petrosal is small and rounded in the Hog-tribe; it retains its primitive individuality in the Babyroussa; not coalescing with the independently developed mastoid or other elcments of the otocrane. The tympanic contains air-cells and is produced iuto a long and narrow auditory canal obliquely upward and backward, with an external orifice smaller than the frame of the ear-drum. Both the base and aperture of the stapes are small, fig. $175, \mathrm{~B}$, and both the bandle and body of the malleus are short.

The conch is small and ereet in the Wild-bogs, larger and pendant in the domestic breeds.

In the Anoplothere tbe bony outer aperture of tbe ear was round and horizontal, the passage directed from the tympanum backward. 'The diameter of the semicireular eanals, as in most other Ungulates, is relatively less than in most small Lissencephalous Unguiculates. The lower ridge of the petrosal is less marked in Camels tban in true Ruminants. In these the stapes is ustally arched, widely open, with tbickisb crura, grooved internally, fig. $175, \mathrm{c}$, Bubalus, the base a long oval. In the Ox the membrana tympani is oval ; the handle of the malleus extends from above obliquely downward and forward to one-fourth of the long diameter from the small end, and lies near the anterior part of the circumference; consequently the posterior fibres diverging from the bandle are longest: in the stapideus muscle is imbedded at the passage of the carneous into the tendinous part, a roundish ossicle, about three-fourtbs of a line in long diameter, and one-third of a line in short diameter. Tbe tympanie bone is compressed and produced into a long auditory canal witb a trenchant lower border, and the outlet almost horizontal. Tbe ear-conch in Ruminants is commonly characterised by three vertical rows of hairs longer than the rest on the inner surface.

The external cars of the Horse, fig. 156, are most expressive apmendages, in their extensive, rapid and various movements. The tympanic bulla is divided by an unusually regular series of radiating plates. 'The stapes, fig. $175, \mathrm{D}$, is an elongate triangle, with erure of unequal thickness, a produced cervix, and narrow obloug base. Both the stapideus and tensor tympani bave thick fleshy portions: in the stapideus of the Horse there is an ossicle, smaller than in the Ox, and of a longish shape, thicker in the middle. The auditory clamber of the 'Tapir is small: the tympanie does not develope a meatus externus: the part supporting the membrane early coalesees witb the squamosal and the post-tympanie part of the mastoid. The base of the stapes is clongate, fig. 179, E : the head of the malleus is compressed, its bandle is bent. In the Rhinoceros, also, the tympanic, which is reduced to the frume of the membrane, is indistinguishable from the mastoid and squanosal with which it early becomes fused. The petrosal is very small. The stapes is triangular, with a moderate vacuity, und thick erura, ib. F: the crura of the incus are very sbort : the lead of the malleus is bifid, its handle mueb curved. The eonch is peclunculate, and expands into a moderate elliptical chamber, trom the upper part of the head. The tympanie of Hyrax is
swollen and continued into a short horizontal auditory tube: the base of the stapes is rarely ossified beyond the circumference: the crura of the incus are subequal and very divergent: the malleus bas a long handle. The ear-conch is sbort and round.

This appendage, in Carnivora, enlarges and clongates progressively from the eared-seals and bears to the hyenas; exceptiou being made for the aquatic Mustelidce (Lutra and Enhydra) which are seal-like in its smallness, and for the Fennees which show the opposite extreme; tbe character expressed by the subgeneric name Megalotis makes the Nubian species conspicuous in the old Egyptian frescos.

The seals offer a great contrast to the manatees in the relative size of the stapes, fig. 176, A, wbich is mucb smaller than the incus or inalleus; but it presents a similar massive character, with inequality of thickness of the crura and a small perforation, ib. and fig. 170, D. In the walrus, ib. C , the stapes is imperforate. In all Phocida, the body of tbe incus is tumid with short subequal brancbes: the body of tbe malleus expanded, compressed, and its handle short. The tympanic is large and dilated: it coalesces with the petrosal and mastoid, and together they occupy a large interspace between the basisphenoid, basioccipital and squamosal. It is interesting and suggestive to find that witb proportions and powers of the pinniform limbs that enable the Seals of the southern ocean to raise and move the trunk better than in most nortbern kinds, the ear-conch begins to be visible, whence the name 'Otaria' for such seambcars and sea-lions.

In Bears (Ursus) it has but a moderate perforation, fig. 176, c, showing the affinity to the Seals: the crura of the incus are of unequal length : the head of the malleus is suhcompressed: its handle of moderate length, and its process short.

In the badger (Meles) tbe stapes is small, wlth an clliptic base and moderate vacuity; the crura of the incus are of unequal lengtli: tbe malleus is large with a subcompressed head, and the handle terminally expanded. The tympanic is large and moderately inflated. The stapes of the kinkajou has a larger base.
and wider opening than in the badger : the incus is relatively small. In the wolverine (Gulo) the malleus is perforated near the origin of the process; repeating a character presented in some birds by its cartilaginous homologue. In the otter (Lutra vulgaris) the malleus, fig. $176, \mathrm{~B}$, is similarly perforated; the stapes is small, but adhercs to the musteline type of the hone and is more widely open than in Seals. In the civets the stapes is triangular, its base oval, the branches thick and grooved on the inner side: the crura of the incus are short and very divergent. In C'uuis the stapes, ib. \mathbf{D}, is subelongate, with the apex small, the base oval: the intercrural space is large. The handle of the malleus is grooved lengthwise. The stapes of the hyana has a slightly convex and longish oval hase; the crura of the incus are short: the malleus is rather curved, with a short suhcompressed handle. The ear-conch is large and long, without any fold of the external border: the tympanic is less inflated than in Felis. The cochlea is longer and more prominent in the dog than in the cat. In this type-genus of Carnivora the acoustic capsule and labyrinth are small, especially in the large species; but the tympanic cavity is expanded in all felines into a notable 'bulla' at the hase of the skull, formed chiefly hy the tympanic, which, after framing the drum-membrane, forms an oval external orifice, dccply seated in the narrow space betwcen the mastoid and zygoma. The stapes is a longish triangle, widely open, with the apex truncate and the base ohlong, fig. 176, , Tiger; it is shorter in the small Felincs. The crura of the incus are short and subequal; the body of the malleus is broad and long; its handle of moderate length, and, in some, terminally expanded. The conch is short, usually rounded, hroad and widely open; relatively largest in the smaller species; and disting uished in the lynxes by the apical tuft of long hairs.

The otosteals in Quadrumana, fig. 177, quickly approximate to the charncters of those in Man, ib., Homo: the stapes in Chiromys has a shorter and hroader summit; its base is firmly wedged into the foramen ovale. With the other otosteals it is proportionally larger than in true lemurs, hearing relation to tbe great development of the outer ears. These are large in all Lemurida: the tragns and antitragus are well marked in Stenops, but instead of anthelix there are two prominent and subparallel plates. The vastibule is shorter, and the cochlea closer to the semicircular canals in the Aye-aye than in Man. In the Lemuride the commeurement of the cochlen is wide, and its axis is parallel with a line drawn from the fore end of the ampulla of the upper semi-
circular canal, and meeting the latter just before its junction with the hinder semicircular canal. The stapes in lemurs is a more equilateral triangle, and the perforation is less than in monkeys: the incus has a longer and larger body in proportion to its crura: the malleus has a shorter process, fig. 177, A.
In Cebider, ib. в, the stapes gains in length, hut not mueh in vacuity: the crura of the incus are still short, and the extensions
17:

Lemur.

Cebus.

Cercopithecus.

Otosteals, Quadrumana and Man.
of the malleus are short in proportion to the mass articulating with the incus. The tympanum is large; the external meatus short and very wide. In catarrhine monkeys, ib. c (Cercopithecus sabaus) and in apes a nearer approach is made to-the proportions and shapes of the human otosteals.

There is a wider range of diversity in the external ear than in the more essential parts of the organ. In the nocturnal Aye-aye, in which the conch is relatively largest, there is a beginning of the helix above the meatal fossa, hut the rest of the margin is thin and unfolded: the tragus is not very prominent, the antitragus is hetter marked : a low fold represents the 'lower crus' of the anthelix, the upper one and the rest of that fold are wanting. It is only in the orangs and chimpanzees that the parts defined in the human auricle are represented. The free margin is reflected to form a 'helix,' hut not to the same degree as in Man: the 'anthelix,' beginning ahove with both 'upper' and 'lower' crus, is continued to the antitragus; hoth scaphoid navicular fosse are defined, as well as the cavity of the concha and the tragus: the lohulus is not pendant as in Man. In the chimpanzee (Troglodytes niger) the external ear is larger absolutely than in the great gorilla (Troglodytes Gorilla).

In all the figures of the otosteals previously given the stapes is drawn at right angles to its natural position, in which only a foreshortened view of the bone could he had, as in fig. 178, where it is shown with its base α applied to the 'fenestra of the vestibule.
()f the three semicircular canals the shortest, c, has a nearly horizontal position: the other two are more vertical : the upper one rises at the convexity of its curve, d, above the level of the upper surface of the petrosal : it is that whicb, with its arch-area, is most free in many lower Mammals. The lower vertical canal, e, unites by its upper extremity with the contiguous one at l; the common opening of which is shown at m, fig. 163. Wach of the semicircular canals expands at one extremity; but this is more marked in the membranous canals, fig. 165 , where the dilatations, a, b, c, are termed ampulle: ' the bony canals are wider in proportion to the membranons ones in Min than in most lymph is more abundant. sents the osscous labyrinth laid open, with the membranous labyrinth in situ of the human ear. Of the latter the part oceupying the vestibule is divided into the 'common sinus,' i, and the "sacculus,' l; each contains a mass of' otolithic powder, k, m, receiving filaments of the neoustic nerve: other brushes of nerve filaments gro to the ampullary ends of the semicireular eanals: the opposite non-dilated ends commmisiste with the 'common sinus ' cither ximply, at h, or ly the rompint termination g. The different positions of the three canals and the

Ogeous labyrinth nud otortmala, Human; magn. xoviu"
Mammals, and consequently the periThis is seen in fig. 179, which repre179

T.ett ofseons labyrinth Inid open, with membranous

respective waves of sound must strikc upon the rich supply of nerves at the ampullary ends, may have relation to the power

Nerves of ampuilas and ' simus communis;' magn, Human, xotx", of apprcciating the locality of the source of sound, or the direction in which it arrives. The branch, fig. $180, g$, to the 'common sinus' spreads thereon in a radiated expanse: the branches, o, p, to the ampullæ of the upper, a, and borizontal, b, canals, form a bifurcate cnlargement, p, upon tbeirouter surface. When the ampulla is laid open, as in fig. 181, the nervous fork is seen to protrude and push in a slightly curved eminence of the membrane, ib. A, upon which and the adjacent part of the ampulla the delicate ner-
 vous fibres resolve themselves into a kind of retinal pulp, ib. c.

The septal plate of the cochlea bas lent itself to a more favourable or distinct view of the termination of the acoustic fibrils. Fig. 182 shows the cocblear nerve, isolated. If a small bit of the spiral Ilate, fig. 183, A, be magnified, as at B , the filaments, b, are seen, as they diverge upon
 the osseous part, to subside or flatten on approaching the middle tract, aud there to anastomose in loops, c; the neurilemma, d, being continued on to blend with the membranous part of the spiral plate.

The human tympanic cavity, fig. 184, is formed by the petrosal, the mastoid, and the tympanic bone: in the dry skull ' t
communicates with the labyrinth by the foramen ovale, b, and forainen rotundum, \boldsymbol{c}; with the exterior of the cranium by the foramen

Temmanion of cochtear nerve, more highly magn, (A. ast, Blze), Xev1". auditorium externum : but all these apertures are closed by membrane in the rccent state. The other communications are with the breathing passage, back of the nose, or pharynx, by the eustachian tube, fig. 167, a, b, c, whereby air is conveyed into the tympanum, and thence passes into the mastoid cells. On the petrosal wall of the tympanic cavity is specified the 'promontory,' a, between the openings, b, c, the pyramid, d, the cminence of the 'fallopian aqueduct,' e, and the groove, f, for the internal ligament of the malleus.

The movements of the membrane closing the foramen ovale, b,

The faner wall of tho tymptian. xoyxt".

Sifumosn! and tympande trone with the

are brought into relation with those of the membrane closing the outer auditory opening by the chain of ossicles called ' otosteals.' The 'membrana tympani' is fixed in a groove of a bony frame which is so far ossificd as to form an incomplete ring, at the third month of human foctal life; at the sixth month it begins to coalesce with the squamosal, fig. 185, and then to grow outward, forming the wall of the bottom of the auditory meatus, fig. 188, g, the lower part of which is the last to be completcd. The drum, fig. 186, consists of a ' proper membrane,' with an inner layer
contributcdi by the lining of the tympanum, and an outer layer by that of the auditory passage. The proper membrane, moreover, is divisible into two layers, an outer one

186

a
Membrama tympani and inalleus, that. Eize; Maroan. a outer, binner view. consisting of fihres radiating from near the eentre, and an inner, thicker, less distipetly fibrous layer, but indicative of a contrary disposition of such fibres. The conspicuous radiating fibres pass from the circumference of the membrane to be fixed to the handle of the malleus. They show no characters of voluntary muscular fibre.

Anthropotomy distinguishes the following parts of the otostcals: - in the hammer, 'malleus,' fig. 166, A; a, head; b, articular surface (adapted to b of the incus); c, neck; d, handle; e, short process; f, long process: this latter is the most constant, and is called simply the 'process' in comparative anatomy; sometimes also 'Rau's process,' from the describer of its true shape and flattened end in Man : in the anvil, 'incus,' в; a, body; b, articular surface; c, short crus; d, long crus; e, lepticular process, epiphysis, or ossicle : in the stirrup, 'stapes,' D; a, head; b, neck; c, anterior crus; d, posterior crus; D, the base. The head of the malleus is lodged in the roof of the tympanum above the upper margin of the memhrane, and sends its 'handle' down to near its centre, as seen from without at a, from within at b, fig. 186. The body of the incus lies in the upper and back part of the tympanum; its artieular surface is directed forward, the joint with the malleus being a synovial one, with articular cartilage and a fibrous capsule: the short crus is directed backward towards the mastoid cells; the long crus descends almost parallel with the handle of the malleus, to articulate by means of the lenticular process with the head of the stapcs, fig. 178.

Savart's experiments ' show that the malleus participates in the oscillations of the tympanic membranc; that they are propagated to the incus and stapes, and thus to the membrane of the fencstra ovalis. Two muscles, prohably subserving volitional impulse through their proper ncrvous supply, act upon the otosteals; and from vihrations of the drum-membrane to which those bones are attached, they may he excited to act, also, automatically. The ' musculus internus mallei,' or ' tensor tympani,' fig. 167, e, arises from the custachian process of the alisphenoid, and from a groove in the bony part of the eustachian tuhe, and passing backward forms a slender tendon, which euters the tympanum, bending at
uearly a right angle, and is inserted into the handle of the malleus below the long proness. By the action of this muscle the handle is drawn iuward and forward, and the membrane attached to the landle is also drawn inward and is stretched. Besides the tension to which the membrana tympani is thus subjected; the base of the stapes is forced against the vestibular fenestra in consequence of the movement commuuicated by the head of the malleus to the incus, which tends to press inward the long extremity of the latter. The second muscle is the 'stapideus,' fig. 167, f : it arises from a groove in the 'pyramid,' fig. 184, d : it is inserted into the posterior and upper part of the head of the stapes by a slender tendon, which issues by the aperture in the summit of the pyranid, and procceds downward and forward to its termination.

The first effect of the action of this muscle will be to press the posterior part of the base of the stapes against the vestibular fenestra: at the same time the long branch of the incus will be drawn backward and inward, and the head of the malleus being, by this movement of the incus, pressed forward and outward, its handle will be carried inward, and the membrana tympani thus put on the stretch. On the other hand, the contraction of the 'tensor tympani' depresses the stapes and increases the tension of the fenestral membrane. The cessation of muscular action restores all the vibratile membranes to their state of indifference. The incus, by its firm connection with the mastoid cells, its intermediate position, and having no musele inserted into it, must be more limited in motion than the other two bones.

The stapideus muscle receives a nervous filament from the facial nerve. The tendinous insertion of the stapes is usually the seat of ossification. These muscles have no homologues in Vertebrates devoid of tympanum and tympanic membrane: they are as purely independent and superadded parts of the mechanism of that advance of the auditory organ, in Mammals, as are the ossicles they move.

The cartilage described by Meckel, and reprcseuting the mandihular hæmal arch in the embryo-skull, fiom the fibrous sheath of which arc developed the 'tympanic' at the upper and outer part and the mandible at the lower and outer part, has no such relation of a mould to the malleus. This ossicle, starting as a wart-like prominence from the wall of the tympanic cavity, is precociously developed on the inner side of Meckel's cartilage, carly showing its long process above and quite distinct from that cartilage or its capsule. The short crus of the 'incus' has the
same accidental relation to the embryonal, cartilaginous, byoidean, hæmal arch described by Huschke ${ }^{\text {a }}$ as extending from the mastoid or petro-mastoid to the upper or short horn of the hyoid (ceratos hyal), and from the outer part of the capsule of wbich cartilage the styloid process (stylo-hyal) is ossified. The stapes first appears as a compressed pyramidal wart from the petrosal or inner wall of the tympanum, projecting from a depression the bottom of which becomes the fenestra vestibuli : the malleus, according to Rathké and Valentin, ${ }^{2}$ projects, somewhat earlier, as a small wart from the back wall of the tympanum. Ossification begins first in the malleal wart by a point at the head, and by a second at the root of the long process. According to Meckel, the rudiment of the stajes has grown, at the thirl month of the human foetus, to a cartilage representing both stapes and incus, like the columella of Ovipura: as such it is ossified in the Ornithorhynchus. The ossification of the columella begins first in the 'incudeal' part, extending along the long crus toward the stapes, which is subsequently ossified, according to Rathké, ${ }^{3}$ from three nuclei, one for each crus and one for the base. As regards the vacuity, it does not exist in the cartilage, but is produced by the modelling absorption in the course of the ossification, transitorily representing the characters shown in the porpoise, seal, and bear. Abnormal arrests of development of the stapes in tbe human subject have been found to represent the imperforate avian columella and most of the above-cited mammalian conditions of the stapcs.

The membrane lining the tyinpanum, fig. 187, a, invests the small bones and the tendons of their muscles where they run free

Tympanum, otostcals and *chorda in the cavity. A fold of it fills up the space bounded by the crura and base of the stapes. The chorda tympani, also, in its passage across the tympanum, is envcloped by it. Lastly, it forms the inner borrowed layer of the membrana tympani, covering and adhering closely to the handle of the malleus.

The nerve called ' chorda tympani,' fig. 187, c, is continuous, as shown at p. 157, fig. 132, witb the facial and superficial petrosal nerves: it leaves the facial beforc the exit of the latter by the stylo-mastoid foramen, ascends in its own osseous canal, enters the tympanic cavity, crossing the inner side of the tympanic bone, as in birds, alvances between the handle of the malleus and cir". cxihi, p. 211. crlini", p. 120.
long cris of the incus, and descending to the 'fissura Glasseri,' makes its exit by the contiguous canal and foramen, descending mesiad of the ascending mandibular ramus to join the lingual nerve. Within the tympanum it receives filaments from the tympanic branch of the trigeminal. The facial ncrve gives a branch to the stapideus musclc. From a gangliom of the pneumogastric is sent off the 'ramus auricularis,' which is joined hy a filament from the glosso-pharyngeal, and is conducted by a groove in the jugular foesa to the 'arqueduet of Fallopius:' here filaments are sent to join the facial, and one to the nerves of the meatus and ear-conch. The tympanic nerve dcrived from the 'petrous' and 'otic' ganglia, entcrs the tympanum near the anterior margin of the 'fenestra rotunda,' traverses the groove on the promontory, and, near the 'fenestra vestibuli,' enters the osseous canal which leads to the surface of the petrosal in front of the 'hiatus Fallopii,' and passes to the oticeganglion. From this ganglion a nerve is sent to the tensor tympani.

The 'meatus auditorius extcrnus,' fig. 188, is formed by bone, g, for a short extent from the drum-membranc, k, is chicfly cartilaginous in the rest of its extent, lout is mombranous above and bchind, and thcre perforated by the orifices of the ceruminons follicles, \boldsymbol{b}, p. The canal has an oval area, is about an inch and a quarter in lungth, and is lined by a continuation of the skin of the auriclc. This skin becomes more delicate as it approaches the osscous part

Horlzontal acetton of the sudttury masange (nieatus nuditoritus externus). xchili". of the passage - extrenely so where it is continued on the onter surface of the membrana tympani. The skin of the auditory passage is covered with finc hairs, and these become developed at the outlet into long defensive cilia or car-lashes. The 'glandulac ceruminosa' arc small round or oval bodies of a hrownish-yellow colour, and very vascular. They are imbedded in the arcole presented by the deuse collular tissue which conucets the skin of the auditory passage to the suhjacent cartilage or bone. The ear-wax, cerumen, is, as is known, a thick orange-coloured or ycllowish-brown viscid substance, of an extremely bitter taste, and somewhat aronatic odour. When first secreted, it is a thin, yellowish, milky fuid. It is an accessory defeuco against the entry of insects into the meatus. The eardrum closes the meatus obliquely from above downward and iuward; the bony part, q, of the meatus forms a gentle eurve,
convex upward : the membrano-cartilaginous continuation, p, o, h, describes a stronger curve, concave upward, and this expands into the concha, c, of the ' pinna,' auricle, or
 external ear. Of this it will be only requisite to indicatc the parts which have received names in anthropotomy, since extended to anatomy generally. 'The fold or reflected outer margin, fig. 189, $a-e$, is the 'helix;' the subparallel eminence within, h, k, is the 'anthelix:' it is formed by the junction, at h, of the " upper ridge,' f, and the lower ridge, g, intercepting the 'navicular fossa,' o. The prominence, m, which might be viewed as the lower end of the anthelix, is called 'antitragus,' being opposite the projection called 'tragus,' l, which more directly defends the entry, r, to the neatus: q is the - conch proper, or cavity of the conclia: finally is the appendage

Aurtcular cartinge from behint, and txinhasio. museles. Xxyin". called 'lobule,' n. With the exception of the latter, all the other parts of the auricle are more or less formed by cartilage, figs. 191, 192, in which, besides the prominences already named, there may be observed the fissure, e, between the tragus and the beginning of the meatal cartilage. The skin covering the cartilage of the ear adheres intimately to its sculptured surface, less so to its back and circumference: the lower part of the hem-like fold of the helix is formed entirely by it; also the lobule, as has been already said. The skin of the auricle contains a numbor of sebaceous follicles, particularly in the concha and around the entrance of the auditory passage. Toward this the channels and inequalities of the ear tend ultimately to convey the vibrations of sound.

But palc and feeble representatives of the auricular muscles
are met with in the dissection of Europeans. The 'attollens auriculse ' is the largest, fig. 190, a, arising from the epicranial aponeurosis; its fibres converge to be inserted in the surface of the ear-cartilage next the head. The 'retrahens auriculæ,' ib. r., d, consists of two or three fascicles arising from the mastoid and inserted into the back of tbe conch. The 'attrahens auriculx,' ib. b, arises from the zygoma, and is inserted by a broad but short tendon into the helix near the tragus. Five groups of fihres have been made out in the auricle itself, and are described as the 'intrinsic muscles.' The 'helicalis major,' fig. 191, a; the ' helicalis minor,' ib. c; the 'tragicus,' ib. d; the antitragicus,' ib. e, and the 'transversalis auricule,' fig. 192, a.

All these muscles of the human external ear exemplify the Lamarckian law of degeneration from disuse. In the primitive

Front viaw of hurlcular cartlage, and intrinale mumelea, xovit".

192

Back wiew of aurlcular cartlage and transwersalis muscle. xcyiti".
nicn of the 'stone-period,' they probably existed in normal size and force.

In thus concluding the comparative anatomy of the organ of hearing, it has to be owned that, hitherto, the experiments of the accomplished and ingenious physicists and physiologists to that end have failed to demonstrate the relations of the various exquisite structures to sound, in the satisfactory way in wbich those of the cye are understood to relate to light. The vestibular part of the labyrinth may be inferred to detect the presence and intensity of sound, especially as conveyed through the external car and tympanum. It has been conjectured and argued that the scmicircular canals are concerned in forming a judgment of the direction of sounds. The cocblea receives those sounds which are propagated through the bones of the head, and is conjectured to be the medium of the perception of the pitch of notes, and of the timbre or quality of sounds. The tympanum
affords a non-reciprocating cavity for the free vibration of its memhrane and of the otosteals: it also renders the labyrinth independent of atmospheric vicissitudes. The otosteals conduct vihrations from the tympanic membrane to the vestihular one, and, under the influence of the muscles, regulate the tension of both these and of the cochlear fenestra, so as to protect the ear against the effects of sounds of great intensity. The external ear and meatus are collcetors and conductors of vibrations, and the former assists in enabling us to judge of the direction of sounds.
§ 217. Organ of Sight. - A. Eyeball. The organ of sight, like that of smoll, is wanting in a few Mammals, the eyehall being reduced to the size and condition of the 'ocellus' in Amblyopsis, and to its simple primitive office of taking cognisance of light, a filament of the fifth aiding the remnant of a proper optic nerve. The moles, especially the Italian kind, Talpa cecea, and mole-rats, exemplify this condition, in which, as in Spalax typhlus, the skiu passes over the ocellus without any palpebral opening, or loss of hair. The eyehalls are very small in the allied genus Bethyergus, fig. 174, and other rodent hurrowers: they acquire the largest ahsolute and proportional size in the Ruminant order. In no Mammal is bone developed in the sclerotic: in most a special ca-
 vity, called ' orhit,' is faslioned in the facial part of the skull to give lodgment to the eye-ball. One sees least indication of it in the hind quadrupeds ahove noted and ${ }^{\circ}$ in the ant-eaters: it is deepest, hest defined, and most completely walled in Man.

In all Mammals with the eyc developed for sight, properly so called, we recognise, as in the diagrammatic section, fig. 193, the fihrous capsule, a, callcd 'sclerotic coat,' the transparent fore part, b, called ' cornca ;' the vascular tunic, c, called ' choroid coat,' hecoming thickened, at d, hy the so-called ' ciliary ligament,' from which the 'ciliary processes' are, as it were, reflected backward upon the capsule of the lens, f : while the movahle curtain, or 'iris,' is continued onward into the space hetween b and f, leaving a central opening, called 'pupil,' for the admission of
light. The choroid, c, is lined by the expansion of the optic nerve ralled 'retina,' which cxtends to the 'ciliary proccsses,' and is kept outstrctched by the 'vitreous humour' contained in the cells of the delicate membrane called 'hyaloid,' which restrains its forward advance beyond the 'crystalline humour' or lens, f. The space in front of this body is occupied by the 'aqucous humour,' and is divided by the iris into an 'anterior ' and 'posterior chamber.'

The rays of light admitted by the cornea and pupil are slightly refracted in traversing the aqueous humour, and are subject to a greater degree of convergence in passing through the

Diugram of course of lummous raya In traverslig the humpurs of the eye.
denser lens, fig. 194; when, striking the retina at the back of the globe, they there depict the image of the visual object, inverted.

In crepuscular and nocturnal Mammals (Pteromys, Aye-ayc, Lemur) the cornea gains in size and convexity and the iris in breadth; the latter being eapable of admitting many rays through a very wide pupil, which also it can completely close against the glare of noontide. The convexity of the lens is concomitantly increased, and it approaches the spherical form most nearly, in bats and nocturnal rodents. The vitreous humour is less in proportion to the crystalline and aqueous humours in such eyes. In aquatic Mannmals, on the contrary, the cornea hardly projects (seals, whales), and there is little aqueous humour ; here, also, the convexity of the lens is in excess, fig. 195, d. In most diurnal and terrestrial mammals, the eyeball is subspherical, the cornea slightly projecting at the fore part, as forming part of a smaller sphere than the rest of the globe. The lcus retains much of the proportions shown in fig. 194.

In the Ornithorhynchus the eycball is small and spherical; the sclerotic fibro-cartilaginous, the cornea flabby, the retina thick: there is no trace of pecten or marsupium: the lens is two lines in transverse diameter, one line in antero-posterior diameter; the anterior surface is nearly flat, the postcrior very convex. The choroid is black, without a tapetum lucidum; the pupil is circular.

The anatomy of the eye offers no peculiarity illustrative of the affinities of the Marsupialia or of any other speciality in their economy save the nocturnal habits of the majority of the order. It is in relation to these habits that the lens is large and convex, the iris broad, the pupil round and very dilatable, and the cornea correspondingly large. The eye is relatively large in the swiftmoving, far-ranging Kangaroos: I found the dark pigment on both the inside and outside of the choroid; the ciliary processes are long: the lens is proportionally large. In the dead Kangaroo the radiated muscle of the iris is much contracted, and the pupil widely open. The eye is small in Didelphis virginiana; the pupil is round: the lens very convex.

The Insectivora have small eyes: the moles least of all. In a great pipe-toothed shrew (Solenodon) onc foot in length, exclusive of tail, the palpebral opening does not exceed tbree lines, aud there is no distinction between orbit and temporal fossa. Bats have the smallest eyes of all volant Vertebrates. In Rodents the size of the eyeball bears relation to the extent and swiftness of locomotion, and is greatest in Jerboidce and Leporida. The position of the eyes is always lateral, and by the prominence of the cornea they are susceptible in these timid quadrupeds of receiving the image of a pursuer. In the hare and other rodents the retina seems to expand from the divisions of a cleft termination of the optic nerve, within the eyeball. The pupil is round in most Rodents : in a dead Agouti it was a horizontal ellipse. In the squirrel the ante-retral diameter of the eyeball is to the transverse as 11 to 12: in the hare it is as 23 to $25 .{ }^{1}$ In all the order Bruta the eyes are relatively small: in the sloths the contracted pupil is a vertical slit.

In Cetacea the eyes are small, especially in relation to the bulk of the larger kinds: and the essential part of the organ is still less, owing to the thickness of the sclerotic, fig. 195, a, a, and this increases from the cornea, b, backward to the long,

A table of these dimensions of the eye in different Vertebrates will bo found in xn. iii. p. 390 ; also in Cvi"

Infundibular canal for the optic nerve, f. Outwardly the eyehall is subspherical; but, in the section figured, the contour of the cavity containing the vitreous humour, e, and lens, d, presents an ellipse, with the long axis transverse: in a Balanoptera of 65 feet in length, this axis measured $2 \frac{1}{3}$ inches, and the shortcr axis 2 inches: the posterior curve is regular; hut, toward the cornea, the sclerotic turns in quickly, c, flattening the fore part of the eye: the distance hetween the fore part of the sclerotic and the bottom of the eye heing hut $1 \frac{1}{4}$ inches. In shape the cornea is a longer ellipse than the eyeball, and the upper border is more curved than the lower: it is thinner at the centre than the circumference, and is soft and flaccid in the dead whale. The choroid has a silvery or hluish white hue on the inner surface: the darker pigment is limited to

Scetion of the cye of a Whale. the ciliary processcs and back of the iris. In a mysticcte whale (Balana) the cellulosity connecting the choroid with the sclerotic was of a light brown hue: the darker pigment extends from the ciliary processes a little way upon the choroid: and in hoth kinds of whale is so disposed as to ahsorh the rays of light and prevent them heing a second time reflected so as to disturb the spectrum on the hack of the retina. Of the numerous minute folds which constitute the ciliary zone every third, fourth, or fifth is enlarged, and produced forward to form a wrinkled corrugated proccss about three lines long, compressed and terminating obtuscly: the intermediate shorter processes are of varying length; the long ciliary processes are about seventy in number, in Balanoptera. The pcripheral radiated contractile fibres of the iris, and the central circular ones, are conspicuous on the back part of that curtain in whales: the front surface shows the wavy vessels radiating from arterial canals which surround the margin of the pupil which is transversely elliptical. Four equidistant cannls in the thick selerotic give passage to the long ciliary arteries and the vorticose veins: the two arteries which advance in the direction of the long axis of the pupil terminate in a canal bordering the pupil a little way from its margin : the wavy branches radinte from this canal, and are prominent on the
anterior surface of the iris. The quantity of the aqueous humour is small : the lens, d, is subspherical, flatter in front than hehind. The nucleus is seen in the posterior half and the surrounding laminæ are reflected inward and backward toward the middle of the anterior surface of the nucleus, leaving a funnel-shaped cavity in front of it which is filled hy less dense suhstance. In Hyperoödon the pupil is transverscly ohlong with a moderate projection of the upper margin, reminding one of the skatc's pupillary curtain (vol. i. p. 334). In the Grampus the choroid presents a greenish tinge : in the Porpoise it is a bluish white. In both, the pupil resembles that of Hyperoödon. The retina is thick.

In the Seals the sclerotic is chiefly remarkable for the sudden thinning at the part corresponding with the ciliary zone; it is moderately thick both in front and behind: the cornea is thin and flabby. The muscles of the eye-ball being inserted into the anterior part of the sclerotic may shorten the axis of the eye and hring the lens nearer to the back of the globe, thus adapting it to vision in air and water. In the Sirenia the eye is very small. In a Rhytina of 25 feet in length the eye-ball was but $1 \frac{1}{4}$ inch in diameter: it is ahout 1 inch in diameter in the Dugong: the pupil is circular.

The eye of the Elephant is about 2 inches in diameter, reminding one of that in the Whale by its small relative size: there is likewise an unusual thickness of fibrous or sclerotic substance at the entry of the optic nerve, and a similar extent of light-coloured tapetum within the choroid, which tapetum presents the fibrous type of structure: the pupil is round, the cornea is larger and more convex than in Cetacea.

In the Rhinoceros the eyebails are of small comparative size; in the Indian species which I dissected, ${ }^{1}$ each measured in antero-posterior diameter one inch five lines, and in transverse diameter one inch three lines. Some dark-hrown pigment lies under the conjunctiva for the extent of about a line from tbe circumference of the cornea: the same kind of pigment is also deposited upon the outside of the nictitating eyelid, and over a great part of the inner surface of the same part, covered of course by a reflection of the conjunctiva. The trunks of the venæ vorticose perforate the sclerotica half-way between the entry of the optic nervc and the edge of the cornea: their disposition, with the flocculent hut somewhat firm connecting tissue of their radiating branches, presented that structure which most nearly resembled the figures given by Mr. Thomas of the parts he

$$
\mathbf{v}^{\prime \prime}, \text { p. } 56 .
$$

describcs as ' processes having a muscular appearance, with the fibres running forwards in a radiated direction." On removing the antcrior part of the sclerotica, whilst the eye was suspended in spirit, hoth the vitrcous humour and the lens rolled out; and the capsule of the lens showed no particular mark of the insertion or fixation of the ciliary processes; their impressions, in remains of pigmental mattcr, were perceptible on the anterior part of the 'eanal of Petit.' The transverse diameter of the lens was six lines, the autero-postcrior diameter four lines. The pigment was not confined to the inside of the choroid; hut in both Rhinoceroscs dissected lay me, I found on the ontside of the chorion much loose cellular tissue, with dark pigment: this colomred flocculent tissue concealed at first the vena vorticosx, evell when injected. The sclerotica is one line thick at the back part of the eyehall; and is thinnest near the middle of the ball, hecoming thicker towards the cornea, which is two lines thick. The choroid adheres pretty strongly to the back part of the sclerotic, around the entry of the optic nerve, both by the entering vessels and by the tenacity of its outer floceulent coat, especially where the vessels penctrate the sclerotica. There is no tapetum lucidum. The lower eyelid has a special depressor muscle. ${ }^{2}$

The Tapir has a proportionally small eyeball. Of the Perissodactyle group the Ilorsc has the largest eyes, in relation to its greater powers of locomotion. They are lateral, prominent, capable of dirceting against any object in the rear, without turn of the head, the outkick of the lind-leg. The cornea inclines to an oval figure, the larger end being toward the nose. The tapetum is of a light hlue colour, and fibrous structure: the ciliary proocsses arc long; more numerous than in the ox: the pupil is transversely ohlong, rather wider on the nasal side, with a few processes from the upper margiu.

In the Hog-tribe the cornca is oval, with the large end interual, or toward the nose; the sclerotic is thin; the pupil is round; the cyeball rather larger than the palpehral opening would indieate; the inuer figure of the choroid is of a shining chocolate colour in the common Hog, but much darker iu the lablyronssa. The eyes in Rumiuants are large, lateral; the transvcrse exceeds the fore-and-aft diameter of the eyeball. In the ($1 x$ the latter is to the transverse diameter as 43 to 49 ; in the shecp as 32 to 35 . The ciliary processes are short in most, especially iu some Λ ntelopes: the retina extends far forward.

$$
\text { ' cvi', p. 15", pl. x., firs. 1-3. } \quad \mathrm{v}^{\prime \prime}, \text { p. } 56 .
$$

The tapetal layer is fibrous, extensive, of almost metallic brightness; in most of a fine green colour; in a few of a bluish tint, with certain portions, generally toward the bottom of the eye, white: in the Ox the tapetum occupies a broad transverse tract of the choroid. The pupil is transversely oblong, witb the upper border somewhat festooned in the Camel, Ox, and Sheep.

In the Caruivora the relative size of the eyes increases from the Bears to the Cats. Tbe tapetal layer exists in most, and consists of obscurely nucleated cells. In tbe nocturnal Badger it is silvery white; in the Dog and Wolf whitish, edged with blue; in most felines of an amber, or golden, or greenish hue, with a lighter tract of erescentic form, curving round the lower part of the entry of the optic nerve. In the Lion, the greater extent of tapetum is below the nerve; ouly a small portion above: the general form of the whole tapetum is broadly crescentic in Felines. In the small crepuscular Cats the pupil contracts to a vertical slit; in the larger diurnal felines it is circular. The optie nerve penctrates more nearly the axis of the eyeball in Carnivores than in Ruminants: the ciliary folds are long, especially in the Lynx, in which the retina does not reach the meridian of the eyeball: it is also very thin.

In the nocturnal Quadrumana the main modifications of the eyeball have been noted; the large and prominent cornea, the unusually convex lens, the broad iris and circular pupil, and the patch of tapetum, are well exemplified in the dissection of the eyes of Stenops gracilis, in xx, vol. iii. p. 158, no. 1706. I found also a delicate tapetum at the back of the eye in Chiromys; but the light is less brightly reflected from the living eyes of the Ayeaye than from those of the slow Lemurs. The lens is almost spherical in Perodicticus. In no Lemurine has the retinal spot been found; but there seems to be a minute fold or crease in its place. This spot, fig. 201, A, due to a thinning there of the retina, defincd by a yellowish border, accompanied, usually, in the dead eye, with a slight crease, and situated in or very near the axis of vision, exists in the catarrhine Quadrumana as in Man. The sclerotie seems, in most, to be somewhat thinner than in Man and to take more readily the stain of the choroidal pigment after death. In no Quadrumana above the Lemurs is there a tapetum.

The human eyeball is in some individuals a sphere; in most the antero-posterior is rather less than the transverse dia-
meter. ${ }^{1}$ The selerotic, or 'tunica albuginea,' is of a fibrous structure, and so much as is visible at the fore-part of the globe forms the white of the eye: ' being thinner here than behind, the dark ehoroid appearing through it sometimes gives it a bluish tint; it resumes thickness near the cornea. This, fig. 193, b, forms the segment of a smaller spliere than the rest of the eyeball; it is perfectly transparent in the living eye, and consists of a proper tunic, a most delicate continuation of conjunctive memlbrane, fig. 207, g, over the outer surface, and an elastic layer on the inner surface with which the membrane of the aqueous humour is blended: the proper tunic is laminated. It is intimately connected with the sclerotic; the elastic layer is eontinued beneath the selerotic, "as if slipped between it and the ciliary ligament,' fig. 193, d. The choroid is the vascular tunic of the eye and is stained, in Man, within and without with a deep brown or black pigment: the outer surface is floceulent, through the attachment to the cellulosity uniting it with the sclerotic: the inner surface is smooth, highly and minutely vascular: this surface, artificially separated from the outer surface supporting, as in fig. 196, the trunks and larger branches of the vessels and nerves, was termed the 'tunica Ruyschiana.' Thearteries supplying the choroid are the "short ciliary:" the " long ciliary arteries are chiefly distributed to the iris, and also give anterior branches to the selerotic. The veins of the choroid converge in arches to four or five truuks which pierce the selerotic at equal distance from each other behind the middle of the eyeball : from this disposition, shown in fig. 196, they are termed 'vena vorticosæ.' The choroid rcceives minute branches from the ciliary nerves in their passage to

Outer burface of rhnteul hath Irls; Man. maghiled. crab'。 the iris. On the outer part and anterior border of the choroid is a circle of grey softish substance, applied, like a band, round the margin of the apcrture into which the iris is fitted: it adhercs elosely to the sclerotic at the line of the attachment of the cornea. 'The ciliary nerves penetrate and subdivide in this zone, which is termed 'ciliary ligament,' fig. 197, a. On the inner surface of the anterior border of the choroid is a circle of longitudinal folls of that membrane, called "eilin'y processes,"

[^61]collectively • ciliary zone,' or " corpus ciliare,' fig. 198. Of these folds, in Man, there are fron sixty to seventy, about two lines in length, but alternately a little longer and shorter. The free central or internal border of the fold sinks into the contiguous hyaloid membrane, round the cirermference of the crystalline

Ciliars ligament and inls, cy".

Clllary zone, iris, and yuph, from withln; Hunan, magn. OFI":
lens, the antcrior euds of the processes project into the posterior chamber of the aqueous humour, touching the iris, and bounding peripherally that chamber. The circular screen or curtain attached at its periphery to the ciliary ligament, and interposed

199

Anternor sarrace of fitis cv". between the cornea and lens is called the "iris;" its aperture is the 'pupil,' which is nearly in the centre of the disc, but a little toward the nasal side. The anterior sur-' face of the iris, fig. 199, presents linear elevations, irregular in size and number, converging to a circular one about $\frac{1}{2} \frac{1}{2}$ th of an inch from the margin of the pupil: from the - circle ' numerous minute stric converge to the margin itself. The anterior surface is the seat of that variety of colour, to which, in common parlance, the colour of the eye itsclf is attributed. The posterior surface of the iris is covered by a thick layer of black pigment which when removed exposes a number of lines converging from the ciliary folds to
within a short distance of the pupil; this is inmediately encircled by a band, $7_{2}^{1} \frac{1}{2}$ th inch in breadtle, which is the orbicular or ${ }_{\mathrm{s}} \mathrm{l}$ hincter musele. The radiating lines, by analogy with the eye of the Whale and Giraffe, indicate the 'dilator fibres' of the pupil. The peculiar contractile office or muscular character of the iris calls for the large supply of nerves; it is also highly vascular. The two long ciliary arteries which penetrate the sclerotic posteriorly, advance horizontally, about tbe middle of the eycball, between that membrane and the choroid, to the iris, where each divides into two branches, which proceed round the circumference and inosculate with cach other, thus forming an arterial circle, from which numberless branches converge to the pupil. The nerves are derived from the third and fifth pairs, with communieations from the sympathetie, and consequently laving conncctions with the sixth. They penetrate the sclerotic posteriorly, and advance towards the iris between the sclerotic and choroid, about fifteen or twenty in number : arrived at the ciliary ligament, they divide at acute angles, as in fig. 197, and may be traced through this structure until they are finally lost in the iris. The optic nerve, on cntering the orbit, bends a little forward and enters the eye about an eighth of an inch below and internal to the axis of the globe: it undergoes a constriction, as in fig. 200, a, just bcfore piercing the scle-

Oplte aerve and retina. $\mathrm{v}^{\prime \prime}$. rotic: on entering the cavity of the eyeball the neurine forms a slight prominence, before expanding into the shcet called 'retina.' The braneln of the ophthalnic artery which penetrates the optic nerve before it reaches the eye, emerges from the centre of the terminal prominence by the 'porus opticus,' and ramifies, as 'arteria centralis retinæ,' upon the vascular layer adherent to the hyaloid membrane of the vitreous humour. The microscopic character of the retina itself is given in vol. i. p. 332. It is covered externally by a delicate transparent membrane, by which the retina is rommected with the Ruyschian layer of the choroid. In the Hurse, Ox, and Shecp, this membrane is more easily demonstrated than in Mim, where it is obscured by the black pigment: the
subjoined cut (fiys. 201, B) gives Dr. Jacob's illustration of this membrane as partly reflected from the back of the retina. In the centre of the retina and axis of vision is a speck which retains its transparency when the rest of the nervous expansion has become opaque after death; this speck is margined by a yellowish tint; and in the dead eye one or more short delicate folds pucker the contiguous retina. It was regarded as a natural perforation by its discoverer, and has been called the 'foramen of Soemmerring :' it is a modification of the retina. Tbe relative position of the 'macula centralis' to the termination of the optic nerve, whence the branches of the arteria centralis diverge, is shown in fig. 201, A. The retinal neurine terminates at the posterior margin of the ciliary body. The vitreous humour, which mainly main-
efl

A. "Back of rotina, showing macula centraifs and porns optleus.
B_{n} 'Jacob's membrane' reflected from the retinan ove", taius the sphericity of the eye, consists of water, 98.40 ; chloride of sodium witb a little extractive matter, 1.42 ; albumen, $0 \cdot 16$; a substance soluble in water, 0.02 . It is lodged in the cells of the hyaloid membrane, receives in an anterior depression the crystalline lens, fig. 202, a, from the circumference of which it is extended to the anterior extremities of the ciliary processes, shows their impressions at c, and bounds the posterior chamber of the aqueous

Vitreous humour with hyalold mewhrane and lens, showing the 'canal of Petit' and corona ciliarla; liagn. cy". humour. The cellular structure of the part of the hyaloid at the circumference of the lens when demonstrated by inflation or injection, produces the appearance shown at b, called by its describer Petit, 'canal godronné: ${ }^{\circ}$ the folds of the hyaloid in relation to the ciliary processes form the - corona ciliaris,' ib. c. In the human crystalline lens the anterior is to the posterior convexity as 4 to 3 : the transverse diameter is from 4 to $4 \frac{1}{2}$ lines, the thickness or axis is about 2 lines. The degrees of convexity of both surfaces vary at different periods of life. In fig. 203, A shows the lens of a six-months' foetus, B, of a child of six ycars, c, of an adult of middle age: after fifty
it becomen rather flatter and also firmer in texture. The density of the lens is not the same througbout, the surface being nearly Huid, while the centre scarcely yields to the pressure of the finger and thumb, cspecially in advanced life. The eye is thus rendered achromatic. The specific gravity of the lens to water is as 10024 to 10000 : the refractive power of the centre of the lens is to that of water as 18 to 7. Brewster crystalline lens, hurana, at diferent found the following to be the refractive

 powers of the different humours of the human eye, the ray of light being incident upon them from the eye: " aqueous humour, $1 \cdot 336$; crystalline, surface $1 \cdot 3767$, centre $1 \cdot 3990$, mean 1.3839 ; vitreous humour, 1-3394. But as the rays refracted by the aqueous humour pass into the crystalline, and those from the crystalline into the vitreous humour, the indices of refraction of the separating surface of these humours will be, from the aqueous humour to the outer coat of the crystalline, 1.0466 ; from the aqueous humour to the crystalline, using the mean index, 1.0353 ; from the vitreous to the outer coat of the crystalline, 1.0445 ; from the vitreous to the crystalline, using the mean index, 1.0332.' If the lens with the capsule attached to the hyaloid membrane be placed in water, the following day it is found slightly opaque or opaline, and split into several portions by fissures extending from the centre to the circumference, as in fig. 204, B. If allowed to remain some days in water, it continues to expand

A, Cryntaline leun, mutural elate; b, Derlpherat nofter bortion flssured by action of water: C. resolution of nucleus into filures, magnifled. ov". and unfold itself; and if then transferred to spirit and hardened, it may be unravelled by dissection, fig. 204, c , and its fibrous structure demonstrated.

In Man and Mammals generally three septa diverge from each pole of the lens at angles of 120°, the septa of the posterior surface bisecting the angles formed by the septa of the anterior surface: the fibres diverge from these septa as sbown in fig. 205. The denticulated structure by which the fibres are laterally united, or interlock, is shown in vol. i. p. 333, fig. 217, in the crystalline lens of a cod. The human lens is inclosed in a transparent, firm, elastic capsule. A brancb of the 'arteria centralis retinæ' VOL. 11 t .
attaius the back part of the capsule, and ramifies richly thereon, in the foetus.

The aqueous humour lodged in the chamber between b and f, fig. 193, has a refractive power very little higher than that of water; 100 purts consisting of $98 \cdot 10$ of water, $1 \cdot 15$ of chloride of sodium, and 0.75 of extractive matter soluble in water, with the mercst trace of albumen : it is secreted by the membrane lining the chamber.
B. Appendages of the Eye.-The muscles moving the human eyeball are the four straight and two oblique ones. In lower Quadrumana a few fibres

205

Arnugement of flores of lens, Manmal. cexint. scem to be detached from the inner part of the origin of the recti to be inserted into the sclerotic nearer the entry of the optic nerve. This is the remnant of a stronger muscle, which in other Mammals, with few exceptions, surrounds the optic nerve, expanding, funnel-wise, as it approaches the back of the eyeball: it is called the ' choanoid muscle,' or suspensor oculi, and is supplied by a branch of the sixth cerebral nerve. In Cetacea it is divided into four short muscles, paralleling the longer recti, but of greater breadth and almost continuous: tbey are inserted into the sclerotic behind the transverse axis of the eye-ball. The narrower and longer recti muscles expand to be inserted anterior to that axis. The superior oblique arising, with them, above the foramen opticum, has the course of its fibres changed, as usual, by a pulley at the upper and fore part of the orbit, but in passing through the substance which serves as the trochlea, the muscle is only partially tendinous and little diminished in diameter. The inferior oblique is long, and broad at its insertion.

In the Rhinoceros the fasciculi of the choanoid muscles have coalesced into two masses: in most quadrupcds they form a single 'infundibular snspensor.' The cellular tissue is more or less condensed between the insertions of the choanoid and the fleshy parts of the recti muscles, and in Man between these
and the eyehall, the recti perforating this layer or sheath hefore expanding to their insertions. The upper one, 'rectus superior,' directs the cornea upward, the 'rectus inferior' downward, the 'rectus externus' outward, the 'rectus internus' inward or toward the nose; the 'recti' antagonising, or combining with, each other in all the degrees required to make the cornea assume any intermediate direction: they can thus produce the movements analogous to the 'circumduction' of a limb; in doing which the centre of the cornea descrihes a circle. For 'rotation' of the eyehall, in which this corneal centre remains fixed as the fore end of an axis, the two muscles called 'ohlique' are added.

In Mammals the 'superior ohlique' arises from the hack part of the orbit with the recti, advances to the upper part of the rim, glides there through a tendinous pulley, returns toward the eyeball, is reflected hackward and outward beneath the rectus superior, and is inserted into the sclerotic between this muscle and the rectus externus. The inferior oblique takes its origin, in advance of the eyehall, from the orhital plate of the maxillary; passes outward and hackward beneath the 'rectus inferior,' and is inserted into the outer and back part of the sclerotic. The two ohlique are so disposed as to act, when antagonising each other, in rotating the eyehall on its antero-posterior axis: when combining in action they tend to draw forward the eye, and thus antagonise the recti muscles collectively. The trochlear arrangement of the supcrior ohlique is peculiar to the present class.

As habitually antagonistic muscles have nerves from distinct sources, the rectus ahductor is supplied by the 'sixth ' nerve, the rectus adductor hy the 'third.' The superior ohlique, which opposes the inferior one in most movements, is supplied hy the 'fourth' nerve. As the depression of the eyehall can he performed by the supcrior ohlique if the downward motion he dirceted by the lateral muscles, it suffices that it should have the same separate nerve (fourth) for that motion as for antagonising the inferior ohlique, which, like the upper, lower, and inner recti, is supplied hy the 'third nervc.' '

In Cetacea the eyelids are represented hy a continuous circular fold of the skin, leaving a round opening in front of the eye with a narrow margin unprovided with eyelashes. This 'palpebral' opening is closed hy an orhicular muscle or sphincter, and is expanded hy four hroad, thin, almost continuous muscles (in the Porpoise). The 'tunica conj:anctiva,' fig. $195, g$, lines the circular

[^62]eyelid, and is reflected upon the eyeball, near its middle. At the line of reflection are the orifices of a zone of "Meibomian " follicles: an aggregate of somewhat more complex ones at the inner side of the eyeball represents a 'Harderian' gland. There is no true lacrymal gland, nor any 'third' or nictitating lid. The presence of this eyelid distinguishes the Sirenia from the Cetacea; ${ }^{1}$ and the Harderian gland is more distinctly developed. In Seals the circular eyelid is supplied by four dilators and a sphincter, as in Whales; but an external groove at the inner canthus indicates the division of the horizontal eyelids: the nictitating membrane is well developed and the Harderian gland at its base is large. In the Elepbant the "third 'or vertical eyelid is supported by a flat, slightly curved cartilage, which becomes thinner as it is attached to the concave free margin: the Harderian is continued as in Cctacea, from a group of smaller mucous glands, which have many excretory orifices upon the margin of the third eyelid, but its principal duct terminates upon the inner surface near the base of tbat lid. There is a special ' nictitator muscle, the fibres of which pass at first over the base of the membrane in a curve, then form an angle to include the extremity of the nictitating cartilage, which is consequently moved in the diagonal of the contracting forces, and pushed forward and outward over the front of the eyeball, In the Rhinoceros the lower eyelid has a depressor muscle. The Harderian gland is large in the Hog-tribe; its duct opens upon the lower part of the inner surface of the membrane: it co-exists with a "caruncula lacrymalis." There is a small lacrymal gland the duct of which opens upon the inner surface of the upper eyclid: the margin of this is provided with a row of stiff, unequal cilia, beneath which are orifices of the 'Meibomian glands.' In most Ungulates the base of the third eyelid is buried in a fatty and fibrous substance. In the Sheep a large "caruncula ${ }^{\text { }}$ coexists with the Harderian and lacrymal glands. The upper eyelid lias cilia in all Ruminants. The margins of the lids and the conjunctiva are charged with hlack pigment in the Giraffe; and the cilia of the upper lid are very long.

The eye is protected, in the Ornithorhynchus, by a cartilaginous plate continued from the upper part of the orbit, comparable with the palpebral plates in the crocodile. Both the water Monotrcme and the Echidna have a well developed membrana nictitans: there are also an upper and a lower eyelid, each of which has its proper apertor muscle. In Marsupials, the cxvif". p. 28.

Harderian gland and the retractor oculi co-exist, as usual, with the nictitating eyelid. This is largely developed, and the conjunctiva covering its free margin is stained black. Beneath the upper eyelid, in the Kangaroo, there is a cartilaginous ridge baving the conjunctiva reflected over it. There are no palpebral cilia in Didelphis.

Tbe Harderian gland subserves the movements of the tbird or nictitating lid, and with the cboanoid muscle, are present in all quadrupeds up to the Quadrumana. In these, as in Man, the third lid is reduced to a small fold, fig. 206, g, at tbe inner canthus, within and projecting a little beyond the vascular protuberance called 'caruncula lacrymalis,' ib. f : the Harderian gland ceases to be developed : the true lacrymal gland at the upper and outer part of the orbit, fig. $209, k, l$, is large. In fig. 206 the orifices of the ' tarsal ' or ' meibomian' glands

The erellds of the left slde opened, xchin', are shown at a, a. In Man and Quadrumana the upper of the two borizontal lids is the largest and most movable, coutrary to the case in most lower Mammals. The fihrous tissue within that fold of skin is now condensed to form a 'tarsal cartilage,' largest and most conspicuous in the upper lid, of which it forms the basis: its straight and thick border constitutes the ciliary margin. In the lower lid the so-called cartilage' is hardly more developed than it is in both lids of quadrupeds. The

Sectlon of tyelldy whinwing textent of conjunctive membratue and ducts of lecrymal gland. 0x:- meibomian follicles extend into tbe fibrous (lower lid) or fibrocartilaginous (upper lid) tissue. The muscle closing the lids is the 'orbicularis palpebrarum,' fig. 29, o. The upper lid is raised by a special muscle, 'levator palpebre supcrioris,' whicb extends from the upper border of the optic foramen, to the tarsal fibro-cartilage. The lower lid on the relaxation of the 'orbicularis' whicb draws it up, falls down hy its uwn elasticity : rarely in Mammals has it a proper
depressor. The outer border of the ciliary margin of both lids is provided, in Man, with eye-lashes, fig. 207, the orifices of which, when plucked out, are shown at h, fig. 206. In this figure b is the 'outer canthus,' c the 'inner canthus,' d lacrymal papilla or 'punctum' of the upper lid; c, the same of the lower lid; f, the lacrymal caruncle ; g, the semilunar fold representing the 'third eyelid,' and now forming the bottom of the 'lacus lacrymalis' within the fissure of the inner canthus; i, the eyebrow. In the section of the outer parts of the eyelids, in fig.

208

Lacrymal glana, left side. cx". 207 , is shown the line of reflection of the conjunctive mombrane upon the eyehall, g, at the upper and outer part of which linc open the 9 to 12 orifices of the ducts of the lacrymal gland, into which hristles have heen inserted.

The gland, fig. 208, consists of an upper portion a, a, which is lodged in the shallow depres. sion at the outer side of the roof of the orbit, and a lower thinner portion, b, b, which is a looser aggregate of lohules extending into the substance of the upper eyelid. The fluid contributed by the lacrymal and meibomian glands to the conjunctival cavity, after heing spread hy the winking movements of the lids over
 the front of the eyehall, is carried along the groove formed hy the margins of the closed lids to the inner canthus, and is there imbibed hy the 'puncta lacrymalia,' fig. 209, α, α. From each of these orifices a canal is continued, ascending in the upper, descending in the lower lid; in hoth, then, hending at an acute angle and converging to a long dilated receptacle, f, g, called 'lacrymal sac.' The large blind end, e, is directed upward; the sac gradually contracts, h, to the ' nasal duct,' i, which opens into the inferior meatus, fig. $152, k$, of the nose. In all Mammals with divided or horizontal eyelids there is a similar provision for carrying off the waste luhricating fluid of the eyehall. In Man, in whom the true lacrymal gland is relatively largest, its peculiar secretion - the tears - when emotionally secreted in excess, nevflows the palpebral groove.
r. Parallel between eye and ear.-The author of the excellent articles, $\mathbf{x C V I I I}^{\prime \prime}$ and $\mathrm{CX}^{\prime \prime}$ has drawn a parallel between the eye and ear which, in the main, appears to me to express justly the 'serial homologies ' of the parts of those sense-organs. I include, howcver, the consideration of the cavities in which tbey are respectively lodged. The 'otocrane ' parallels the 'orhit.' Tbe homology is masked by the deeper situation of the former, its communication rather with the interior than with the exterior of the cranium, and its more frequent coalescence with the fixed hony sense-capsule which it includes. In some Mammals, however, that capsule retains its primitive and typical distinctness, and can he removed from the otocrane. ${ }^{1}$ This is, then, seen to be formed by the exoccipital and alisphenoid, the mastoid, the tympanic, and, in Mammals, the expanded and intercalated squamosal. The primitive bony nuclei of the capsule which appear round the fenestra rotunda, on the outer end of the upper vertical semicircular canal, and on the middle of the hinder vertical semicircular canal, extend to form the bony labyrinth, and are wholly independent of the centres from which the ossification of the mastoid or ot.ter otocranial bones hegins. The addition of hony matter envelopes in various degrees the first formed part of the capsule, called ' bony lahyrinth,' and constitutes, therewith, the ' petrosal.' This capsule of the ear corresponds with the selerotic in the eye; which, in many Vertebrates, becomes the seat of ossification, and in some (Cetacea, e.g., fig. 195, a) is thickened as much out of proportion to the nervous and vascular parts of the essential organ it contains, as is the petrosal. The orifice by which the optic nerve enters the eye-bulb answers to the foramen auditorium internum. The membranous labyrinth answers to the parts of the eyehall within the sclcrotic. The delicate vascular exterual tissue of the lahyrinth, frequently exhibiting pigmentspccks, answers to the choroid, the expansions of the acoustic uerves to the retina, the endolymph to the vitreous humour. The fluid in the space between the sclerotic and choroid, including the aqueous humour, rcpresents the perilymph. Wharton Jones compares the 'lens' to the 'otolites."

If we compare the conjunctival space in front of the eyeball with the tympanic cavity, and the duct therefrom leading to tbe nose with the eustachian tube, then the anterior opening of the sclerotic will answer to the fenestra vestibuli, and the membrane closing it, or cornea, to that which closes the fenestra. In mammals the open movable eyelids seem very remote analognes to the

[^63]external membrane closing the tympanum : but they are superadded developments to the true serial homologue of the tympanic memhrane, shown in Reptilia, vol. i. p. 338, 339, fig. 220; and which disappears or blends with the later added developments of integument with special cartilages, muscles, and glandules, and which truly parallel tbe 'pinna' of the ear. In the eyelids, the meibomian follicles repeat the ceruminous ones, and the eyelashes, the cilia which guaid the entry to the meatus auditorius. Wharton Jones compares the muscles of the eyehall to those of the otosteals, and I concur, with him, in accepting the opinion of Weber as to. the special relation of both to their respective Organs of Sense, and as to their being parts superadded to the elements of the vertebral skeleton. But I helieve that the divergence of functions so governs the development of special motive organs and ossicles as to remove the ground for safely or usefully bomologising such parts, and I refrain from going beyond the serial repetitions in the eye and ear which are ahove indicated.

CHAPTER XXIX.

DENTAL SYSTEM OF MAMMALIA.

§ 218. General characters of the Teeth. -The present class includes a few genera and species that are devoid of teeth; the true ant-eaters (Myrmecophaga), tbe scaly ant-eaters (Manis), and the spiny monotrematous ant-eater (Echidna), are examples of strictly edentulous Mammals: Ornithorhynchus bas horny teeth; the whales (Balena, Balenoptera) have transitory embryonic calcified teeth, fig. 219, succeeded by whalebone substitutes, fig. 217, in the upper jaw. Tbe female Narwhal seeme to be edentulous, but has the germs of two tusks in the substance of the upper jaw-bones: one of these so remains; the other becomes developed into a large horn-like weapon in the male Narwhal, fig. 220, A, and suggested to Linmeus the uame, for its genus, of Monodons but the tusk is never median, like the truly single tooth on the palate of the Myxine; and occasionally both tusks are developed. In Hyperö̈don tbe tẹth are reduced in the adult to two in number, whence the specific name, H. bidens; but they are very small and confined to the lower jaw. Ziphius has two teeth of functional size and shape, one in each ramus of the lower jaw; and this is perhaps a sexual character. The Delphinus griseus has five teetb on each side of the lower jaw : but they soon become reduced to two. The Marsupial genus Tarsipes is remarkable for the paucity as well as minuteness of its teeth. Tbe Elephant has never more than one entire molar, or parts of two, in use on each side of the upper and lower jaws, to which are added two tusks, more or less developed, in the upper jaw. Some Rodents, Hydromys, e. g., have two grinders on each side of hoth jaws, which, added to the four cutting teeth in front, make twelve in all; the common number of teeth in tbis order is twenty; hut the hares and rabbits have twenty-eight teeth. The sloth has eighteen teetl. The number of teeth, thirty-two, which characterises man, the apes of the Old World, and the true Kuminants, is the average one of the class Mammalia; hut the typical number is forty-four. The examples of excessive number of tecth arc prosented, in the order Bruta, by the Priodont

Armadillo, which has ninety-eight teeth; and in the Cetaceous order by the Cachalot, which has upwards of sixty teeth, though most of them are confined to the lower jaw; by the common porpoise, which has hetween eighty and ninety teeth; hy the Gangetic dolphin, which has one hundred and twenty teeth; and hy the true dolphins (Delphinus), which have from one hundred to one hundred and ninety tecth, yielding the maximum number in the class Mammalia.

Where the teeth are in exccssive number, as in the species ahove cited, they are small, equal, or suh-equal, and of a simple conical form; pointed, and slightly recurved in the common dolphin; with a hroad and flattened hase in the Gangetic dolphin; with the crown compressed and expanded in the porpoise; compressed, hut truncate, and equal with the fang, in Priodon. The compressed triangular teeth hecome coarsely notched or dentated at the hinder part of the series in the great extinet cetaceous Zeuglodon. The simple dentition of the smaller Armadillos, of the Orycterope, and of the three-toed Sloth, presents a difference in the size, hut little variety in the shape of the teeth, which are suhcylindrical with hroad triturating surfaces; in the two-toed Sloth, the two anterior teeth of the upper jaw are longer and larger than the rest, and adapted for piercing and tearing, fig. 215.

Teeth are fixed, as a general rule, in all Vertehrates. In Mammals the movements of the teeth depend on those of the jaw-bones supporting them, but appear to be independent in the ratio of the size of the tooth to the hone to which it is attached: the seemingly individual movements of divarication and approximation ohservahle in the large lower incisors of the Bathyergus and Mucropus, ${ }^{1}$ are due entirely to the gielding nature of the symphysis uniting the two rami of the lower jaw, in which those incisors are deeply and firmly implanted.

In Man, where the premaxillaries early coalesce with the maxillary hones, where the jaws are very short, and the crowns of the teeth are of equal length, there is no interspace or 'diastema' in the dental scries of either jaw, and the teeth derive some additional fixity by their close apposition and mutual pressure. No inferior Mammal now presents this character; hut its importance, as associated with the peculiar attrihutes of the human organisation, has heen somewhat diminished hy the discovery of a like contiguous arrangement of the teeth in the jaws of a fer extinct quadrupeds; e.g., Anoplotherium, Nesodon, and Dichodon. ${ }^{2}$

The teeth in Mammals, as in the foregoing classes, are formed hy superaddition of the hardening salts to pre-existing moulds of animal pulp or memhrane, organised so as to insure the arrangement of the earthy particles according to that pattern which characterises each constituent texture of the tooth, together with a course of vitalising plasma through its tissue.

The complexity of the primordial basis, or 'matrix,' corresponds, therefore, with that of the fully-formed tooth, and is least remarkable in those conical teeth which consist only of dentine and cement. Tbe primary pulp, fig. 129, i^{*}, which first appears as a papilla rising from the free surface of the alveolar gum, is the part of the matrix which, by its calcification, constitutes the dentine. In simple teeth, the secondary, or enamel pulp, covers the dentinal pulp like a cap; in complex tee th it sends processes into depressions of the coronal part of the dentinal pulp, which vary in depth, breadth, direction, and number, in the different groups of the herbivorous and omnivorous quadrupeds. The dentinal pulp, thus penetrated, offers corresponding complications of form; and, as the capsule follows the enamel pulp in all its folds and processes, the external cavities or interspaces of the dentine become occupied hy enamel and ccment-the cement, like the eapsule which formed it, being the ontermost suhstance, fig. 237, c, and the enamel, ih. e, being interposed hetween it and the dentine, ih. d. The dental matrix presents the most extensive interdigitation of the dentinal and enamel pulps in the Wart-hog, Capyhara, and Elephant.

The matrix of the mammalian tooth sinks into a furrow, and soon hecomes inclosed in a cell in the substance of the jaw-bone, from which the crown of the growing tooth extricates itself by exciting the ahsorhent process, whilst the cell is deepened hy the same process, and hy the growth of the jaw, into an alveolus for the root of the tooth. Where the formative parts of the tooth are reproduced indefinitely, to repair, hy their progressive calcification, the waste to which the working surface of the crown of the tooth has been suhject, the alveolus is of unusual deptb, and of the same form and diameter throughout, figs. 215 and 216, except in the immature animal, when it widens to its bottom or basc. In teeth of limited growth, the dentinal pulp is reproduced in progressively decensing quantity after the completion of the exterior wall of the crown, and forms, hy its calcifieation, one or more roots or fangs, which taper to their free extremity. The alveolus is closely moulded upon the implanted part of the tooth; and it is worthy of special remark, that the complicated form of
socket, fig. 256, which results from the development of two or more fangs, is peculiar to animals of the class Mammalia.

In the formation of a single fang, the activity of the reproductive process becomes enfeebled at the circumference, and is progressively contracted within narrower limits in relation to a single centre, until it ceases at the completion of the apex of the fang, which, though for a long time perforated for the admission of the vessels and nerves to the interior of the tooth, is, in many cases, finally closed by the ossification of the remaining part of the capsule.

When a tooth is destined to be implanted by two or more fangs, the reproduction of the pulp is restricted to two or more parts of the base of the coronal portion of the pulp, around tbe centre of which parts the sphere of its reproductive activity is progressively contracted. The intervening parts of the base of the coronal pulp adhere to the capsule, which is simultaneously calcified with them, covering those parts of the base of the crown of the tooth with a layer of cement. The ossification of the surrounding jaw, being governed by the changes in the soft but highly organised dental matrix, fills up the spaces unoccupied by the contracted and divided pulp, and affords, by its periosteum, a surface for the adhesion of the cement or ossified capsule covering the completed part of the tooth.

The matrix of certain teeth does not give rise, during any period of their formation, to the germ of a second tooth, destined to succeed the first. This, therefore, when completed and worn down, is not replaced; all the true Cetacea are limited to this simple provision of teeth. In the Armadillos, Megatherioids, and Sloths, the want of germinative power, as it may be called, in the matrix, is compensated by its persistence, and the consequent uninterrupted growth of the teeth. In most other Mammals, tbe matrix of certain of the first developed teeth gives origin to tbe germ of a second tooth, which displaces its predecessor and parent. All those teeth which are so displaced are called temporary, deciduous, or milk teeth, fig. 293, $d i, d{ }_{1-4}$. The mode and direction in which they are displaced and succeeded, namely from below upward in the lower jaw, in both jaws vertically, are the same as in the crocodile; but the process is never repeated more tban once in the present class. A considerable proportion of the dental series is thus changcd; the second, or permanent teeth, ib. $i 1-p, 2-4$, having a size and form as suitable to the jaws of the adult as the displaced temporary teeth were adapted to those of the young animal. Those permanent teeth, ib. $m 1-m 3$, which
assume places not previously occupied hy deciduous ones, may he regarded as a continuation of that series, and are posterior in their position; they are generally the most complex in their form. The successors of the deciduous incisors and canines differ from them chietly in size. The successors of the deciduous molars may differ likewise in shape, in which case they have less complex crowns than their predecessors. The 'bicuspids' in Anthropotomy, fig. $258, p_{3}, p_{4}$, and the corresponding teeth called 'premolars' in lower mammals, fig. 293, p^{2-4}, illustrate this law.

The Mammalian class might be divided, in regard to the succession of the tceth, into two groups-the Monophyodonts, or those that generate, as a rulc, one set of teeth, and the Diphyodonts, or those that generate two sets of tceth. ${ }^{1}$ The Monophyodonts include the Munotremata, Cetacea and Bruta; all the other orders are Diphyodonts.

The teeth of Mammalia, especially of the Diphyodonts, have usually so much more definite and complex a form than those of fishes and reptiles, that threc parts arc recognised in them: the fang or root (radix, fig. 210, f) is the inserted part; the crown (corona, ib. k) is the exposed part; and the constriction which divides these is called the neck (cervix, ib. n). The term 'fang' is properly given only to the implanted part of a tooth of re-

Section of human motar tooth, magn. stricted growth, which fang gradually tapers to its extremity. Those teeth which grow uninterruptedly, fig. 236, have not their exposed part separated hy a neck from their implanted part, and this generally maintains to its extremity the same shape and size as the crown.

It is peculiar to the class Mammalia to have teeth implanted in sockets by two or more fangs, figs. 256, 293; hut this can only happen to teeth of limited growth, and generally characterises the molars and premolars: pcrpetually growing teeth require the hase to be kept simple and widely excavated for the persistent pulp, figs. 215 and 216. In no mammiferous animal does anchylosis

[^64]of the tooth with the jaw constitute a normal mode of attachment. Each tooth has its particular socket, to which it firmly adheres hy the close co-adaptation of their opposed surfaces, and hy the firm adhesion of the alveolar periosteum to the organised cement which invests the fang or fangs of the tooth.

True tceth implanted in sockets are confined to the maxillary, premaxillary, and mandihular or lower maxillary bones, and form a single row in each. They may project only from the premaxillary, as in the Narwhal, or only from the lower maxillary as in the Ziphius; or be apparent only in the lower jaw, as in the Cachalot; or be limited to the superior and inferior maxillaries, and not present in the promaxillaries, as in the true Ruminants and most Bruta.

Mammalian teeth usually consist of hard unvascular dentine, fig. 210, d, defended at the crown hy an investment of enamel, ib, e, and everywhere surrounded hy a coat of cement, $\mathrm{ib} . c$. The coronal cement is of extreme tenuity in Man, Quadrumana, and terrestrial Carnivora; it is thicker in the Herbivora, especially in the complex grinders of the Elephant, fig. 289, and is thickest in the teeth of the Sloth, Megatherium, Dugong, Walrus, and Cachalot. Vertical folds of enamel and cement penetrate the crown of the tooth in most Rodents and Ungulates, characterising by their various forms the genera; hut these folds never converge from equidistant points of the circumference of the crown towards its centre. The teeth of Bruta have no true enamel; this is ahsent likewise in the molars of the Dugong and of the fully developed teeth of the Cachalot. The tusks of the Narwhal, Walrus, Dinothere, Mastodon, and Elephant, consist of modified dentine, which, in the last two great prohoscidian animals, is properly called 'ivory,' and is covered hy cement.

The Dolphins and Armadillos present little varicty in the shape of the teeth in the same animal, and this sameness of form is characteristic of Monophyodonts; suhject, like the successional character, to such exceptions as are exemplified in Choloppus didactylus, fig. 215, and in Dasypus 9-cinctus, the milk-teeth of which are figured in CXXXII", p. 254.

In most other Mammals particular teeth have special forms for special uses: thus the front teeth, from being commonly adapted to effect the first coarsc division of the food, have heen called cutters or incisors; and the back teeth, which complete its comminution, grinders or molars: large conical teeth, situated bebind the incisors, and adapted hy heing nearer the insertion of the biting muscles, to act with greater force, are called holders, tearers, laniaries, or more commonly canine teeth, from heing well
developed in the dog and other Carnivora, although they are given, likewise, to many vegetahle feeders for defence or comhat ; e. g., Musk-deer. Molar teeth, which are adapted for mastication, have either tuberculate, or ridged, or flat summits, and usually are either surrounded hy a ridge of enamel, or are traversed by similar ridges arranged in various patterns. Certain molars in the Dngong, the Mylodon, and the Zeuglodon, are so decply indented laterally by opposite longitudinal grooves, as to appear, when ahraded, to he composed of two cylindrical teeth cemented together, and the transverse section of the crown is bilobed. The teeth of the Glyptodon were fluted hy two analogous grooves on cach side, fig. 214. The large molars of the Capyhara and Elephant have the crown cleft into a numerous series of compressed transverse plates, cemented together side by side. The modifications of the crown of the molar teeth are those that are most intimately related to the kind of food of the animal possessing them. Thus, in the purely carnivorous mammals, the principal molars are simple; trenchant, and play upon each other like scissor-blades. In the mixed feeding species, the working surface of the molars becomes hroader and tuberculated; in the insectivorous species it is hristled with sharp points; and in the purely herbivorous kinds, the flat grinding surface of the teeth is complicated hy folds and ridges of the enamel entering the substance of the tooth, the most complex forms being presented by the Elepliants.
§ 219. Teeth of Monophyodonts. A. Monotremata.-The suhstances serving for teeth in the Ornithorhynchus are of a horny texture, consisting of close-set, vertical hollow tubes, resembling the outer compact tissuc of balcen or ' whalehone.' They are cight in number, four in the upper, and as many in the under jaw. The anterior tooth of the upper jaw is extended from behind forward, hut is low, very narrow, and four-sided. The corresponding tooth in the lower jaw, fig. $211, b$, is rather narrower, and retains longer its trenchant edge. At a distance from the anterior tooth, equal to its own length, is situated the horny

211

Mandible and vecth, ornithorhsncluun. molar, ih. c, which consists of a flattened plate of an ohloug subquadrate figurc. The corresponding tooth in the lower jaw is
somewhat narrower, but of simple form. Each division or tubercle of the molar is separately developed, and they become confluent in the course of growth. According to the analysis of Lassaigne, 99.5 parts of the dental tissue of the Ornithorhynchus have the composition of horn; this is hardened by 0.3 parts of phosphate of lime.

The notice of the dental apparatus of the Monotremes ought to include mention of the two short and thick conical processes, fig. $212, g, y$, which project from the forepart of the raised intermolar portion of the tongue, in the Ornithorhynchus; and like the more

Tongue, llogual teeth, und laryny of the Ornithorbsдchas. numerous spines on the corresponding part of the tongue of the Echidna, represent, in these loworganised mammals, the lingual teeth of fishes.
B. Bruta.-The teeth of the Orycterope, or Cape Ant-eater, are of a simple form, but peculiar structure; their common number in the mature animal is $\frac{7}{6}: \frac{7}{6}=26$, and they all belong to the molar series. The first and smallest is soon lost. The proportions of the persistent teeth, the depth of their sockets, and their structure, as viewed in longitudinal section with the naked

Sectlon of lower jaw and teeth of the Orycteropue, Xat, size
eye, are shown in fig. 213. The teeth are continued, solid, and of the same dimensions, to the bottom of the socket, and terminate in a truncate and undivided base. If each be viewed as an aggregate of teeth, as partially shown in fig. 247, vol. i., p. 396, it will be found that the component denticle has its base excavated by a conical pulp-cavity, as in other animals, and which is persistent, as in the rest of the order Bruta. The wide inferior apertures of these pulp-cavities constitute the pores observable on the base of the compound tooth of the Orycterope, and give to that part a close resemblance to the section of a cane. The canals to which these pores lead are the centres of radiation of the dentinal
tubcs; sucb denticles are cemented together laterally, ib. c, slightly decreasing in diameter, and oceasionally bifurcating as tbey approacb the grinding surface of the tootb. Tbe substance of the entire tootb tbus resembles the teeth of the Myliobates and Chimaroids among fishes, rather than any in the Mammalian class, in whicb it offers a transitional step from the borny dental substitutes, above described, to the true teeth.

The teeth of the Orycteropus, when rightly understood, offer, however, no anomaly in their mode of formation. Each denticle is developed according to the same laws, and by as simple a matrix, as those larger teeth in otber mammals which consist only of dentine and cement. The dentine is formed by calcification of the pulp, the cement by ossification of the capsule; both pulp and capsule continue to be reproduced at the bottom of the alveolus, pari passu witb the attrition of the exposed crown; and the mode and time of growtb being alike in each denticle, the whole compound tootb is maintained thoughout tbe life of the animal. The augmentation in the size of the wbole tooth, during the growth of the jaw, is effected by the development of new denticles, and a slight increase of size in the old ones, at the base of the growing tooth, which, in the progress of attrition and growth, becomes its grinding surface.

The tectb of the Armadillo-tribe are harder than those of other specics of Bruta, the unvascular dentine being present in greatest proportion, and forming the main body of the toatb; it includes a small central axis of vascular dentine, and is surrounded by an extremely thin conting of cement. The numerous teetb in Priodon are of very small size and simple form, and are all referable to the molar series. They vary in number from twenty-four to twenty-six in each upper jaw, and from twenty-two to twenty-four on each side of the lower jaw, amounting to from ninety-four to one bundred in total number. The Armadillos of the sub-genus E'uphractus, Wagler, are distinguished by having the anterior tooth, which is shaped like the succeeding molar, implanted iu the premaxillary bone. The two anterior teeth of the lower jaw being in advance of the premaxillary tooth, are, witb it, arbitraxily held to be incisors.

Some species of the extinct loricate genus, Glyptodon, surpassed the Rhinoceros in size, and the dentition was more complicated, and

Orown of tooth of great extlact Armadtho (Giyplodon clavipos). more adapted to a vegetable diet, than that of the small existing Armadillos. The osteo-dentine, fig. 214, o, occupied a larger vUL. 11 I.
proportion of the centre of the tooth, and being harder than the dentine, d, or cement, c, rose upon the grinding surface, in the form of a ridge extending along the middle of the long axis of that surface, and in three shorter ridges at right angles to the preceding, at the middle of each of the three rhomboidal divisions of the tooth.

Of the leaf-eating species of the order Bruta, very few, and these the most diminutive of the tribe, now exist. The following are the characters of their dentition, both recent and extinct:Tceth implanted in the maxillary and mandihular bones, few in numher, not exceeding $\frac{5}{4}: \frac{5}{4}$; composed of a large central axis of vaso-dentine, with a thin investment of hard dentine, and a thick outer coating of cement: to these add the dental characters common to the order Bruta, viz., uninterrupted growth, and concomitant implantation by a simple, deeply-excavated base.

In the two-toed sloth (Choloppus didactylus, Illig.) the teeth, fig. ${ }^{-215}$, offer a greater inequality of size than has yet heen

215
 observed in any other genus of Bruta; the first of each series, 1 , in both jaws, which in the rest of the order is the smallest, here so much exceeds the others as, with its peculiar form, to have received the name of a canine. This tooth is separated by a marked interval from the other teeth, $2-5$, especially in the upper jaw, so that ${ }^{1-1}$ above play upon the anterior part of those below, contrary to the relative position and mutual action of the true canine teeth in the Quadrumana and Carnivora.
The teeth of the Megatherium, the most gigantic of the extinct quadrupeds of the Sloth trihe, are five in number on each side of the upper jaw, fig. 216, and four on each side of the lower jaw. They are deeply implanted with narrow intervals : each is excavated by an unusually extensive pulp-carity, ib. p, from the apex of which a fissure is continued to the middle depression of the grinding surface of the tooth. The central axis of vaso-dentine, v, is surrounded hy a thin layer of hard or unvascular dentine, d, and this is coated hy the cement, c, which is of great thickness on the anterior and posterior surfaces, but is thin where it covers the outer and inner sides of the tooth. The vaso-dentine, v, fig. 238,
vol. i. p. 361, is traversed throughout by medullary canals, measuring $\frac{1}{180}$ of an inch in diameter, continued from the pulpcavity, and anastomosing in pairs hy a loop, the convexity of which is turned towards the origin of the tubes of the hard dentine, t.

seetion of uppor jaw and teeth of the Megathertum. Onethlrid nat. alae.
The cement, ib. c, is characterised hy the size, number, and regularity of the vascular canale which traverse it in a direction slightly inclined from the transverse axis toward the crown of the tooth, running parallel to each other, and anastomose in loops, the convexity of which is directed toward the hard dentine.

The tooth of the Megatherium offers an unequivocal example of a course of nutriment from the dentine to the cement, and reciprocally. All the constituents of the blood freely circulated through the vascular dentine and the cement, and the vessels of each substance, intercommunicated by a few canals, coutinued neross the hard or mnvascular dentine. The minuter tubes, which pervade every part of the tooth, characterising by their difference of length and coursc the three constituent substances, form one continuous and freely intercommunicating system of strengthening and reparative vessels, by which the plasma of the blood was distributed throughout the entire tooth, for its nutrition and maintenance in a healthy state.

The grinding surface of the close-set molars of the Megatherium differs on account of the greater thickness of the cement on their vol. m.
antcrior and posterior surfaces, from those of all the smaller Megatherioids, in presenting two transverse ridges, fig. 216, d; one of the sloping sides of each ridge being formed by the cement, c, the other by the vascular dentine, v, whilst the unvascular dentinc, d, as the hardest constituent, forms the summit of the ridge like the plate of enamel between the dentine and cement in the Elephant's grinder. The great length of the teeth, and concomitant depth of the jaws, the close-set series of the teeth, and the narrow palate, are also strong features of resemblance between the Megatherium and Elephant in their dental and maxillary organisation. In both these gigantic phyllophagous quadrupeds provision has likewise been made for the maintenance of the grinding machinery in working order throughout their prolonged existence: but the fertility of the creative resources is well displayed by the different modes in which this provision has becn effected: in the Elephant, it is by the formation of new teeth to supply the place of the old when worn out; in the Megatherium, by the constant repair of the teeth in use, to the base of which new matter is added in proportion as the old is worn away from the crown. Thus, the extinct Megatherioids had both the same structure and mode of growth and renovation of their teeth as are manifested in the present day by the diminutive Sloths.
c. Cetacea. Those Mammals which are properly called 'Whales' have no teeth, but horny substitutes in the form of plates, terminating or fringed by bristles. Of these plates, called ' baleen' and

Baben-plates and Tongue of Piked Whale (Balanoptera)
' whalebone,' fig. 217, b, the largest, which are of an inequilateral triangular form, are arranged in a single longitudinal series on each side of the upper jaw, situated ofretty close to each other, depending vertically from the maxillary bones, with their flat surfaces looking backward and forward, and their unattached margins outward and inward, the direction of their interspaces
heing nearly transverse to the axis of the skull. The suhsidiary plates are arranged in oblique series internal to the marginal ones. Thus, if the upper jaw of one side of the skull of a Whale were bisccted transversely, the flat surface of a series of the haleenplates would he exposed, as in fig. 218, in which a is the superior maxillary bone, b the ligamentous gum, giving attachment to c the horny base and hody of the chief haleen-plate, which terminates in d, the fringe of bristles ; e marks the smaller baleen-plates.

The hase of each plate is hollow, and is fixed upon a pulp developed from a vascular gum, which is attached to a hroad and shallow depression occupying the whole of the palatal surface of the maxillary and of the anterior part of the palatine bones, the Whale heing thus, like the Echidna, an examplo of a mammalian animal, which may be said to have palatal teeth. The base of each plate is unequally imbedded in a compact sub-elastic substance, b, which is so much deeper on the outer than on the inner side, as, in the new-born whale, to include more than one half of

Soction of Upper Jaw, with Brleen-plates, of a Whale (Baticnoptora). the outer margin of the balcen-plate. This margin is shown at c, fig. 218, and is continued down in a line dropped nearly vertically from the outer border of the jaws. The inner margin of each plate, d, slopes ohliquely outward from the hase to the extremity of the preceding margin; the smaller plates decrease in length to the middle line of the palate, so that the form of the baleen-clad roof of the mouth is that of a transverse arch or vault, against which the convex dorsum of the thick and large tongue, fig. 217, a, is applied when the mouth is closed. Each plate sends off from its inner and oblique margin the fringe of moderately atiff hut flexiblc hairs, whieh project into the mouth. These present an obstacle to the escape of the small marine animals, ${ }^{1}$ for the prehension and detention of which this singular Chio borechis, Linacina arctica, and small pelagic Crustucea.
modification of the dental system is especially adapted. Tbe haleen-pulp is situated in a cavity at the base of tbe plate, like tbe pulp of a true tooth; whilst the external cementing material maintains, both with respect to this pulp and to the portion of the haleen-plate which it develops, the same relations as the dental capsule bears to the tooth. According to these analogies, it must follow, that only the central fibrous or tubular portion of the baleen-plate is formed, like .tbe dentine, by the basal pulp, and that the base of the plate is not only fixed in its place by the cementing substance or capsule, but must also receive an accession of horny material from it answering to the cement of true teeth.

In Balcena mysticetus there are about 200 large marginal plates on each side, from 10 to 14 , rarely 15 , feet in lengtb, and about 1 foot in breadth at thcir base; these plates are overlapped and concealed by the under lip when the mouth is shut. In tbe Balanopteree or fin-backed whales, figs. 217, 218, the haleen-processes, e, internal to the marginal plates, are fewer and smaller tban in the Balcence; the marginal plates, c, are more numerous, exceeding 300 on eacb side; they arc broader in proportion to their length, and much smaller in proportion to the entire animal ; they are also more bent in the direction transverse to their long axis.

A thin transverse section of haleen, viewed with a low magnifying power, demonstrates that the coarse fibres, as they secm to the naked eye, whicb form the contral substance, are bollow tubes witb concentric laminated walls. When a high magnifying power is applied to such a section, the concentric lines are shown not to be uniform, but interrupted here and tbere by minute elliptical dilatations, which are commonly more opaque than the surrounding substance, and wbicb, like the radiated cells of true bone, are probahly remains of the primitive cells of the formative substance; similar long elliptical opaque bodies or cells are dispersed irregularly through the straight parallel fibres of the dense outer laminæ of the haleen-plate. The cbemical basis of haleen is alhumen hardened by a small proportion of phospbate of lime.

The Balcenidce, before they acquire their peculiar array of baleen-plates, manifest in their fotal age a transitory condition of a true dental system, abortive and functionless, but homologous with that which is normal and persistent in the majority of the order. In an open groove which extends along the alveolar border of both the upper and the lower jaws, there is a series of minute, conical, acute or obtuse, single or douhle, denticles, fig. 219, with
hollow bases inclosing the uncalcified remains of a vascular pulp. In the foetus of a Balcuoptera, the jaws of which were about four inches in length, the groove of the upper jaw contained twenty-eight such teeth, that of the lower jaw forty-two: these disappear before birth. The foetal Whale exemplifies the earliest stage of dental development in the higher Mammals, retaining the open fissure which in

Transthory dentleles of Fretal Wbale Nat. size. them is rapidly closed.

The great Bottle-nose or bident Whale offers a transitional grade between the true Whales and the typical Delphinide. The feetal denticles do not all perish, but two or three of the anterior pairs acquire a large size as compared with their transitory represcntatives in the Balcenide-and one of these pairs is long retained in the lower jaw, though functionless, and hidden by the gum.

In the Narwhal (Monodon monoceros), two of the primitive dental germs at the forepart of the upper jaw proceed in their development to a greater extent than do those in the lower jaw of the Hyperoödon; but every other trace of teeth is soon lost. The two persistent matrices rapidly elongate, but in the retrograde direction, forming a long fang rather than a crown; each tooth sinks into a horizontal alveolus of the premaxillary bone, or, rather, at the junction of the premaxillary with the maxillary, and soon, by the forward growth of these bones, becomes wholly inclosed, fig. $220, a$, like the germs of the teeth of higher Mammals at their second stage of development. In the female Narwhal, the pulp is here exhausted, the cavity of the tooth is obliterated by its ossification, further development ceases, and the two teeth remain concealed as ahortive germs in the substance of the jaws for the rest of life. In the male, the matrix of the tooth in the left premaxillary, ib. b, continues to enlarge; fresh pulp-material is progressively added, which by its calcification elongates the base, protrudes the apex from the sockct, and the tusk continues to grow until it acquires the length of nine or ten feet, with a hasal diameter of four inches. This is that famous ' horn' which figures on the forehead of the heraldic unicorn, and so long excited the curiosity and conjectures of the older naturalists, until Olaus Wormius made an end of the fabulous 'monocerologies ' hy the discovery of the true nature of their suhject. ${ }^{1}$
clx". Linnaus has embalmed the old idea of this weapon in the binomial Monodon monoceras, ander which the Narwhal is entered in the Systema Natura.

The exterior of the long tusk is marked by spiral ridges, whicb wind from within forward, upward, and to the left. Ahout fourteen

220

Base of skull of mate Narwizal, with a section of the Tusk. inches is implanted in the socket; it tapers gradually from the base to the apex. The pulp-cavity, as shown in the longitudinal section of the tusk, in fig. 220, is continued nearly to the extreme point, hut is of variable width: at the base it forms a short and wide cone; it is then continued forward, as a narrow canal, along the centrc of the implanted part of the tooth, beyond which the cavity again expands to a width equalling half the diameter of the tooth; and finally, but gradually, contracts to a linear fissure near the apex. Thus, the most solid and weighty part of the tooth is that which is implanted in the jaw, and nearest the centre of support, whilst the long projecting part is kept as light as might be compatihle with the uses of the tusk as a weapon of attack and defence. The portion of pulp, in which the process of the calcification bas been arrcsted, receives its vesscls and nerves by the fissure continued from the basal expansion of the pulp-cavity. In a few instances, hoth tusks have been seen to project from the jaw.

In Delphinus griseus the dentition of the upper jaw is transitory, as in Hyperoödon, but at least six pairs of teeth rise above the gum and acquire a full development at the forepart of the lower jaw. The crowns of these tceth soon hecome ohtuse, and their duration is limited: aged individuals of this species have been taken with the dentition reduced to two tecth in the lower jaw.

The outward and visible dentition of the great Sperm-whale or Cacbalot (Physeter macrocephalus) is confined to the lower jaw. The series consists in eacb ramus of about twenty-seven teeth. In the young they are conical and pointed; usage renders them obtuse, whilst progressive growth expands and elongates the hase into a fang, which then contracts, and is finally solidified and terminated obtusely. The teeth are separated hy intervals as hroad as themselves. The mode of implantation is intermediate between tbat of the teeth of the Ichthyosaurus, and of those of Delphinus. Tbey are lodged in a wide and moderately deep groove, imperfectly divided into sockets, the septa of which reach only about half-way from the hottom of the groove. These sockets are both too wide and too shallow to retain the teeth independently of the soft parts, so that it commonly happens, when the dense semi-ligamentous gum dries upon the hone, and is stripped off in that state, that it hrings away with it the wbole series of the teetb like a row of wedges half-driven through a strip of hoard. A firmer implantation would seem unnecessary for teeth which have no opponents to strike against, but which enter depressions in the opposite gum when the mouth is closed. That gum, however, conceals a few persistent specimens of the primitive foetal series of teeth; these are always much smaller and morc curved than the functional teeth of the lower jaw, of which a section is given in fig. 239, vol. i. p. 362. In the small snub-nosed Cachalot (Physeter simus) the first tooth of this series is exposed in the front of the upper jaw. ${ }^{1}$

The first-formed extremity of the tooth in the young Cachalot is tipped with enamel : when the summit of the crown has been ahraded, the tooth consists of a hollow cone of dentine, ih. d, coated by cement, c, and more or less filled up hy the ossified pulp, o. Irregular masses of this fourth substance have heen found loose in the pulp-cavity of large teeth. The external cement is thickest at the junction of the crown and hase, which are not divided hy a neck.

The permanent or mature dentition of the Beluga (Delphinus leurris, Pall.), though scanty, is more normal than in the Physeter, nine functional tecth heing retained on eacb side of the upper jaw, and eight in cach ramus of the lower jaw. They present the form of straight subcompressed obtuse cones.

The most formidable dentition is that of the predaceous Granipus (Phoccena orca), whose laniariform tecth are as large in proportion to the length of the jaws as in the crocodile; they are $x^{c \mid} x^{\prime}$, p. 42, pl. 12.
in numher $\frac{15}{12}: \frac{13}{1} \frac{3}{2}=50$; all fixed in deep and distinct sockets, separated hy interspaces which admit of the close interlocking of the upper and lower teeth when the mouth is closed ; the longest and largest teeth are at the middle of the series, and they gradually decrease in size as they approach the ends, especially the posterior one.
In the common Dolphin the numher of teeth amount to 190, arranged in equal numbers ahove and below, and there is a pair of teeth in the premaxillaries which are toothless in the other Cetacea. They have slender, sharp, conical, slightly incurved crowns, and diminish in size to the two extremes of the dental series; the acute apices are longer preserved than in the foregoing species.

The Gangetic Dolphin (Platanista gangetica) differs from the rest of the Delphinidae scarcely less in the form of its teeth than in that of the jaws. Both the upper and lower maxillary bones are much elongated and compressed ; the symphysis of the lower jaw is coextensive with the long dental series, and the teeth rise so close to it that those of one side touch the others by their hases, except at the posterior part of the jaw. The lateral series of teeth are similarly approximated in the upper jaw at the median line of union, which line is compelled, hy the alternate position of the teeth, to take a wavy course. There are thirty teeth on each side of the upper jaw, and thirty-two on each side of the lower jaw. In the young animal they are all slender, compressed, straight, and sharp-pointed, the anterior heing longer than the posterior ones, and recurved. Contrary to the rule in ordinary Dolphins, the anterior teeth retain their prehensile structure, while the posterior ones soon have their summits worn down to their hroad bases: in the progress of their growth the implanted hase is elongated antero-posteriorly, its outer surface augmented by longitudinal folds analogous to those in the teeth of the Sauroid fishes. Sometimes the posterior tooth of Platanista has the hase divided into two short fangs, the sole example of such a structure which I have met with in the existing carnivorous Cetacea. In the Dolphins of the South American rivers (Inia) the inner side of the tooth expands into a crushing tuhercle.

The primitive seat of the development of the tooth-matrix is maintained longer in the Cetacea than in other Mammalia; a greater portion of the tooth is also developed hefore the matrix sinks into, or is surrounded hy, a hony alveolus; and, with the exception of the rudimental tusks in the Narwhal, is at no period
entirely closed in a hony cell, in which respect the Cetacea offer an interesting analogy to true fishes.
§ 220. Teeth of Diphyodonts. A. Sirenia.-Two marks of inferiority in the dental system of the carnivorous Cetacea, which they have in common witb many of tbe order Bruta, viz. a general uniformity of sbape in the whole series of teeth, and no succession and displacement by a second or permanent set, disappear when we commence the examination of the dentition of those apodal pachyderms which were called by Cuvier the Herhivorous Cetacea.

In the Dugong (Halicore), for example, we find incisors distinguished by their configuration as well as position from the molars, and the incisive tusk is deciduous, displaced vertically, and succeeded by a permanent tusk; hoth these cbaracters are shown in fig. 160, vol. ii. p. 281. Of the incisors of the Dugong, only the superior ones project from the gum in the male sex, and neither upper nor lower ones are visible in the female. The superior incisore, ib. i, are two in number in both sexes. In the male they are moderately long, subtriedral, of the same diameter from the base to near tbe apex, which is obliquely bevelled off to a sharp edge, like the scalpriform teeth of the Rodentia. Only the extremity of this tusk projects from the jaw, at least seven-eighths of its extent heing lodged in the socket, the parietes of whicb are entire. In the female Dugong the growth of the permanent incisive tusks of the upper jaw is arrested before they cut the gum, and they remain throughout life concealed in the premaxillary bones; the tusk in this sex is solid, is ahout an inch shorter and less bent than that of the male ; it is also irregularly cylindrical, longitudinally indented, and it gradually diminishes to an ohtuse rugged point; the hase is suddenly expanded, hent obliquely outwards, and presents a shallow excavation. The deciduous incisors of the upper jaw, i, d, are much smaller than the permanont tusks of the female, and are looscly inserted hy one extremity in conical sockets immediately anterior to those of the permanent tusks, adhering hy their opposite ends to their tegumentary gum, which presents no outward indication of their presence. Not more than twenty-four molar teeth are developed in the Australian Dugong (Halicore Australis), or more than twenty molar teeth in the Malayan Dugong, viz., in the latter, five on each side of both upice and lower jaws, ih. 1-5, hut these are never simultaneously in use, the first being slied before the last has cut tbe gum.

The molar tceth of the Dugong consist of a large body of deutine, a small ceutral part of osteo-deutine, and a thick external investment of cement, c, fig. 242 , vol. i. p. 365 . In the fernale

Dugong the whole of the smaller extremity of the tusk is surrounded by a thin coat of true enamel, which is covered by a thinner stratum of cement. In the male's tusk the enamel, though it may originally have capped the extremity, as in the female's, yet, in the body of the tusk, it is laid only upon the anterior convex, and on the lateral surfaces, but not upon the posterior concave side of the tusk, which is thickly coated with cement. This side, accordingly, is worn away obliqucly when the tusk comes into use, whilst the enamel maintains a sharp chisellike edge upon the anterior part of the protruded end of the tusk.

The presence of abortive teeth concealed in the sockets of the deflected part of the lower jaw of the Dugong, fig. 160, a, i, d (vol. ii.), offcrs an analogy with the rudimental dentition of the upper jaw in the Cachalot, and of both jaws in the foetal Whales. The arrested growth and concealment of the upper tusks in the female Dugong, and the persistent pulp-cavity and projection of the corresponding tusks in the male, are equally interesting repetitions of the phenomena manifested on a larger scale in the dental system of the Narwhal. The simple implantation of the molar teeth and their composition are paralleled in the teeth of the Cachalot; their difference of form, and the more complex shape of the hindmost tooth, $\mathrm{ib} . b$, are repetitions of characters which were present in the dentition of the extinct Zeuglodon. The coexistence of incisive tusks with molar teeth, and the successive displacement of the smaller and more simple anterior ones by the advance of larger and more complex grinders into the field of attrition, already seem to sketch out pcculiarities of dentition which become established and attain their maximum in the Proboscidian family (Elephants and Mastodons) of the Ungulates.

The molars of the American Manatee are thirty-eight in numher, ten on each side of the upper jaw, and nine, at least, on each side of the lower jaw; but they are never simultaneously in place and use. The first in both jaws is small and simple. Beyond the second, the crowns in the upper jaw are square, and support two transverse ridges with tri-tuberculate summits, having also an anterior and posterior basal ridge; each tooth is implanted hy three diverging roots, one on the inner and two on the outer side: they increase in size very gradually, from the foremost to the last. The crowns of the four or five anterior molars of the lower jaw resemble those ahove, but the rest have a large posterior tubercle; they are all implanted by two fangs which enlarge as they descend, and bifurcate at the extremity; the crowns are of moderate height, and project only a few
lines above the sockets. The molars consist of a body of dentine, a coronal covering of enamel, and a general investment of cement, very thin upon the crown, and a little thicker upon the fangs.
в. Marsupialia. In the Marsupial order, the typical number of the teeth in the molar series is seven on each side of both jaws, the first three of which are ' premolars,' fig. 221, $p, 1,2,3$, the last displacing, in some, a calcified predccessor, fig. 296, d_{3}, and giving the extent of the theoretical deciduous series. Incisors, fig. 221, i, are present in all the species, but are variable in number, in some gencra exceeding that of the Mammalian type. Cauines, ib. c, are large in the Dasyures, are fcebly represented in the Phalangers and Petaurists, are absent in the lower jaw of the Potoroos and Koala (fig. 221, vol. ii), and in both jaws of the Kangaroos, fig. 231, and Wombats, fig. 232.
The Dasyures and Thylacine offer the carnivorous type of the dental system, but differ from the corrcsponding group of the placental Mammals in having the molars of a more uniform and

simple structure, and the incisors in greater number: the dental firmula of the Dog-headed Opossum, Thylacinus, is -

$$
\frac{4.4}{3.3} ; c_{1.1}^{1.1} ; p \frac{3.3}{3.3} ; n \frac{4.4}{4.4}=46 \text {, 名. } 221 .
$$

The canine tceth arc long, strong, curved, and pointed; the points of the lower canines are received in hollows of the premaxillary palatal plate when the mouth is closed, and do not project, ns in the carnivorous placentals, beyond the margins of the maxillary bones. The premolars, p, present a simple compressed conical crown, with a posterior tubercle, which is most developed on the hindmost. The molars, m, in the upper jaw are unfqually triangular, the last being much smaller than the rest :
the exterior part of the crown is raised into one large pointed middle cusp and two smaller cusps; a small strong obtuse lohe projects from the inner side. The molars of the lower jaw are compressed and tricuspidate; the middle cusp being the longest, especially in the two last molars, which resemble the feline carnassials.

The dental formula of the genus Dasyurus is-

$$
\frac{4.4}{\frac{4.4}{3.3} ; c \frac{1.1}{1.1} ; p_{2.2}^{2.2} ; m_{4.4}^{4.4}}=42, \text { fig. } 222 .
$$

The eight incisors of the upper jaw, fig. 222, are of the same length and simple structure, and are arranged in a regular semi-
 circle. The premolars, $p 2$ and 3, answer to the two last in T'hylacinus, and have simple crowns. The upper true molars, m, have triangular crowns; the first presents four sharp cusps; the second and third each five; the fourth, which is the smallest, only ${ }^{-1}$ three. In the lower jaw, the last molar is nearly of equal size with the penultimate one, and is bristled with four cusps, the external one heing the longest. The second and third molars have five cusps, three on the inner and two on the outer side; the first molar has four cusps. The carnivorous character of the above dentition is most strongly marked in the Ursine Dasyure, or Devil of the Tasmanian colonists, the largest existing species of the genus.

In some of the smaller species the canines lose their great relative size, and the molars present a surface more cuspidated than sectorial; there is also an increased numher
 of teeth, and as a consequence of their equable development, they have fewer and shorter interspaces. The subgenus Phascogale is characterised by-

$$
i_{3.3}^{4.4} ; c \frac{1.1}{1.1} ; p_{3.3}^{3.3} ; m_{\frac{4.4}{4.4}}^{46}=46 \text { fig. } 223 .
$$

In this formula may be discerned a step in the transition from the Dasyures to the Opossums, not only in the increased number of spurious molars, but also in the shape and proportions of the incisors.

The general character of the dentition of these small predatory

Marsupials approximates to the insectivorous type, and leads thereto from the flesh-feeding genera.

Myrmecobius is characterised by the following remarkable dental formula:-

$$
i \frac{4.4}{3.8} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m \frac{6.6}{6.6}=54, \text { fig. } 224 .
$$

The number of true and false molars, eigbteen in botb jaws, excceds that of any other known existing Marsupial. The molars are multicuspid, and both the true and false ones possess two separate fangs. Tbe inr ferior molars are directed obliquely inward, and the whole dental series describes a slight sigmoid curve, fig. 225. The premolars present the usual compressed trian-

Dentition of Myrmecoblus. gular form, with the apex sligbtly rccurved, and the base more or less obscurely notched before and behind. The canines are very little longer than the false molars. The ineisors are minute, slightly compressed, and pointed; they are separated from each other and the canines by wide intervals.

The extinct genus Amphitherium is founded on fossil remains of lower jaws and teetb discovered in the oolitic slate at Stonesficld, in Oxfordshire, and it receives elucidation from the dental characters of the previous genus, hut is remarkable for having a still greater number of molar teeth. The dental formula is.as follows:-

$$
i \frac{?, ?}{3.3} ; c \frac{p, ?}{1.1} ; p \frac{p, ?}{6.6} ; m \frac{?, ?}{6.6}
$$

There being thus thirty-two teeth in the lower jaw, and prohahly as many in the upper jaw.

The following dental formula-

$$
i \frac{5.5}{3.9} ; e \frac{1.1}{1.1} ; p \frac{3.9}{3.3} ; m^{\frac{4.4}{4.4}}=48,
$$

cbaraeterises a number of Marsupials commonly known in Australia by the name of Bandicoots, fig. 226. The teeth which offer the greatest range of variation in the present genus (Perameles) are the external or posterior
 incisors and the canines: the molars, also, which originally are quinque-cuspidate, have their points worn away, and present a smooth and ohlique grinding surface in some species (fig. 222, m, vol. ii.) sooner than in others.

The Bandicoots which approach nearest to the Myrmecobius in the condition of the incisive and caninc teeth, are the Perameles obesula and P.Gunnii. There is a slight interval hetween the first and second incisor, and the outer or fifth incisor of the upper jaw is separated from the rest hy an interspace equal to twice its own hreadth, and moreover presents the triangular pointed canine-like crown which characterises all the incisors of Myrmecobius; but the four anterior incisors are placed close together and have compressed, quadrate, true incisive crowns. From these incisors the canine is very remote, the interspace being equally divided hy the fifth pointed incisor, which the canine very slightly exceeds in size. In Peram. nasuta, fig. 226, the incisors present the same general condition, but the canines are relatively larger.

The dental formula of the genus Didelphys is-

$$
i \frac{5.5}{4.4} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m \frac{4.4}{4.4}=50, \text { fig.224. }
$$

The Opossums resemble in their dentition the Bandicoots more

than the Dasyures; but they closely resemhle the latter in the tuberculous structure of the molars; the two middle incisors of the upper jaw are more produced than the others, from which they are also separated hy a short interspace. The canines still exhibit a superior development in hoth jaws adapted for the destruction of living prey, hut the molars bave a conformation different from that which characterises the true flesh-feeders, and the Opossums consequently subsist on a mixed diet, or prey upon the lower organised animals.

The smaller specics of Didelphys, which are the most numerous, fulfil in South America the office of the insectivorous Shrews of the old continent. The larger Opossums resemhle in their hahits, as in their dentition, the carnivorous Dasyures,
and prey upon the smaller quadrupeds and birds; but they have a more omnivorous diet, feeding on reptiles and insects, and even fruits. One large species (Did. cancrivora) prowls about the sea-shore, and lives, as its name implies, on crabs and other crustaceous animals. Another species, the Yapock, frequents the fresh water, and preys almost exclusively on fish: it has the habits of the Otter, but the dentition docs not differ from that of ordinary Opossums.

In the genus Tarsipes the molars soon begin to fall; the small canines are also deciduous; the two procumbent incisors of the lower jaw remain the longest. The inferior incisors are opposed to six minute incisors above, which are succeeded by a small canine and some small molars; but these are reduced in some, perhaps old, individuals, to a single tooth on each side.

The Plalangers, being provided witb hinder bands and prehensile tails, are strictly arboreal animals, and have a close external resemblance to the Opossums. They differ chiefly in tbeir dentition, and in accordance therewith their diet is more decidedly of a vegetable kind. The interspace between the functionally developed incisors and molars in both jaws always contains teeth of small size and little functional importance, and variable not only in their proportions but their number. The constant tecth are the $\frac{4-4}{1-4}$ true molars, and the $\frac{3-3}{1-\frac{1}{1}}$ incisors. The canincs, c, fig. 228, are constant in regard to their presence, but variable in size; they are always very small in the lower jaw: the functional premolars, p_{3}, are always in contact with the

molars and their crowns reach to the same grinding level; sometimes the sccond premolar is similarly developed in the upper jaw, as in the Phal. Cookii, p_{2} 2, fig. 229, but it is commonly absent; the first premolar, p I, is a very minute tooth, shaped

VOL. IIJ.
like a canine: thus, in the upper jaw, between the posterior or functional premolar, p 3, and the incisors, i, we may find three teeth, as in Phal. Cookii, or two teeth as in Phal. vulpina, the first heing the canine, c. In the lower jaw similar varieties occur in these small and unimportant teeth: e.g. there may be hetween the procumhent incisors and the posterior premolar, either three teeth, as in Phal. Cookii; or two, as in Phal. ursina; or one, as in Phal. vulpina. The most important modification is presented hy the little Phal. gliriformis and Petaurus (Acrobates) pygmexus, fig. 219, vol. ii., which have only three true molars on each side of each jaw. These minor modifications are unaccompanied hy any change of general structure or of habit, whilst those teeth which most influence the diet are constant.

The ahsence of functionless premolars and of lower canines is constant in the Koala (Phascolarctos, fig. 221, vol. ii.). The molars are proportionally larger than in the Phalangers: each is beset with four three-sided cusps, the outer series in the upper teeth heing the first to wear down; those in the lower jaw are narrower than in the upper; there is also the rudiment of a "cingulum.' The premolars are compressed, and terminate in a cutting edgc. The small canine is situated close to the premaxillary suture.

The dental formula of the Potoroos (Hypsiprymnus) is-

$$
\frac{3.3}{\frac{3.1}{1.1} ; c \frac{1.1}{0.0} ; p \frac{1.1}{1.1} ; m \frac{4.4}{4.4}=30, \text { fig. } 230 .}
$$

The anterior of the upper incisors are longer and more curved than the lateral ones, and

Dentition of Hypiprymus murinug their pulps are persistent. The canine is larger than in the Koala ; it is similarly situated. In the large Hypsiprymnus ursinus the canines are relatively smaller than in the other Potoroos, astructurewhich indicates the transition from the Potoroo to the Kangaroo genus. The single premolar, p 3, has a peculiar trenchant form; its maximum of development is attained in the arhoreal Potoroos of New Guinea; in Hypsiprymnus dorcocephalus, e.g. its antero-posterior extent nearly equals that of the three succceding molar teeth. In all the Potoroos, the trenchant spurious molar is indented, especially on the outer side and in young teeth, hy many small vertical grooves. The true molars, m 1, 2, 3, 4, have large
subquadrate crowns; cach presents four tbree-sided pyramidal eusps; but the internal angles of the two opposite cusps are continued into each other across the tooth, forming two angular or concave tranverse rilges. In the old animal tbese cusps and ridges disappear, and the grinding surface is worn quite flat.

In the genus Macropus, fig. 231, the normal condition of the permanent teeth may be expressed as follows:-

$$
i \frac{3.3}{1.1} ; c \frac{0.0}{0.0} ; p \frac{1.1}{1.1} ; m \frac{4.4}{4.4}=28 .
$$

Thic main difference, as compared with Hypsiprymnus, lies in the absence of the upper canines as functional teeth; but the germs of these teeth are to be found in the young mammary foetus of the Macropus major, and may be detected of very small size, concealed by the gum, in the adults of some small species of Kangaroos, as, e.g., Macropus rufiventer, Ogilby, and Macr.

psilopus, Gould. The crown of the true molars supports two principal transverse ridges, with a broad anterior talon and a narrow hinder one. In most species a spur is continued from the hinder to the fore ridge, and another from the fore ridge to the front talon.

Remains of Kangaroos, larger than any living species, have been discovered in the same caves in Australia which contained the teetb and jaws of theextinct Dasyurus laniarius, and they probably formed the prey of that spccics and of its contemporary the Tbylacine which no longer exists in the continent of Australia.'

A gigantic extinct herbivorous Australian Marsupial (Diprotodlon), the bulk of which may be surmised from tbe length of the skull, which equals threc fcet, manifests a dentition which makcs the ncarest approach to tbat of the Kangaroos; but the anterior or median pair of upper incisors present the condition of large, curvcd, scalpriform, ever-growing tusks,

[^65]which work against a similar but straight procumbent pair of iucisive tusks below; thus presenting a transitional feature between the Kangaroos and the Rodent form of Marsupial called Wombat (Phascolomys). ${ }^{1}$ In this genus, the dental system presents the extreme degree of that degradation of the teeth, intermediate between the front incisors and true molars, which has been traced from the Opossum to the Kangaroos; not only have the functionless premolars and canines now totally disappeared, but also the posterior incisors of the upper jaw, which we have seen in the Koala and Potoroo to exhibit a feeble degree of development as compared with the anterior pair; these, in fact, are alone retained in the dentition of Phascolomys. The dental formula of the Wombat is thus reduced, both in number and kind, to that of Rodentia, viz.-
$$
i \frac{2}{2} ; c \frac{0}{0} ; p \frac{1.1}{1.1} ; m \frac{4.4}{4.4}=24, \text { fig. } 232 .
$$

The incisors, i, moreover, are 'dentes scalprarii,' but are inferior, especially in the lower jaw, in their relative length and cur-
 vature to those of the placental Glires; they present a subtriedral figure, and are traversed by a shallow groove on their mesial surface. The premolars, $p, 3$, present no trace of that compressedstructure which characterises them in the Koala and Kangaroos, but have a wide oval transverse section; those of the upper jaw being traversed, on the inner side, by a longitudinal groove. The true molars, $m_{1-4, \text {, are double the size of the premolars; the superior ones }}$ are also traversed by an internal longitudinal groove; but this is so deep and wide that it divides the whole tooth into two prismatic portions, with one of the angles directed inward. The inferior molars are in like manner divided into two triedral portions; but the intervening groove is external, and one of the facets of each prism is turned inward. All the grinders are curved, and describe about a quarter of a cirele. In the upper jaw the concavity of the curve is dirceted outward; in the

[^66]lower jaw, inward. The false and true molars, like the incisors, have persistent pulps, and are, consequently, devoid of true fangs, in which respect the Womhat differs from all other Marsupials, and resemhles the extinct Toxodon, the dentigerous Bruta, and herhivorous Rodentia.

A retrospect of the modifications of marsupial dentition shows them to be divisible into two classes: one 'polyprotodont,' or characterised by several pairs of mandibular incisors; the other 'diprotodont,' or by a single pair: these are large, more or less procumbent, and ever-growing; the incisors of the first group are small, and of the usual limited growth. The polyprotodont type prevails in the American genera: the diprotodont ohtains in the majority of the Australasian marsupials, and is associated usually with vegetarian or promiscuous diet. There did exist, however, coeval with Diprotodon, Nototherium, \&c., in a tertiary age in Australia, a carnivorous marsupial equalling the Lion in size, with the diprotodont type of dentition adaptively modified for preying on the huger contemporaneous Herbivora.

The pair of incisors in the lower jaw, fig. 233, i, and their homotypes above, $i \mathrm{l}$, were 'canincs' in size and shape: a single tooth of the molar serics on each side of
 hoth jaws, ib. p 4, was concomitantly modified to act as a 'sectorial' or flesh-cutting tooth; the crown being narrow or ' compressed,' long antero-posteriorly, with the sides marked by vertical folds or grooves, and converging to a rather oblique cutting edge, that of the upper blade playing on the outside of the lower one. These 'sectorials' were larger than in the Lion or Tiger, and were cven more 'carnassial' as wanting the 'tubercle,' and consisting wholly of the 'blade.' Behind the upper sectorial is ono small tubercular, m 1, of the relative proportion of that in Prlis: the lower sectorial is followed hy two small teeth with subtuherculate crowns, $m 1, m_{2}$. The teeth between the carnassials and laniary incisors are too small for definite use. So far as present fossils show, the dentition of Thylacoleo was:-

$$
i \frac{3.3}{1.1^{\prime}} ; c \frac{1.1}{0.0} ; P \frac{2.2}{2.2} ; m \frac{1.1}{2.2}=24 .
$$

The chicf busincss of the teeth was delegated to the tusks and
carnassials ; development was concentrated on these at the cost of the rest of the normal or typical dental series. The foremost tceth seized, pierced, lacerated or killed, the carnassials divided the nutritive fibres of the prey.

Thylacoleo exemplifies the simplest and most effective dental machinery for predatory life known in the Mammalian class. It is the extreme modification, to this end, of the diprotodont type of Marsupialia. The skull exhibits all the concomitant carnivorous modifications, in a like extreme degree. ${ }^{1}$

It is interesting to note that, just as the exceptional modification of the polyprotodont type, in the modern Myrmecobius, was manifested by Amphitherium in Oolitic times, so likewise was the

Deatition of lower thar, Plapizulaz. zoophagous diprotodont modification; but on a smaller scale than in Thylacoleo. The lower incisor in Plagiaulax, fig. 234, i, was a large, upcurved, pointed tusk: the carnassial, p. 4, was of great fore-and-aft length, coupled with narrowness, and an oblique cutting edge, rendered sub-serrate by the better-marked and more oblique lateral grooves, than in Thylacoleo. Anterior to the carnassial, $p, 4$, there are two or three similar and smaller sectorial premolars, in Plagiaulax, more of the general diphyodont type being retained in the older zoophagous diprotodont. Behind the carnassial are two small tuberculate molars, m_{1}, m_{2}, as in Thylacoleo. Some Palæontologists, neglecting Cuvier's guide-post of the true molar as the light-giving tooth, have been led astray in regard to the affinities of Plagiaulax, referring it to the 'poephagous Potoroos and Kangaroos,' which combine with a single trenchant and grooved premolar, four large and massive grinders, of quadricuspid or transversely ridged structure.
c. Rodentia.-In different orders of the placental as in the marsupial diphyodonts there are instances in which the ordinary number of incisors is diminished, and their growing power transferred to a single pair of tusks projecting from the forepart of the upper or the lower jaw, or of both. The Dinotheres, Toxodons, Mastodons, and Elephants, among the Ungulata, the Dugong in the Sirenia, the Aye-aye in the Quadrumana, are instances of this modification, which reaches its extreme in the latter mammal and the elcphants. In numerous Lissencephala a single pair
of large curyed ever-growing incisors, in each jaw, is comhined with so many peculiarities of structure, as to have led to their association into one order ${ }^{1}$ called by Linnæus Glires and by Cuvier 'Rongeurs' or 'Eroders,' from the gnawing power and habit resulting from such dental modification.

The incisors, fig. 235, i, i, are separated by a wide interval from the molars: the upper pair, ib. i, describe a larger segment of a smaller circle, the lower ones, ib . i, a smaller segment of a larger circle; these are the longest incisors, and usually have

Dentition of the Capybara.
their alveoli extended below, or on the inner side of, those of the molars, to the back part of the lower jaw, fig. 129: but in the Hare they reach only midway toward the angle. As in all teeth of unlimited growth, the implanted part of the incisors, besides its length, retains the form and size of the exposed part or crown, to the widely open hase, which contains a long conical persistent dentinal pulp, ib. a, and is surrounded by the capsule in a progressive state of ossification, as it approaches the crown; an enamel-pulp is attached to the inner side of that part of the capsule which covers the convex surface of the curved incisor.

The calcification of the dentinal pulp, the deposition of the carthy salts in the cells of the enamel-pulp, and the ossification of the capsule, proceed contemporaneously; fresh materials being added to the hase of the vascular matrix as its several constituents are progressively converted into the dental tissues in the more advanced part of the socket. The tooth, thence projecting, consists of a hody of compact dentine, sometimes with a few short medullary canals continued into it from the persistent pulp-cavity, with a plate of enamel laid upon its anterior surface, and a general investment of cement, which is very thin upon the enamel,

[^67]but less thin, in some Rodents, upon the posterior and lateral parts of the incisor. The substances of the incisor diminish in hardness from the front to the back part of the tooth, not only in so far as the enamel is harder than the dentine, but because the enamel consists of two layers, of which the anterior and exterual is denser than the posterior layer, and the posterior half of the dentine is rendered by a modified number and arrangement of the dentinal tubes less dense than the anterior half.

The abrasion resulting from the reciprocal action of the upper and lower incisors produces, accordingly, an oblique surface, sloping from a sharp anterior margin formed by the dense enamel, like that which slopes from the sharp edge formed by the plate of hard steel laid on the back of a chisel ; whence the name's scalpriform,' 'dentes scalprarii,' given to the incisors of the Rodentia. In Leporide the enamel is traceable to the back of the incisors: with this exception, the varieties to which these incisors are subject in the different Rodents are limited to their proportional size, and to the colour and sculpturing of the anterior surface. Thus in the Guinea-pig, Jerboa, and Squirrel, the breadth of the incisors is not half so great as that of the molars: whilst in the Coypu they are as broad as the molars, and in the Cape Mole-rats (Bathyergus and Orycteromys) are even broader. In the Coypu, Beaver, Agouti, and some other Rodents, the enamelled surface of the incisors is of a bright orange or reddish-brown colour. In some genera of Rodents, as Orycteromys, Otomys, Meriones, Hydrochorus, Lepus, and Lagomys, the anterior surface is indented by a deep longitudinal groove. This character seems not to influence the food or habits of the species: it is present in one genus and absent in another of the same natural family. In most Rodents the anterior enamelled surface of the scalpriform teeth is smooth and uniform.

The molar teeth are always few in number, obliquely implanted and obliquely abraded, the series on each side converging anteriorly in both jaws; but they present a striking contrast to the incisors in the range of thcir varieties, which are so numerous that they typify almost all the modifications of form and structure which are met with in the molar teeth of the omnivorous and herbivorous genera of other orders of mammalia. In some Rodents-e.g. Cavies, the molar teeth, fig. 236, p, m, are rootless; others-e.g. the Agouti, have short roots, tardily developed like the molars of the Horse and Elephant; others, again-e.g. the Rat and the Porcupine, soon acquire roots of the ordinary proportional length.

The differences in the mode of implantation of the molar teeth rclate to the differences of diet. The Rodents, which subsist on mixed food, and which hetray a tendency to carnivorous habits, as, e.g., the true Rats, or which suhsist on the softer and more nutritious vegetahle suhstanccs, such as the oily kernels of nuts, suffer

Oranlum and upper teoth of the Patagonlan Cavs (Dotichotio).
lcss rapid ahrasion of the molar teeth; a minor depth of the crown is therefore nceded to perform the office of mastication during the bricf period of existence allotted to these active little Mammals: and as the economy of nature is manifested in the smallest particulars as well as in her grandest operations, no more dental suhstance is developed after the crown is formed, than is requisite for the firm fixation of the tooth in the jaw.

Rodents that exclusively suhsist on vegetahle substances, especially the coarser and less nutritious kinds, as herbage, foliage, the bark and wood of trees, wear away more rapidly the grinding surface of the molar teeth; the crowns are therefore larger, and their growth continucs hy reproduction of the formative matrix at their hase in proportion as its calcified constituents, forming the exposed working part of the tooth, are worn away. So long ns this reproductive forec is active, the molar tooth is implanted, like the incisor, by a long undivided continuation of the crown. The rootless and perpetually growing molars are always more or less curved, fig. $236, p, m$; they derive from this form the same advantage as the incisors, in the relief of the delicate tissues of the active vascular matrix from the effects of the pressure which would otherwisc have been transmitted morc directly from the grinding surface to the growing hase.
'Tlu' complexity of the structure of the erown of the molar teeth, and the quantity of enamel and cement interhlended with
the dentine, are greatest in the rootless molars of the strictly herbivorous Rodents. The crowns of the rooted molars of the omnivorous rats and mice are at first tuherculate. When the summits of the tuhercles are worn off the inequality of the grinding surface is for a time maintained hy the deeper transverse folds of enamel, the margins of which are separated hy alternate valleys of dentine and cement; hut these folds, sinking only to a slight depth, are in time ohliterated, and the grinding surface is reduced to a smooth field of dentine, with a simple border of enamel. Examples of various forms assumed hy the inflected folds of enamel in the molars of the Rodentia are given in the works of the Cuviers and other naturalists. ${ }^{1}$ These folds have a general tendency to a transverse direction across the crown of the tooth (vol. ii. fig. 236, p. 370): the joint of the lower jaw almost restricts it to horizontal movements to and fro, in the direction of the axis of the head, during the act of mastication. When the folds of enamel dip in vertically from the summit to a greater or loss depth into the suhstance of the crown of the tooth, as in those molars which bave roots, the configuration of the grinding surface varies with the degree of abrasion; but in the rootless molars, where the folds of enamel extend inward from the entire length of the sides of the tootb, the characteristic configuration of the grinding surface is maintained without variation, as in the Guinea-pig, the Capyhara, and the Patagonian Cavy.

The whole exterior of the molar tecth of the Rodentia is covered by cement, and the external interspaces of the enamel-folds are filled with the same suhstance. In the Chinchillidee and the Capyhara, wbere the folds of enamel extend quite across the body of the tooth, and insulate as many plates of dentine, these detached portions are held together by the cement. Such folds of enamel are usually parallel, as in the large posterior lower molar of the Capyhara, which, in shape and structure, offers a very close and interesting resemblance to the molars of the Asiatic Elephant. The modification ohserved in the Voles (Arvicola) calls to mind the molars of the African Elephant. The partial folds and islands of enamel in the molars of the Porcupine and Agouti foreshow the structure of the teeth of the Rhinoceros. The opposite lateral inflections of enamel in the molars of the Gerbille and Cape Mole-rat, represent the structure of the molars of the Hippopotamus. The douhle crescentic folds in the Jerhoa sketch

[^68]out, as it were, the characteristic structure of the molars of the Anoplothere and Ruminants, \&c.

The transverse section of the molar of the Water-vole, fig. 237, shows that modification of the grinding surface in which the folds

gtructure of the tuolar of tho Figter-vole (Arvreold anphitikit), magnifed.
of enamel, e, extend like promontories, some outward, the others inward, into the substance of the crown; a like section of the Beaver's molar exhibits islands with a promontory of enamel. The transverse section of the crown of the molar of Lagostomus displays not fewer than five islands of enamel, which hard substance is so thick that it enters more ahundantly into the composition of the tooth than the dentine itself. The pulp, after the formation of a certain thickness of tubular dentine, becomes converted into osteo-dentine in both the rooted and rootless molars of the Rodents. This fourth substance is exhihited at o, fig. 237, which shows the four different dental tissues, viz. cement, c, enamel, e, dentine, d, and osteo-dentine, o, entering in more equal proportions into the formation of the crown than in other Mammalian tceth. When the crown is worn hy mastication down to the place of the section figured, the four suhstances appear in the samc proportions on the grinding surface, contributing to its efficiency as a triturating organ by the inequalities consequent on their various degrees of density and resistance to the abrading forces.

The molars are not numcrous in any Rodent; the Hare and Rabhit (Lepus) have $\frac{f}{8}: \frac{f}{3}$, i.e. six molars on each side of the upper jaw, fig. 238, and five on each side of the lower jaw, vol. ii. fig. 233. The Pika (Lagomys) has $\frac{5}{5}: \frac{5}{5}$. The Squirrels have $\frac{5}{4}: \frac{5}{4}$. The familics of the Dormice, the Porcupines, the Spring-rats (Echimyide), the Octodonts, the Chinchillas, and the Cavies, figs. 235, 236, have $\frac{4}{4}: \frac{\text { t }}{6}$ molars. In the great family of Rats (Muridae
the normal number of molars is $\frac{3}{3}: \frac{3}{3}$; hut the Australian Waterrat (Hydromys) has but $\frac{\frac{2}{2}: \frac{2}{2}}{2}$ molars, making, with the incisors, twelve teeth, which is the smallest number in the Rodent order. The greatest number of teeth in the present order is twenty-eight, which is exemplified in the Hare and Rabbit; but forty teeth are developed in these species, ten molars and two incisors being deciduous.

The first or anterior of the molar series, whether the number be $2-2,3-3$, or $4-4$, is a premolar; it has displaced a deciduous predecessor in the vertical direction. When the series extends to $5-5$ or $6-6$, the additions are to the fore part, and are premolars. This it is which constitutes the essential distinction between the dentition of the marsupial and the placental Rodent; the latter, like the placental Carnivora, Quadrumana, and Ungulata, having never more than three true molars. Thus the Rodents which have the molar formula of $\frac{4}{4}: \frac{1}{4}$, shed the first tooth in each series, and this is succeeded by a permanent premolar, which comes into place later than the true molars-later at least than the first and second, even when the deciduons molar is shed before birth, as was observed by Cuvier in the Guinea-pig. In the Hare and Rabbit, three anterior teeth in the upper jaw, fig 238, p, succeed and displace three deciduous predecessors, ib. d, coming into place after the first and second true molars, ib. m, are in use, and contemporaneously with the last

Tpper deciduous and permanent teeth of the Hure. molar. It does not appear that the scalpriform incisors, ib. i, are preceded hy milk teeth, or, like the premolars of the Guinea-pig, by uterine teeth; but the second incisor, ib. $i, 2$, is so preceded -e.g. hy the tooth marked $d, i, 2$, at which period of dentition six incisors are present in the upper jaw. This condition is interesting both as a transitory manifestation of the normal number of incisive teeth in the mammalian series, and as it elucidates the disputed nature of the great anterior scalpriform teeth of the Rodentia. It has becn contended that they are canines, because those of the upper jaw extended their fang hackward into the maxillary bone, which lodged part of their hollow base and matrix. But the scalpriform teeth are confined exclusively to the premaxillary bones at the beginning of thcir formation, and the smaller incisors which are developed behind them, in our anomalous native Rodents, the Hare and

Rabbit, retain their usual relations with the premaxillaries, thus proving, à fortiori, that the tooth which projects anterior to them must also be an incisor.

The law of the unlimited growth of the scalpriform incisors is unconditional; and constant exercise and abrasion are required to maintain the normal and serviceable form and proportions of these teeth. When, by accident, an opposing incisor is lost, or when, by the distorted union of a broken jaw, the lower incisors no longer meet the upper ones, as sometimes bappens to a wounded hare, the incisors continue to grow until they project like the tusks of tbe elephant, and their extremities, in the poor animal's painful attempts to acquire food, also become pointed like tusks. Following the curve prescribed to their growth by the form of their socket, their points often return against some part of the head, are pressed through the skin, then cause absorption of the jaw-bone, and again cnter the mouth, rendering mastication impracticable and causing death by starvation. I have seen a lower jaw of a beaver, in which the scalpriform incisor has, by unchecked growth, described a complete circle. The point had pierced the masseter muselc, and entcred the back of the

Furemit of upper jav of a Raliblt, with inclaors of abnorinal growth. mouth, passing between the condyloid and coronoid processes of the lower jaw, descending to the back part of the molar teeth, in the advance of the part of its own alveolus, which contains its hollow root. The upper jaw of a Rabbit, with an analogous abnormal growth of the scalpriform and accessory incisors, is shown in fig. 239.
D. Insectivara. - The dental system in this order is remarkable for the many varieties and even anomalies which it presentsalmost the only characteristic predicable of it being the presence of sharp points or cusps upon the crowns of the molar tecth, which are nlways broader in the upper than in the lower jaw. The tecth that intcrvene between these and the incisors are most variable in form and size, but are never absent; the incisors differ in number, size, and shape, in different species, tbe anterior ones approximating in some species to the character of the scalpriform teeth of the Rodents. They may be wholly absent in the upper jaw, fig. 242, A.

The Chrysochlore, or iridescent Mole of the Cape, makes the nearcst approach, by the number of its molar teeth, fig. 240 , to
that remarkable condition which a solitary genus (Myrmecobius) of existing Marsupials also presents, and which was more abun-

Dentition of Chrysochiore, magn.

1. Upper jaw, b alde view, a grinding surface. 2. Lower jaw, a grluding surface, b slde view. dantly manifested in the extinct Amphitheria and Spalacotheria of the Oolitic period. At least $\frac{8}{5}: \frac{5}{8}$ true molars may be assigned to the Chrysochlore according to their form-the only character, in the absence of the known order of their vertical displacement and succession, by which the true and false molars can at present be defined in this species. In the upper jaw, ib. 1, the anterior large laniariform tooth, and the two succeeding small teeth, are incisors, by virtue of their position in the premaxillary bones ; the next small tooth, with a simple compressed tricuspid crown, may be regarded either as a canine or a premolar. The crowns of the true molars are thin plates, narrowed from before backward, with two notches on the working edge, and a longitudinal groove along the outer and thicker margin. Another anomaly, more remarkable than that of the shape of the true molars, is their separation from each other by vacant intervals, as in many Reptiles.

The crowns of the five lower true molars, ib. 2, $2 \ldots 6$, are compressed antero-posteriorly, but are of unusual length, and have the thicker margin turned inward; the summit of the outer border is pointed and most prominent; the inner division is subdivided into two points. The anterior incisor is small and procumbent; the second has a larger laniariform crown; the third is small, and resembles the two premolars which intervene between this and the first large tricuspid molar. The lower molars are separated by wider intervals than those above; the crowns of the opposing scries enter reciprocally the interspaces, aud interlock; in mastication, the anterior margin of the lower tooth works upon the postcrior margin of the opposite upper tooth.

The views of the nature of these teeth, as given in the foregoing description, are expressed hy the following formula:-

$$
i \frac{3.3}{3.3} ; p \frac{1.1}{2.2} ; m_{5.5}^{6.6}=40 .
$$

The small insectivorous mammal, called Spalacotherium, which has left its fossil remains in the upper Oolite of Purheck, had ten molar teeth on each side of the lower jaw, of which six at least presented a tricuspid crown with proportions very similar to those of the Chrysochlore.

In the Shrew-moles of America (Scalops) the dentition makes an important step towards the normal mammalian condition, hy the restriction of the eharacters of the true molar teeth to the three posterior ones in each lateral series. Between these and the large scalpriform incisor, in the upper jaw, there are six teeth, the first two of which must also he regarded, hy the analogy of the Chrysochlore, as incisors; the next tooth might pass for a canine; and the remaining three for premolars: of these the last is the largest, and has a triedral pointed crown. The true molars have large crowns, each with six cusps, four on the outer, and two on the inner part of the grinding surface. In the lower jaw the first incisor is small and procumhent, and the second large and laniariform ; the third is ahsent, and a vacant space separates the incisors from the three premolars, and the crown of cach true molar consists of two parallel three-sided prisms, each terminatcd by three cusps, and having one of the angles turned outward, and one of the faces inward. The dental formula of this genus, according to the above description, is -

$$
{ }_{2.2}^{3.3} ; c_{00}^{1.1} ; p \frac{3.3}{3.3} ; m \frac{3.3}{3.3}=36 .
$$

Dentition of Mole (Talpa).

The dentition of the common Mole (Talpa europoca), fig. 241, includes eleven teeth on each side of both upper and lower
jaws. The first three, i, in the upper jaw are very small, with simplc incisive crowns, and are each implanted by a long and slender fang in the premaxillary, 22 : these teeth are incisors. The next tooth, c, by the size and shape of the crown, represents a canine, but it is implanted by two fangs, like the succeeding premolar teeth. Three of these teeth, $p 1,2,3$, are of small size, with compressed conical crowns; the fourth premolar, $p 4$, has a larger three-sided conical crown, supported by three fangs: the crowns of the true molars, $m 1,2,3$, are multicuspid; the middle one the largest, with five points, and usually supported by four fangs, the bindmost the smallest, with a tricuspid crown and three fangs. In the lower jaw the first four teeth on eacb side are small, simple, and single-fanged, like the three incisors above, but the outermost, c, is the largest; the fifth tootb bas a large laniariform crown, supported by two fangs, being very similar to, but shorter than, the two-fanged canine above. As it passes bebind tbat tooth when the mouth is sbut, we must regard it as a premolar, $p 1$: it is the first and largest of the series of four premolars, eacb of which bas a small posterior talon at the base of the compressed conical crown. The three true molars, m 1,2, 3, arc cach implanted by two fangs, and bave quinque-euspid crowns, the middle molar heing the largest.

According to this homology, the dental formula of the genus Talpa is-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{4.4}{4.4} ; m \frac{3.3}{3.3}=44 .
$$

The teeth are equal in number, and alike in botb jaws; the true molars are reduced to the normal quantity in the placental series, and the entire dentition is the least anomalous of any which is manifested in the family Talpida.

The transition from the Moles to the Shrews seems to be made by the Water-moles (Mygale) and the Solenodon. The latter insectivore combines the form of a gigantic Shrew, with a dentition resembling that of the Chrysochlore. Each premaxillary bone contains three incisors, the first large, canine-shaped, grooved anteriorly, with the point inclined hackward; the other two incisors small, with simple conical crowns; these are succeeded. by seven teeth, the two anterior having three-sided conical crowns, the other five bearing, in addition, an external tuherculate hasal ridge. In the lower jaw, the anterior incisor"is"very small, and the second large and laniariform, as in Scalops, but it is remarkable for a deep Iongitudinal excavation upon its inner side; the third lower incisor is small and simple. Of the seven
succeeding teeth, the four last have multicuspid crowns like true molars. Potamogale ${ }^{1}$ has--

$$
\left\{\frac{3.3}{3.3} ; c \frac{0.0}{0.0} ; p \frac{3.3}{3.3} ; m \frac{3.3}{3.3}=36 . .^{2}\right.
$$

In this large otter-like piscivorous shrew the anterior tooth of the premolar series, in the ahove formula, may he homologous with the canine in fig. 242; the douhle fang of the upper one would not har such determination. The posterior incisors and the premolars have triangular trenchant crowns like the tecth of some sharks: the anterior upper, and the second lower, incisors are large and prehensile, as in Solenodon.

The typical Shrews always manifest their rodent analogy hy the great preponderance of the anterior pair of incisors in hoth upper and lower jaws (vol. ii. p. 277, fig. 155^{3}). In the lower jaw the great incisor, ih. 2, i, is uniformly succeeded hy two small, $p_{3,4}$, and three large, $m_{1,2,3,}$, multicuspid molars; hut in the upper jaw the number of small premolars varies. The last true molar is commonly of small size. The subgenera of Shrews are chiefly hased upon the form of the large incisors and the numerical variations of the dentition of the upper jaw. In the common Shrew (Sorex araneus, Linn.) there are three true molars and four small teeth hetween these and the antcrior incisor ; this tooth, ih. $1, i$, has a pointed tubercle at the hack of the base of the crown. The long procumhent incisor of the lower jaw has the trenchant superior margin entire. In the Sorex (Amphisorex) tetragonurus, the upper edge of the lower incisor is notched; the large upper incisor appcars hifurcate from the great development of the posterior talon; five small teeth, progressively decreasing in size, intervene hetween the upper large incisor and the true molars. In the Norex (Hydrosorex) Hermanni, the trenchant edge of the lower procumhent incisor is entire; there are four small teeth hetween the large anterior incisor and the truc molars in the upper jaw, as in the great Sorex indicus; hut the three first are subequal, and the fourtl very minute; there is a fourth small true molar ahove. The cnamellcd tips of the tceth of the species of Amphisorex and Hydrosorex are stained of a hright hrown colour; the teeth of Sorex. proper, as the common Shrew (S. araneus), are not so stained. ${ }^{4}$

In the progress of the formation of the large notched incisors, the summits of the tuhercles are first formed as detached points,

Du Chaillu, xin ${ }^{\prime \prime}$, and olxvi', p. 353.
"orxv", p. 6.

- In this figure the footh marked $p \mathbf{1}$, being at the suture of the premaxillary with the maxillary, thould be the canine, $c 1$.
- olxyist P. 6.

VOL. 111 .
supported upon the common pulp, and do not become united until the centripetal calcification has converted this into a common dentinal hase. Some anatomists have regarded the large incisor so formed as an aggregate of two or three teeth; hut in Sorex proper and Hydrosarex, the calcification of the lower incisor spreads from a single point, and the interpretation of the notched incisor of the Amphisorex, as the representative of these incisors, might, by* parity of reasoning, be applied to the human incisor teeth, the dentated margins of which are likewise originally three or four separate tubercles.

The determination of the small teeth betwcen the large anterior incisors and the multicuspid molars depends upon the extent of the early anchylosed premaxillaries; the incisors heing defined by their implantation in those bones, the succeeding small and simple-crowned molars must be regarded as premolars, not any of them having the development or office of a canine tooth; their homotypes in the lower jaw are implanted by two roots.

The thickness of the enamel, in proportion to the body of dentine, is unusually great in these small insectivores, and the sharp points of the teeth long retain their fitness for the office of cracking and crushing the hard or tough teguments of insects. The enamel-pulp of the lower incisors is so large as to overlap, in the young Shrew, the growing margin of the socket, so as to encase with enamel not only the crown of the tooth, but also the contiguous part of the jawbone: the roots of these teeth

Dentition of Rhymenocyon. Ixxxiv'. also become anchylosed to the jawbone, a reptilian character offered hy the Soricide alone in the Mammalian class.

In a large long-legged and long-snouted African Shrew (Rhynchocyon, Peters ${ }^{1}$) the lower incisors are bilobed; the upper ones absent, giving the following dental formula, fig. 242 :-

$$
i \frac{0.0}{3.3} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m \frac{3.3}{3.3}=34 .
$$

The premaxillaries terminate in a trenchant edentulous border, A, as in the true ruminant: to the hard gum covering it are opposed the crowns of the six lower incisors, ib . в, i; a canine, c, with a similar-sized but simple crown, seems part of the semi-cir-

[^69]cular incisive series, as in ruminants, and is separated hy a slight interval from the premolar, 2. The canine above, A, c, has a long compressed pointed crown, with a sharp hind border: its root is deeply implanted and divided into two fangs: it descends outside the lower teeth and their alveoli, reminding one of the canines in the small Musk-deer. The upper premolars, A, $p, 2,3,4$, have compressed pointed crowns increasing in size as they approach the molars: the hind border of the second has one notch, that of the third two notches, and a low suh-bilobed inner portion. The molars decrease in size to the third : the first and second above have two outer cusps more produced than the two inner ones: the third molar has the hind pair blended into one cusp. The first lower premolar has a longer but thinner crown than the last. The first and second lower molars are 4 -cuspid; the third, 3 -cuspid; and the first has an anterior talon.

Macroscelides and Petrodromus, also South African Insectivora with long hind-limbs and a long snout, have similar 4-cuspid molar teeth, the last molar the smallest and with the outer and inner cusps of the hind pair blended into one. The last premolar ahove has a low beginning of the inner cusps, which are the lowest in the true molars. In the lower jaw of Macroscelides fuscus the type series is preserved, viz. : i is, $c 1, p 4, m_{3}$; hut p_{1} is undeveloped ahove; and $p!$ is wanting, hoth above and below, in P_{e-} trodromus, as in Rhynchocyon.

Bdeogale crassicauda (Peters), with the following for-mula:-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m \frac{3.3}{3.3}=40
$$

is remarkable for the large proportional size of the upper outer incisor, which almost equals the canine.

In the dentition of the Tupaias (Glisorex, fig. 243) we trace characters intermediate

Dentition of Trpatia.

1. Tpper jaw, b alde view, a working surince
2. J.ower jaw, a worklug surface, baide view. hetween those of Shrews and Hedgehogs. The dental formula of Glisorex tana is -

$$
\mathrm{i}_{2.2}^{2.2} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m \frac{3.8}{3.3}=36 .
$$

The upper incisors are small, simple, and wide apart in the upper jaw, 1 ; the anterior incisor in the lower jaw, 2 , is long and procumbent, hut relatively smaller than in the Shrews; the canines are small in hoth jaws; the premolars, 2, 3, 4, increase in size and complexity as they approach the true molars, $1,2,3$.

In Gymnura each premaxillary hone contains three teeth; the next has the form and size of a canine in hoth upper and lower jaws, hut has two roots in the upper jaw; this is followed by four premolars, the last of which, in the upper jaw, is large and quadricuspid: the first and second of the true molars have square multicuspid crowns; the last molar is smaller and triangular. In the lower jaw the fourth premolar has a compressed tricuspid crown. The dental formula of Gymnura is typical, viz. :-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{4.4}{4.4} ; m \frac{3.3}{3.3}=44 .
$$

The dentition of our common Hedgehog (Erinaceus eurapaus) shows greater inequality in the upper and lower jaws, the formula heing-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{0.0} ; p \frac{3.3}{2.2} ; m \frac{3.3}{3.3}=36, \text { fig. } 244 .
$$

The first incisor in hoth upper and lower jaws is larger and
 longer than the rest, and is very deeply implanted in the jaw; the tooth which follows the incisors is small in hoth jaws, but especially so in the lower; it may he called a canine with two roots in the upper jaw, p_{1}. The last premolar is the largest in both jaws; above it has a quadricuspid crown with three fangs; helow, a suhcompressed tricuspid crown with two fangs. The true molars decrease in size from the first to the third in hoth jaws, the first and second have suhquadrate four-pointed crowns ahove; helow, they are narrower, and the anterior and inner angle is produced into a fifth cusp.

The true molars of the tropical Hedgehogs, forming the subgenera Echinops and Ericulus, are more simple, and approach the form of those in the Chrysochlore, being compressed from hefore hackward, with two outer cusps and one inner cusp in the upper jaw, and with one outer and two inner cusps in the lower jaw. The number of incisors is $\frac{2}{2}: \frac{3}{2}$ in hoth sulgenera, which are followed hy $\frac{2}{2}: \frac{2}{2}$ small and simple premolars; hut Ericulus has $\frac{5}{5}: \frac{5}{8}$ compressed tricuspid molars, and Echinops only $\frac{4}{4}: \frac{4}{4}$.

The large Tenrecs or tailless Hedgehogs of Madagascar, combine the simple molars of Ericulus with the most formidahly developed canines which are to he met with in the whole order Insectivora. The incisors are two in numher in the upper jaw, hut thrce in the lower jaw; very small and sub-equal in both; the canines are long and large, compressed, trenchant, sharppointed, recurved, and single-fanged, thus presenting all the typical characters of those teeth in the Carnivora. They are separated in both jaws hy a wide space from the premolars; the first ahove is compressed, unicuspid with a hinder talon, and two-fanged; the second has a larger prismatic tricuspid crown and thrcefangs; of the four posterior teeth, which hy their anteroposterior compression may he regarded as true molars, the first three have tricuspid crowns as in the Echinops, and have three fangs; the fourth is smaller, is tricuspid, and has two fangs; all the lower molars have two fangs.

The teeth of Insectivora consist of a hasis of hard dentine, with a thick coronal investment of enamel, and an outer covering of cement, very recognisable in the interspaces of the coronal cusps in microscopic sections of the molars of the larger species, as the Tenrecs and Macroscelids, and always thick when it closes the extremity of the fangs. Here the cement is commonly more highly organised, is traversed hy medullary canals, generally presenting concentric walls; it thus assumes the character of true bone, and, in the Soricida, is frequently continued into the substance of the jaw itself.

The small proportion of dentine, in comparison with the thick layer of enamel, has heen already alluded to in the Shrews, yet the dentinal tuhuli are at their commencement very little inferior in diameter to those of the human incisors; the trunks are very short, and are resolved into radiated penicilli of undulating branches, which quickly subdivide, interlace and anastomose together near the boundary line hetween the dentine and enamcl. In most of the Insectivora, the secondary branches of the dentinal tuhes are unusually conspicuous, especially in the dentine
forming the fangs. The dentinal compartments (vol, i. fig. 237) are rarely well defined; in the large canines of the Centetes they are subhexagonal.

The deciduous teeth of the Moles and Shrews are uterine, i.e., are developed and disappear before birth. They are extremely small, and are all of the most simple form. In the fetal Sorex araneus calcification of the papillary exposed pulps of the teeth, which are succeeded hy the first and second premolars, proceeds to a very slight extent, and these microscopic rudiments appear to he ahsorbed rather than shed. The deciduous incisors are further advanced hefore their displacement, and present the form of equal-sized dentinal spicula, tipped with enamel, attached hy the opposite end to the gum, and not exceeding $\frac{1}{40}$ th of an inch in length; the number of the uterine series of teeth is $\frac{4}{3}: \frac{4}{3}$.

In the volant Insectivora, or Bats, the canines are always present in both jaws, of the normal form, and with slightly variahle proportions. The molar series never exceeds $\frac{6}{6}: \frac{6}{6}$, and is divisible into premolars and true molars; the latter are hristled with sharp points in the great hulk of the Cheiroptera. The incisors are the most variable teeth; they may be entirely wanting, or be present in the numbers of $\frac{1.1 \text { or } 2.2}{1.1 \text { to } 3.3}$; they are always very small, and, in the upper jaw, commonly unequal, and separated by a wide median vacancy. In the genus Chilonycteris, the midincisors ahove and the outer ones below have the crown notched; the mid-incisors helow have two notches, producing three lohes on the cutting horder. Taking the common simple-nosed Bat (Vespertilio murinus) as a type of this Insectivorous group, we find its dental formula to be-

$$
i \frac{2.2}{3.3} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m \frac{3.3}{3.3}=38 .
$$

In the leaf-nosed Bats (Phyllostoma, fig. 245) the incisors are $\frac{2}{2}: \frac{2}{2}$, the mid pair ahove heing large and laniariform; the canines are well-developed in hoth jaws. The second premolar above has a large, triedral, pointed crown. The first and second molars have two large external, and three small internal cusps.

The dentition of the blood-sucking Bats deviates, as might he
anticipated, in a remarkahle degree from that of the insectivorous kinds. The crushing instruments required for the food of the latter are not needed; and the true molars, with their bristled crowns, are entirely absent in the Vampires (Desmodus), fig. 246. The tecth, at the fore-part of the mouth, are especially developed, and fashioned for the infliction of a deep and clean triangular puncture, like that made by a leech. The incisors are skral and Treth of the vamtwo in number above, closely approximated,
 one in each premaxillary hone, with a very large, compressed, curved, and sharp-pointed crown, implanted hy a strong fang which extends into the maxillary bone. The upper canines have similar large lancet-shaped crowns, and their bases touch those of the incisors. In the lower jaw the incisors are two in number on each side, much smaller than the upper pair, and with bilobed crowns. The lower canines are nearly equal in size to those above, and have similar piercing trenchant crowns. The molar series is reduced above to two very small teeth, each with a simple compressed conical crown, implanted by a single fang. The first two molars below resemble those above; but they are followed by a third, which has a larger compressed and bilobed crown, implanted by two fangs. This tooth corresponds with the last premolar in the more normal genera. The dental formula of the true Desmodus is thus reduced to-

$$
i \frac{1.1}{2.2} ; c \frac{1.1}{1.1} ; p \frac{2.2}{3.3}=20
$$

The opposite extreme which the aberrant varieties of the Cheiropterous dentition attain is manifested in the great frugivorous Bats: these constitute the genus Pteropus; their dental formula is-

$$
i \frac{2.2}{2.2} ; c_{1.1,1}^{1.1} ; p_{3.3}^{2.2} ; m_{3.3}^{3.3}=34 .
$$

(vol. ii. p. 388, fig. 252) : their molars have broad flat crowns. In some African Pteropi (Pt. macrocephalus and Pt. Whitei) the last small molar would seem to he wanting in both upper and lower jaws. The deciduous teeth make their appearance above the gum in Bats, as in Shrews, before birth;" but they attaiu a more completely developed state, and are retained until a short time after hirth, when they are shed.

The ('olugos (Galeopithecus) resemble the Bats in the great expanse of their parachute, formed by the fold of integument extending on each side from the fore to the hind extremity, and
in the incompleteness of the rim of the orbit (vol. ii. p. 388, fig. 253, A). The dental formula of the genus is-

$$
i \frac{2.2}{3.3} ; c \frac{1.1}{1.1} ; p \frac{2.2}{2.2} ; m \frac{3.3}{3.3}=34, \text { figs: } 247,248
$$

The two anterior incisors of the upper jaw are separated by a

Upper jaw and teeth, Galeopithecur. wide interspace. In the Philippine Colugo they are very small, with simple sub-bilobed crowns; but in the common Colugo (Lemur volans, Linn.; $G a$ leopithecus Temminckii, Wat.) their crown is an expanded plate with three or four tubercles; the second upper incisor presents the peculiarity of an insertion by two fangs in both species of Galeopithecus.

In the lower jaw the crowns of the first two incisors, i, present the form of a comb, and are in this respect unique in the class Mammalia. Fig. 249 shows a section of one of these teeth magnified. This singular form of tooth is produced by the deeper extension of the marginal notches on the crown, analogous to those on the edge of the new-formed human incisor, and of those of certain Shrews, the notcbes being more numerous as well as deeper.

Each of these broad pectinated teeth is implanted by a single conical fang, and is excavated by a pulpcavity, which divides into as many canals as there are divisions of the crown, one being continued up the centre of each to within a short distance of its apical extremity. The medullary canal or branch of the pulp-cavity is shown in some of the divisions of the crown, at p. Each division has its proper investment of enamel, e, which substance is continued for a short distance upon the common base.

The deciduous teeth appear not to cut the gum before birth, as
they do in the true Bats. In a foetus of Galeopithecus Temminckii, with a head one inch and a half in length, I found tbe calcification of the first incisor just commenced in the closed alveolus, the second incisor and the rest of the deciduous series being reprcsented by the vascular uncalcified matrices. Tbe upper milk teeth consist of two incisors, p a canine, and two molars, which latter are displaced and succeeded by the two premolars. The deciduous teeth are six in number in the lower jaw, the incisors being pectinated, but much smaller than their successors. The true molars are developed and in place before the deciduous teeth are sbed.
E. Quadrumana. - In entcring upon the dentition of the Quadrumanous order, we pass from that of the

Gection of lower inelsor, Oaleopitheows, magulfed. V. Insectivora hy the Colugo, and seem to quit the Rodentia by the Aye-aye (Chiromys). In this genus of the Lemurine animals, as in I'rascolomys amongst the Marsupials, Desmodus amongst the Bats, and Sorex amongst the Insectivores, the dentition is modified in analogieal conformity with the Rodent type, to which, in the present instant, it makes a very close approximation, the canincs being absent, and a wide vacancy separating the single pair of large curved scalpriform incisors in each jaw from the short scrics of molars.

The upper incisors (vol. ii. p. 513, fig. 343, 22) are curved in the segment of a circle, and deeply implanted. The short exserted crowns touch one another, their simple widely excavated fangs diverging as they penetrate the substance of the jaw. Thesc crowns also project obliquely forward, and do not extend vertically downward, as in the true Rodentia. The lower incisors are more depressed, and of greater breadth from before backward, thau the upper oncs. They are more curved than in the Rodentia, describing a semicircle, three-fourths of which are
lodged in the socket, which extends hackward beyond the last molar tooth to the base of the coronoid proccss. The most importaut character by which the incisors of this anomalous Lemur differ from those of the Rodentia is the entirc investment of enamel, which is, however, thicker upon the front than upon the back part of the tooth. The molar teeth are four on each side of the upper jaw, and three on each side of the lower jaw, implanted vertically and in parallel lines. The molars are of simple structure, with a continuous outer coat of enamcl, and a flat subelliptic grinding surface. The upper ones are of unequal size, the first being the smallest, and the second the largest. In the lower jaw the inequality is less, and the last molar is the least. The first and last molars above have but one root; the second and third have each three roots. The first lower molar has two roots; the second and third have each a single root. The adult dental formula is-

$$
i \frac{1.1}{1.1} ; c \frac{0}{0} ; p \frac{1.1}{0.0} ; m \frac{3.3}{3.3}=18 .
$$

The deciduous dentition is-

$$
i \frac{2.2}{1.1} ; c \frac{1.1}{0.0} ; d m \frac{1.1}{1.1}=12 .
$$

The second upper incisor and canine, and the lower milk-molar, all which are very minute, are not replaced; the first true or permanent molar follows so speedily the deciduous one that, being 'in place' therewith, it has been reckoned with the milk-dentition. ${ }^{\text {' }}$ The lower jaw is modified to give strength to the muscles
 wielding the enormous and powerful incisors by the low position of the condyle, analogous to that in Plagiaulax and other carnivorous Mammals, contrasting with its high position in true Rodents and Kangaroos.

The Avahi, or woolley Lemur (Lichanotus laniger, fig. 250), has the incisors of the lower jaw large and limited to a single pair, but far from showing the proportions of those in Chiromys: the upper incisors are in two pairs, as in the milk-dentition in Chiromys, and are small. The dental formula in the Slow Lemurs (Stenops, Tarsius) is-

$$
\frac{2.2}{2.2} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m_{3.3}^{3.3}=36
$$

The first upper incisor is larger than the second.
'cexilis'.

Otolicnus and Lemur have the same number and kinds of teeth. In the upper jaw the incisors are small and vertical; the two on the right side are separated by a wide space from the two on the left. The lower canines are compressed and procumbent like the incisors, but are a little larger. The upper canine is long, curved, compressed, sharp-edged, and pointed. The three upper premolars have the outer part of the crown prolonged into a compressed pointed lobe, whilst the inner part forms a tuberclc, which is largest in the third. In the true molars the inner division of the crown is so increased as to give it a quadrate form, the outer division being divided into two pointed lobes. The premolars below are long, and the molars 4-cuspid in Otolicnus.

All the American Quadrumana are distinguished from the Apes and Monkeys of the Old World by the superior number of the premolars, and, by this resemblance to the Lemurs, they show their inferior position in the zoological scale. The small ' Marmosets,' however, forming the genera Hapale and Midas, have but two true molar teeth on each side of both jaws, their dental formula being-

$$
i \frac{2.2}{2.2} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m^{2.2} \frac{2.2}{2.2}=32 .
$$

The lemurine character of the long, narrow, inferior incisors continues to be manifested by the Sakis (Pithecia Ill.), which, like the larger species of Platyrhines called Howlers, Capuchins, and Spider-Monkeys, have the normal number of true molar tecth in the Quadrumanous order, their dental formula being-

$$
i \frac{2.2}{2.2} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m \frac{3.3}{3.3}=36 .
$$

The Capuchin Monkeys (Cebus, vol. ii. fig. 349) have the four lower incisors broad, thick, and wedge-shaped-a form which thesc tecth retain, with slight modifications, throughout the Quadrumnnous order. The canines are sufficiently developed to inflict severe wounds. The first three of the molar scries, $p, 2,3,4$, are bicuspid premolars; the rest, $m, 1,2$, s, are quadricuspid true molars. The deciduous formula is -

$$
i \frac{2.2}{2.2} ; c \frac{1.1}{1.1} ; m \frac{3.3}{3.3}=24 .
$$

lig. 25 I shows the deciduous series,

Declduous and permanent teeth of a joung Cobus Δ pellla, CL. $\times x 1^{\prime \prime}$.
d i.... d, in place, together with the first of the permanent true molars, $m, 1$; the germs of the rest of the permanent teeth are exposed in the upper jaw.

In the Catarhine division of the order, the first or deciduous dentition consists of -

$$
i \frac{2.2}{2.2} ; c \frac{1.1}{1.1} ; m \frac{2.2}{2.2}=20 .
$$

The two milk molars are displaced and succeeded vertically by the two bicuspid premolars, and are followed horizontally by three true molars on each side of both upper and lower jaws. The permanent formula in all the Old World Quadrumana is-

$$
i \frac{2.2}{2 \underline{2}} ; c \frac{1.1}{1.1} ; p \frac{2.2}{2.2} ; m \frac{3.3}{3.3}=32, \text { fig. } 252 .
$$

The incisors have always a shape conformable to their name,

but are very thick and strong;
in the upper jaw the middle are larger than the lateral ones, and both are larger than those below. The canines are conical, pointed, with trenchant posterior margins, always longer than the adjoining teeth, and acquiring, in the males of the great Baboons and Orangs, the proportions of those teeth in the Carnivora. The Mandrills Papio maimon (fig. 252) have these dental weapons most formidable for their size and shape; especially the upper pair, which descend behind the crowns of the lower canines, and along the outside of the first lower premolars, the crowns of which seem as if bent back by the action of the upper canines; the anterior longitudinal groove of these teeth is very deep, their posterior margin very sharp. A long diastoma divides the upper canine from the incisors, a short one separates it from the premolars; these and the three true molars are arranged in a straight line.

In the Orang-utan (Pithecus Wurmbii), vol. ii. p. 534, fig. 355 , the thickness of the base of the crown of the upper middle incisors equals the breadth of the same; and they are double the size of the lateral incisors. The abraded surface of the front incisors in the old Orang forms a broad tract extending obliquely from the cutting edge to the back part of the base of the crown; the lateral incisors are more pointed, the outer angle being obliquely truncated; a vacant space of their own breadth divides them from the canines. These, in the male Orang, have a long
and strong slightly-curved crown, extending helow the alveolar border of the under jaw when the mouth is shut, with a moderately sharp posterior margin, hut without an anterior groove. In the female Orang the canines are smaller; the crowns extend only a short distance heyond the level of the adjoining molars. In the upper jaw both premolars and molars are implanted hy three diverging roots, two external and one internal ; in the lower jaw the corresponding teeth have two strong diverging roots; the series of grinders forms a straight line on each side of hoth jaws.

As the precise characteristics and ordinal distinction of the human dentition are hest demonstrated hy comparison with that hrute species which is most nearly allied to man, the details of such a comparison will here he given and illustrated more fully, as manifested in the Gorilla (Troglodytes Gorilla). Fig. 253 gives a side view of the teeth of a male full-grown, but not aged, specimen of this species. In the upper jaw the middle incisors are smaller, the lateral ones i, 2, larger than those of the Orang; they are thus more nearly equal to each other; nevertheless the proportional superiority of the middle pair is much greater than in Man, and the proportional size of the four incisors both to the entire skull and to the other teeth is greater. Each incisor has a prominent posterior basal ridge, and the outer angle of the lateral incisors $i, 2$, is rounded off as in the Orang. The incisors incline forward from the vertical line as much as in the Orang. Thus the characteristics of the human incisors are, in addition to their true incisive wedge-like form, their near equality of size, their vertical or nearly vertical position, and small relative size to the other teeth and to the entire skull. The diastema hetween the incisors and the canine on each side is as well marked in the male Gorilla as in the male Orang. The crown of the canine, fig. 253, c, passing outside the interspace hetween the lower canine and premolar, $p s$, extends in the male Troglodytes Gorilla a little below the alveolar horder of the under jaw when the mouth is shut; the upper canine of the male Trogludytes niger likewise projects a little helow that border. In the male of the (Chimpanzee (Troglodytes niger), the upper canine is conical, pointed, hut more compressed than in the Orang, and with a sharper postcrior edge; convex anteriorly, becoming flatter at the posterior half of the outer surface, and concave on the corresponding part of the inner surface, which is traversed hy a shallow longitudinal impression; a feeble longitudinal rising and a second linear inpression divide this from the convex anterior
surface, which also bears a longitudinal groove at the base of the crown. The canine is rather more than twice the size of that

Dentition of an adult male Troplodytes Gorilla, nat. 日ize. cim'.

Dentition of an adult female Gorilla, nigh size. cnir.
in the female. In the male Gorilla the canine is more inclined outward; the anterior groove on the inner surface of the
crown is deeper, the posterior groove is continued lower down upon the fang, and the ridge between the two grooves is more prominent than in the Troglodytes niger. Both premolars,

Dentitlon of upper jaw, malo Troplonytcy Gurilla, unc, Elze, ofn',
fig. 255, p s, and p 4, are bicuspid; the outer cusp of the first, and the inner cusp of the second being the largest, and the first premolar, p s, consequently appearing the largest on an external view. The difference is well marked in the female, fig. 254, p 3. The anterior extcrnal angle of the first premolar is not produced as in the Orang, which in this respect makes a marked approach to the lower Quadrumana. In Man, where the outer curve of the premolar part of the dental series is greater than the inner
one, the outer cusps of hoth premolars are the largest; the alternating superiority of size in the Gorilla accords with the straight line which the canine and premolars form with the true molars. In fig. 255, m_{1}, m_{2}, m_{3}, are quadricuspid, relatively larger in comparison with the bicuspids than in the Orang. In the first and second molars of both species of Troglodytes a low ridge connects the antero-internal with the postero-external cusp, crossing the crown obliquely, as in Man. There is a feeble indication of the same ridge in the unworn molars of the Orang; but the four principal cusps are much less distinct, and the wbole grinding surface is flatter and more wrinkled. In Troglodytes niger the last molar is the smallest, owing to the inferior development of the two hinder cusps, and the oblique connecting ridge is feebly marked. In Troglodytes Gorilla this ridge is as well developed as in the other molars, but is more transverse in position; and the crown of $m 3$ is equal in size to that of $m 1$ or $m 2$, having the posterior outer cusp, and particularly the posterior inner cusp, more distinctly developed than in Troglodytes niger. The repetition of the strong sigmoid curves which the unworn prominences of the first and second true molars present in Man, is a very significant indication of the near affinity of the Gorilla as compared with the approach made by the Orangs or any of the inferior Quadrumana, in which the four cusps of the true molars rise distinct and independently of each otber. A low ridge girts the base of the antero-internal cusp of each of the upper true molars in the male Chimpanzees; it is less marked in the female. The premolars as well as molars are severally implanted by one internal and two external fangs. In no variety of the human species are the premolars normally implanted by three fangs; at most the root is bifid, and the outer and inner divisions of the root are commonly connate. It is only in the black varieties, and more particularly that race inhabiting Australia, that I have found the 'wisdom-tooth,' fig. $257, m 3$, with three fangs as a general rule; and the two outer ones are more or less confluent. The lower canine of the male (figs $253,256, c$), shows the same relative superiority of size as the upper one, compared with that in the female, in both species of Troglodytes. The canine almost touches the incisor, but is separated by a diastema one line and a half broad from the first premolar. This tooth p^{3}, is larger externally than the sccond premolar, and is three times the size of the human first premolar, fig. 257, p^{3}; it has a subtriedral crown, with the anterior and outer angle produced forward, slightly indicating the peculiar features of the same tooth in the

Baboons, but in a less degree than in the Orang. The summit of the crown of p s terminates in two sharp triedral cusps-the outcr oue rising highest and the second cusp being feehly indieated on the ridge extending from the inner side of the first; the crown has also a thick ridge at the inner and posterior part of its base. The second premolar, p 4, has a subquadrate crown, with the two cusps developed from its anterior half, and a third smaller one from the inner angle of the posterior ridge. Each lower premolar is implanted by two antero-posteriorly compressed divergent fangs, one in front of the other, the anterior fang being the largest.

The three true molars are nearly equal in size in the Troglodytes Gorilla, the last being a little larger than the first: in the Troglodytes niger, fig. 256, the first, m 1, is a little larger than the last, m 3, which is the only molar in the smaller Chimpanzee as large as the corresponding tooth in the hlack varieties of the human subjeet, in most of which, especially the Australians, fig. 257 , the true molars attain larger dimensions than in the yellow or white races. The four principal cusps, especially the two inner

Toeth of riglt elde, lower jaw, of adut male Ohimpauze, (Troofodyles aiger), nat, 6;ze.
ones of the first molar of both species of Trogludytes, are more pointed and prolonged than in Man; a fifth small cusp is developed hehind the outer pair, as in the Orangs and the Gihhons, hut is less than that in Mau. The same additional cusp is present in the second molar, which is seldom seen in Man. The crucial groove on the grinding surface is much less distinct than in Mnn, not heing continued across the ridge connecting the anterior pair of cusps in the Chimpanzce. The crown of the third molar is longer antcro-posteriorly from the greater development of the fifth posterior cusp, which, however, is rudimental in comparison with that in the Semnopitheques and Macaques. All vol. III.
tbe three true molars are supported by two distinct and welldeveloped antero-posteriorly compressed divergent fangs; in the white and yellow races of the human subject tbese fangs are usually connate in m 3, and sometimes also in m 2. Tbe molar series in both species of Troglodytes forms a straigbt line, witb a slight tendency, in the upper jaw, to bend in the opposite direction to the well-marked curve which the same series describes in the human subject.

This difference of arrangement, with the more complex implantation of the premolars, the proportionally larger size of the incisors as compared witb the molars; tbe still greater relative magnitude of the canines; and, ahove all, the sexual distinction in tbat respect illustrated by figs. 253 and 254, stamp tbe Gorillas and Chimpanzees, fig. 256, most decisively with not merely specific but generic distinctive cbaracters as compared witb Man. For the teetb are fasbioned in tbeir sbape and proportions in tbe dark recesses of their closed formative alveoli, and do not come into the sphere of operation of external modifying causes until tbe fullsize of the crowns has been acquired. The formidable natural weapons of the males of both species of TrogTodytes, form the compensation for the want of tbat psycbical capacity to forge or fasbion destructive instruments whicb has heen reserved, as his exclusive prerogative, for Man. Botb Chimpanzees and Orangs differ from tbe human suhject in the order of the development of tbe permanent series of teetb; the second molar, m 2, comes into place before eitber of the premolars has cut tbe gum, and the last molar, m 3, is acquired before the canine. We may well suppose that the larger grinders are earlier required by the frugivorous Chimpanzees and Orangs than by tbe higher organised omnivorous and longer nursed Bimanal, with more numerous and varied resources, and probahly one main condition of the earlier development of the canines and premolars in Man may be their smaller relative size.
f. Bimana. Having reacbed, in the Gorilla, the bighest step in the series of the brute creation, our succeeding survey of the dental system, cleared and expanded hy retrospective comparison, becomes fraught with peculiar interest, since every difference so detected establishes the true and essential cbaracteristics of tbat part of man's frame.

The human teeth are the same in number and in kind as those of the catarhine Quadrumana. The bimanal dental formula is therefore-

$$
i \frac{2.2}{2.2} ; c \frac{1.1}{1.1} ; p \frac{2.2}{2.2} ; m \frac{3.3}{3.3}=32
$$

tbat is to say, there are on eacb side of the jaw, both ahove and below, two incisors, one canine, two premolars, and three true molars.

They are morc equal in size than in the Quadrumana. No tooth surpasses another in the depth of its crown; and the entire series, which describes in hotb jaws a regular parabolic curve, is uninterrupted by any vacant space (vol. ii., fig. 182). Tbe most marked distinction between the bimanal dentition and tbat of the highest Quadrumanals, is the absence of the interval between the upper lateral incisor and the canine, and the comparatively small size of the latter tooth; but its true character is indicated by the conical form of the crown, which terminatcs in an ohtuse point, is convex outward, and flat or sub-concave within, at the hase of which surface there is a feehle prominence. The conical form is hest expressed in the Melanian races, especially the Australian, fig. 257, e. The canine is more deeply implanted, and hy a stronger fang than the incisors; hut the contrast with the Chimpanzee is sufficiently manifest, as is shown in fig. 256, c. There is no sexual

Donlition, lower daw, of malo Australlan.
superiority of size cither of the canine or any otber single tooth in the human suhject. ${ }^{1}$

[^70]Both upper and lower premolars, fig. 257, p^{3} and 4, are bicuspid; they are smaller in proportion to the true molars than in the Chimpanzee and Orang. In the upper premolars a decp straight fissure at the middle of the crown divides the outer and larger from the inner and smaller cusp; in the lower premolars the boundary groove describes a curve concave towards the outer cusp, and is sometimes obliterated in the middle by the extension of a ridge from the outer to the inner cusp, which eusp is smaller in proportion than in the upper premolars. These teeth in both jaws are apparently implanted each by a single, long, subcompressed, conical fang; but that of the upper premolars is shown by the bifurcated pulp-cavity to be essentially two fangs, connate, and which, in some instanees, are separated at their extremities.

The crowns of the true molars, fig. 257, $m 1,2,3$, are larger in proportion to the jaws, are a little larger in proportion to the bicuspids, and still more so in proportion to the eanine and incisor teeth, than in the Chimpanzees and Orangs. The contour of the grinding surface is more rounded, and the angles of the crown are less marked in the higher than in the lower Quadrumana. The first and second true molars of the upper jaw support four triedral cusps; the intcrnal and anterior one is the largest, and is connected with the extcrnal and posterior cusp by a low ridge extending obliquely across the grinding surface, with a deep depression on cach sidc of it; the anterior groove extending to the middle of the outer surface, the posterior one to the inner surface. The enamel is first worn away by mastication from the anterior and internal or largest tubercle; a line of enamel extending from the outside to the middle of the crown is the last to be removed before the grinding surface is reduced to a field of dentine with a simple ring of enamel. It is worthy of remark, that by the time whon the permanent teeth have come into place, the first true molur in both jaws is more worn, as compared with the sccond and third molars, than it is in the Chimpanzee or Orang, owing to the slow attainment of maturity characteristic of the human species, and the longer interval which elapses between the acquisition of the first and the last true molars, than in the highest Quadrumana. In the last true molar, called from its late appearance the 'dens sapientix,' or wisdom-tooth, the two inner tubereles are blended together, and a fissure extends in many

[^71]instances, especially in the Melanian varieties, from the middle of the grinding surface, at right angles to that dividing the two outer cusps, to the posterior border of the tooth.

The first upper molar is always implanted by thrce diverging fangs, two external and one internal. The second molar is usually similarly implantcd, but the two outer fangs are less divergent, are sometimes parallel, and occasionally connate; this variety appears to be more common in the Caucasian than in the Mclanian races; and in the Australian skulls the wisdom tooth usually presents the same three-fanged implantation as in the Chimpanzee and Orang.

The crowns of the inferior true molars are quinque-cuspid, the fifth cusp being posterior and connected with the second outer cusp: it is occasionally obsolete in the second molar. The four normal cusps are defined by a crucial impression, the posterior branch of which bifurcates to include the fifth cusp; this bifurcation being most marked in the last molar where the fifth cusp is most developed. In the first molar a fold of enamel, extending from the inner surface to the middle of the crown, is the last to disappear from the grinding surface in the course of abrasion. The wisdom-tooth, fig. $257, m^{3}$, is the smallest of the three molars in both jaws, but the difference is less in the Melanian than in the Caucasian races. Each of the three lower molars is inserted by two sub-compressed fangs, grooved along the side, turned towards each other. This double implantation appears to be constant in the Melanians, especially the Australian race, in which the true molars are relatively larger than in other blacks. In Europeans it is not unusual to find the two fangs in both the second and third molars connate along a great part or the whole of their extent.

With respect to the reciprocal apposition of the teeth of the upper and under jaw, it is interesting to observe that the crown of the lower canine is, as usual, in advance of that above, and fits into the shallow notch between that and the lateral incisor. The inferior incisors are so small that their anterior surface rests ngainst the postcrior surface of the upper ones when the mouth is closed ; the other teeth are opposed crown to crown, the upper tecth extending a little more outwardly than the lower ones.

The deciduous scries of teeth in the human subject, fig. 258, consists of -

$$
i \frac{2.2}{2.2} ; c \frac{1.1}{1.1} ; m \frac{2.2}{2.2}=20
$$

The upper milk incisors of the Chimpanzee are relatively larger
than in Man, especially the middle pair; but the disproportionate size of these is still more manifest and characteristic of
 the Orang. The crown of the canine is longer and more pointed in the Chimpanzee than in Man; still more so, and further apart from the incisor in the Orang. The first milk-molar, fig. 258, d 3, in the human subject is more similar in shape and size to the second, d 4, than it is in either the Chimpanzee or Gorilla: in which it is relatively smaller, showing in the lower jaw a subcompressed triangular crown. The eruption of the human milk-teeth usually begins in the infant of seven months old, and is completed about the end of the second year; those of the lower jaw preceding the

Highly magnilled section of dentine and censent, from the fang of a Human molar. 7, pl. 128.
upper. The average periods of the appearance of both deciduous and permanent teeth are as follows:-

Deciduous teeth.

7th month, mid-incisor, $d i l$.
ib. to l0th month, lat.-incisor, $d i 2$. 12th to 14th month, first molar, $d 3$. 14 th to 20 th month, canine, $d c$. 18th to 36 th month, second molar, $d 4$.

Permanent teeth.

6弪 years, first molar, m J, (fg. 258).
7 th year, mid-incisor, $i 1$.
8th year, lat.-incisor, $i 2$.
9th year, first bicuspid, $p 3$.
loth year, second bicuspid, $p 4$.
1 Ith to 12 th year, canine, c.
12th to 13th year, second molar, in 2. 17th to 2lst year, third molar, $m 3$.

The structure of human dentine is cxemplified in fig. 259.

The dentinal tubes, d, d, send off ramuli into the inter-tubular tissue, and terminate either by anastomotic loops, or in the irregular vacuities or cells at the periphery of the dentine. The dentinal compartments, or indications of the original cells of the dentinal pulp, are shown at a, b; the modified peripheral layer of the dentine, remarkable for its superior sensibility, at g. The layer of cement, h, whicb covers the dentine of the fang, is seldom so tbick as to show a hone-cell, in human teeth. The structure of the dentine rclates, in regard to the curvilinear compartments, a, b, to the steps in its formation; and, in regard to its tubular columns, to the strength of the tooth and its vitality; the latter important property depending on the percolation of the plasma tbrough the delicate cellular sructure of the filamentary prolongations of the pulp, so far as they may extend along the tubuli. Tbe sensibility of the dentine is due to concomitant productions of neurine; hut the distinct tubules are not large enougb to admit capillary vessels with red particles of blood, and the tissue above described
has consequently been termed ' unvascular dentine."
G. Carnivora.The feline dentition is the best for flesh-food. Tbe canincs, fig. 260, c, are of great strength, deeply implanted in the jaw, with the fangs
 thicker and longer tban the enamelled crown; this part is conical, slightly recurved, sharp-pointed, convex in front, witb one or two longitudinal grooves on the outer side, almost flat on the inner side, and witb a sharp edge behind. Tbe lower canines pass in front of the upper ones when the moutb is closed. The incisors, six in number on both jaws, form a transverse row; the outermost above, ih. i, is the longest, resembling a small canine; the intermediate ones have broad and thick crowns indented by a transverse cleft. The first upper premolar, p_{2}, is rudimental ; there is no answerahle tooth in the lower jaw. The second, $p s$, in both jaws, has a strong conical crown supported on two fangs. The third upper tooth, p 4, has a cutting or treuchant crown divided in to three lobes, the last being the largest,
and with a flat inner side, against which the cutting tooth, m_{1}, in the lower jaw works obliquely. Behind, and on the inner side of the upper tooth, $p 4$, there is a small tubercular tooth. The feline dental formula is -

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{3.3}{2.2} ; n \frac{1.1}{1.1}=30
$$

A glance at the long sub-compressed, trenchant, and sharppointed canines, suffices to appreciate their peculiar adaptation to seize, to hold, to pierce, and lacerate a struggling prey. The co-adaptations of jaws and skull are given in vol. ii. p. 505. The use of the small pincer-shaped incisor teeth is to gnaw the soft, gristly ends of the hones, and to tear and scrape off the tendinous attachments of the muscles and periosteum. The compressed trenchant blades of the sectorial tecth play vertically upon each other's sides like the hlades of scissors, serving to cut and coarsely divide the flesh; and the form of the joint of the lower jaw almost restricts its movement to the vertical direction, up and down. The wide and deep zygomatic arches, fig. 260, 27,

261

Deelduous dentition, Young Lion. and the high crests of bone upon the skull, ib. 3, \%, concur in completing the carnivorous physiognomy of this most formidable existing species of the feline tribe.

The penultimate tooth in the upper jaw, fig. 260, p 4, and the last tooth in the lower jaw, ih. m l, were denominated by F. Cuvier " dent carnassière,' which has been rendered 'dens sectorius,' the 'sectorial,' or scissor-tooth. It preserves its characteristic form only in the strictly fleshfeeding genera, in which is seen the part called the 'hlade,' and that called the 'hump' or tuhercle. In Felis the lower sectorial
(fig. 261, m 1) consists exclusively of the blade, and plays upon the inside of that of the upper sectorial. ${ }^{\text {x }}$ This tooth, fig. 261, p 4, ahove, succeeds and displaces a deciduous tubercular molar, ih. $d 4$, in all Carnivores, and is therefore a ' premolar;' the lower sectorial, ib. m 1, comes uph behind the deciduous series, d 3, $d 4$, and has no immediate predecessor; it is, therefore, a true molar, and the first of tbat elass. By these criteria the sectorial teetb may always be distinguished under every transitional variety of form which they present in the carnivorous series, from Machairodus, fig. 293, Iv., in which the crown consists exclusively of the ' blade' in hoth jaws, to Ursus, ib. II., in which it is totally tuhercular ; the development of the tuhercle bearing an inverse relation to the carnivorous propensities of the species.

The dentition of the bytena resembles the feline in the reduction of the tubercular molars to a single minute tooth on each side of the upper jaw, and in the inferior molars being all conical or scetorial teeth; but the molar teeth in botb jaws are larger and stronger, and the canines smaller in proportion, than in Felines, from the formula of which the dentition of the hyæna differs numerically only in the retention of an additional premolar tooth, $p 1$ ahove and $p 2$ below, on each side of both jaws: it is-

$$
i \frac{3.3}{3.3} ; \frac{1.1}{1.1} ; p \frac{4.4}{3.8} ; \pi \frac{1.1}{1.1}=34
$$

Tbe crowns of the incisors form almost a straight transverse line in both jaws, the exterior ones, ahove, being mucb larger tban the four middle ones, and extending their long and thick inserted base furtber back; the crown of the upper and outer incisor is strong, conical, recurved, like that of a small canine. The four intermediate small incisors have their crown divided by a transversc cleft into a strong anterior, conical lohe, and a posterior ridge, which is notched vertically; giving the crown the figure of a trofoil. The lower incisors gradually increase in size from the first to the third ; this and the second have the crown indented externally ; but they have not the posterior notched ridge like the small upper incisors; the apex of their conical crown fits into tbe interspace of the three lohes of the incisor ahove. The canines have a smooth convex exterior surface; the inner surface is almost flat and of less relative extent in the inferior canines. The first premolar above is wery small, with a low, thick, conical crown; the second presents a sudden increase of size, and an addition of a posterior and internal basal ridge to the strong cone. The third premolar exhibits the same form on a still larger scale, and is remarkable for its great strength. The posterior part of the cone
of each of these premolars is traversed by a longitudinal ridge. The fourth premolar above is the carnassial tooth, and has its long blade divided by two notches into three lobes, the first a small thick cone, the second a long and compressed cone, the third a horizontal, sinuous, trenchant plate; a strong triedral tubercle, t, is developed from the inner side of the base of the anterior part of the crown. The single true molar of the upper jaw is a tubercular tooth of small size. The first premolar of the lower jaw fits into the interspace between the first and second premolars above, and answers, therefore, to the second lower premolar in the Viverrida. The second is the largest of the lower premolars; its crown forms chiefly a strong rounded cone, girt by a basal ridge, and might serve as the model of a hammer for breaking stones. The last lower tooth is the sectorial,' as in Felis. The deciduous teeth consist of -

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; m \frac{3.3}{3.3}=28 .
$$

The permanent dentition of the Hyœna assumes those characteristics which adapt it for the peculiar food and habits of the adult: of these the chief is the great size and strength of the molars as compared with the canines, and more especially the thick and strong conical crowns of the second and third premolars in both jaws, the base of the cone being belted by a strong ridge which defends the subjacent gum. This form of tooth is especially adapted for gnawing and breaking bones, and the whole cranium has its shape modified by the enormous development of the muscles which work the jaws and teeth in this operation. Adapted to obtain its food from the coarser parts of animals which are left by the nobler beasts of prey, the hyma chiefly seeks the dead carcass, and bears the same relation to the lion which the vulture does to the eagle.

The family Viverrida, which comprehends the Civets, Genets, Ichneumons, Musangs, Surikates, and Mangues, is characterised, with few exceptions, by the following formula:-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{4.4}{4.4} ; m^{\frac{2.2}{2.2}}=40 .
$$

It differs from that of the genus Canis by the absence of a tubercular tooth, $m 3$, on each side of the lower jaw; but, in thus making a nearer step to the feline dentition, the Viverrida, on the other hand, recede from it by the less trenchant and more tubercular character of the sectorial teeth.

The canines are more feeble, and their crowns are almost
smooth ; the premolars, however, assume a formidahle size and shape in some aquatic species, as those of the suh-genus Cynogale, in which their crowns are large, compressed, triangular, sharppointed, with trenchant and serrated edges, like the teeth of certain sharks (whence the name Squalodon, proposed for one of the species), and well adapted to the exigencies of quadrupeds subsisting principally on fish; the opposite or obtuse, thick form of the premolars is manifested by some of the Musangs, e.g. Paradoxurus auratus. The deciduous dentition consists, in the Viverrine family, of -

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; m \frac{3.3}{3.3}=28 .
$$

The interlocking of the crowns of the teeth of the upper and lower jaws, which is their general relative position in the Carnivora, is well-marked in regard to the premolars of the Viverride; as the lower canine is in front of the upper, so the first lower premolar rises into the space between the upper canine and first upper premolar ; the fourth lower premolar in like manner fills the space between the third upper premolar and the sectorial tooth, playing upon the anterior lobe of the blade of that tooth which indicates hy its position, as by its mode of succession, that it is the fourth premolar of the upper jaw. The first true molar helow, modified as usual in the Carnivora to form the lower sectorial, sends the three tubercles of its anterior part to fill the space between the sectorial and the first true molar above. In the Musangs, the lower sectorial is in more direct opposition to its true homotype-the first tubercular molar in the upper jaw; and these Indian Viverridee (Paradoxuri) are the least carnivorous of their family, their chief food consisting of the fruit of palm-trees, whence they have heen called 'Palm-cats.'

The normal dental formula of the genus Canis is-

$$
i \frac{8.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{4.4}{4.4} ; m \frac{2.2}{3.3}=42(6 \mathrm{gg} .293, \mathrm{mi})
$$

The incisors increase in size from the first to the third; the trenchant margin of the crown is divided by two notches into a large middle and two small lateral lobes. The canines, c, are curved, sub-compressed; the enamelled pointed crown forms nearly half the length of the tooth, aud is smooth, without any groove. The premolars, fig. 293, p^{1-4}, have strong sub-compressed conical crowns gradually enlarging from the first to the third, p_{3}, in the upper jaw, and to the fourth, p, in the lower jaw, and acquiring one or two accessory posterior tubercles as they increase in size. The fourth upper premolar, p 4, presents a sudden increase of
size, witb its sectorial form; its blade is divided into two cones by a wide notch, the anterior cone being the strongest and most produced; the tubercle is developed from the inner side of the base of this lobe. The first and second upper molars, m I and 2, are tuberculate; but the second is very small, less tban balf the size of the first molar. The first true molar below, m_{1}, is modificd to form the opposing blade to the sectorial tootb above; retaining the tuberculate character at its posterior half. The blade is divided by a vertical linear fissure into two cones, behind which the base of the crown extends into a broad trituberculate talon. The second molar, m_{2}, has two anterior cusps on the same transverse line, and a posterior broad flat talon; the last lower molar, $m 3$, is the smallest of all the teeth.

The absence of a tuberculate molar in the lower jaw of the immaturc Dog, brings the character of tbe deciduous dentition of the genus Canis, fig. 262, closer to the permanent dentition of stricter carnivores, and affords an interesting illustration of the

Deciduous and permanent teeth in the Dog (Canis).
law that unity of organisation is manifested directly as the proximity of the animal to the commencement of its development. The succession of two tubercular molar teeth behind tbe permanent sectorial tootb in the permanent dentition of the lower jaw contributes to adapt the Dog for a greater variety of climates, of food, and of other circumstances, all of which tend, in an important
degree, to fit that animal for the performance of its valuable services to man. In no other genus of quadruped are the jaws so well or so variously armed with dental organs; notwithstanding the extent of tbe series, the vacancies are only sufficient to allow the interlocking of the strong canines. Tbese are efficient and formidable weapons for seizing, slaying, and lacerating a living prey; the incisors are well adapted, by their shape and advanced position, for biting and gnawing; the premolars, and especially the sectorials, are made for cutting and coarsely dividing the fibres of animal tissues, and the tuberculate molars are as admirably adapted for cracking, crushing, and completing the comminution of the food, whether of animal or vegetahle nature.

The dentition of the Weasel tribe (Mustelidec) is illustrated in fig. 293 Iv., Mustela : the dental formula is -

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{4.4}{3.3} ; m \frac{1.1}{2.2}=36 .
$$

The first premolar, p_{1}, in the upper jaw, which is absent in the Polecat and Weasel, is retained in the Otter, and is placed on the inner side of the canine; the sectorial premolar, p^{4}, has its inner lobe much more developed in Lutra than in Putorius, and the tubercular molar, m 1, is relatively larger. Similar modifications of these teeth distinguish the dentition of the lower jaw of the Otter, which agrees in the numher and kind of teeth with that of the Polccat. The increased grinding surface relates to the inferior and coarscr nature of the animal diet of the Otter, the back teeth being thus adapted for crushing the hones of fishes hefore they are swallowed.

In the Martin cats (Mustela), the little homotype of $p 1$ ahove is present in the lower jaw ; in the hloodthirsty Stoats and Weasels, $p 1$ is absent in hoth jaws; as it is likewise in the great Seaotter (Enhydra), in which also the two middle incisors are wanting in the lower jaw. In this animal the second premolar, p s, has a strong obtuse conical crown, douhle the size of that of p^{2}; the third premolar, p^{4}, is more than twice the size of p^{3}, and represents the upper carnassial or sectorial strangely modified; tho two lobes of the hlade heing hemispheric tubercles. The last tooth, $m 1$, has a larger crown tban the sectorial, and is of a similar hroad crushing form.

In tho family Melide is comprised the European (Meles), the Indian (Arctonyx), and the American (Taxidea) Badgers, which, with respect to thicir dentition, stand at the opposite extreme of the Mustelillee to that occupied by the predaccous Weasel, and
manifest the most tuherculate and omnivorous character of the teeth. The formula is-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{3.3}{4.4} ; m \frac{1.1}{2.2}=36 .
$$

The canincs are strongly developed, well pointed, with a postcrior trenchant edge; they are more compressed in Arctonyx than in Meles. The first lower premolar is very small, single-fanged, and, generally, soon lost. The first ahove, corresponding with the second in the Dog, is also small, and implanted hy two connate fangs. The second upper premolar, p^{3}, has a larger, hut simple, suh-compressed conical crown, and is implanted hy two fangs. The third repeats the form of the second on a larger scale, with a hetter developed posterior talon, and with the addition of a trituherculate low flat lohe, which is supported hy a third fang; the outer pointed and more produced part of this tooth represents the blade of the sectorial tooth and the entire crown of the antecedent premolars. The true molar in Meles is of enormous size compared with that of any of the preceding Carnivora; it has three external tuhercles, and an extensive horizontal surface traversed longitudinally hy a low ridge, and hounded hy an internal helt, or 'cingulum.'

In other allicd genera, which, like the hadgers, have heen grouped, on account of the plantigrade structure of their feet, with the hears, a progressive approximation is made to the type of the dentition of the Ursine species. The first true molar helow soon loses all its sectorial modification, and acquires its true tuhercular character; and the last premolar ahove hecomes more dircctly and completely opposed to its homotype in the lower jaw. The Racoon (Procyon), and the Coati (Nasua), present good examples of these transitional modifications; they have the complete numher of premolar teeth, the dental formula heing-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{4.4}{4.4} ; m \frac{2.2}{2.2}=40 .
$$

That of the Benturong (Arctictis) and Kinkajou (Cercoleptes) is-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m \frac{2.2}{2.2}=36 .
$$

The lower caninc of Nasua has a deep longitudinal groove on the inner side of the crown. In Ailurus both upper and lower canines present two longitudinal grooves. In Cercoleptes a longitudinal ridge divides the two grooves on the canines. A fossil canine tooth from the eocene sand at Kyson presents a still greater number of grooves and ridges, whence the name Pricynodon.

The essential characteristic of the dentition of the Bears, fig.

340, vol. ii. (Ursus) is the development, in the lower jaw, of the true molar teeth to their typical number in the placental Mammalia, and their general manifestation, in both jaws, of a tuberculate grinding surface; the premolar teeth are much reduced both in size and number. In the frugivorous Bears of India and
 retained longer than in the fiercer species of the northern latitudes. In these the second lower premolar is soon lost. The first true molar, m I, has a longer and narrower crown than the one above. The second true molar, $m 2$, has a narrow, oblong, suhquadrate, tubcrcular crown, which, like that of the first true molar, is supported by two fangs. The crown of the third lower molar, m_{3}, is contracted posteriorly, and supported hy two connate fangs ; it is relatively smallest in the Sun-bears, and largest in the great Ursus spelaus. The dental formula of the genus Ursus is-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{4.4}{4.4} ; m \frac{2.2}{3.3}=42 \text { (fig. 293, 11. Ursus). }
$$

It is essentially the same both in number and kind of teeth as in the genus Canis, but the individual or specific varieties, which in the Dog affect the true molar teeth, are confined in the Bears to the premolars. It would seem in the genus Ursus as if the preponderating size of the large tubercular true molars had tended to hlight the development of the promolars.

In fig. 263 the deciduous teeth and their successors are given as displayed
 by the removal of the outer wall of their sockets. The milknulars, four in numher on each side of both jaws, progressively increase from the first to the fourth. The characteristic relative position to them of the premolars is shown at p^{2}, s , and 4 . Behind these is shown the large formative cell of the first, $m 1$, of the truc molar series.

A tendency to deviate from the ferine number of the incisors is seen in the most aquatic and piscivorous of the Musteline quadrupeds, viz., the Sca-otter (Enhydra), in which species the two middle incisors of the lower jaw arc not developed in the permanent dentition. In the family of true Scals the incisive formula is further reduced, in some species even to zero in the lower jaw, and it never exceeds $\frac{3}{2}: \frac{3}{2}$. All the Phocide possess powerful canines; only in the aberrant Walrus, fig. 265, are they absent in the lower jaw, but this is compensated by the singular excess of development which they manifest in the upper jaw. The molar series, fig.
 $264, m$, usually includes five, rarely six, teeth on each side of the upper jaw, and five on cach side of the lower jaw ; with crowns which vary little in size or form in the same individual. They are supported in some genera, as the Eared Seals (Otaria) and Elephant Seals (Cystophora), by a single fang; in other genera by two fangs, which arc usually connate in the first or second teeth; the fang or fangs of both incisors, canines, and molars, are always remarkable for their thickness, which commonly surpasses the longest diametcr of the crown. The crowns are most commonly compressed, conical, more or less pointed, with the 'cingulum' and the anterior and posterior basal tubercles more or less developed; in a few of the largest species they are simple and oltuse, and particularly so in the Walrus, in which the molar teeth arc reduced to a smaller number than in the true Seals. In these the line of demarcation between the true and false molars is very indefinitely indicated by characters of form or position; but, according to the instances in which a deciduous dentition has been observed, the first three permanent molars in both jaws succeed and displace the same number of milk-molars, and are consequently, 'premolars;' occasionally, in the seals with two-rooted molars, the more simple character of the premolar teeth is manifested by their fangs being connate, and in the Stenorhynchus serridens the more complex character of the true molars is manifested in the crown. There is no special modification of the crown of any tooth by which it can merit the name of a 'sectorial' or 'carnassial;' but we may point with certainty to the third molar above and the fourth
below, as answering to those teeth whieh manifest the seetorial eharacter in the terrestrial Carnivora. The coadaptation of the crowns of the upper and lower teeth is completely alternate, the lower tooth always passing into the interspace anterior to its fellow in the upper jaw.

In the genus Phoca proper (Calocephalus, Cuv.) typified hy the common seal (Ph. vitulina), the dental formula is-

$$
i_{2 . \overline{2}}^{3.3} ; c \frac{1.1}{1.1} ; p \frac{4.4}{4.4} ; m_{1.1}^{1.1}=34 .
$$

The Sterrincks with douhle-rooted molars (Pelayius, Stenorhynchus) have four incisors ahove as well as below, i. e. $\frac{2}{2}: \frac{2}{8}$.

In the Saw-tooth Sterrinck (Stenorhynchus serridens), the three anterior molars on each side of hoth jaws are four-lobed, there being one antcrior and two posterior accessory lohes; the remaining posterior molars (true molars) are five-lobed, the principal eusp laving one small lohe in front, and three developed from its posterior margin; the summits of the lobes are obtuse, and the posterior ones are recurved like the principal lohe.

The allied sub-genus (Ommatophoca) of Seals of the southern hemisphere has six molar teetll on each side of the upper, and five on each side of the lower jaw, with the principal lohe of the crown more incurved.

In the genus Otaria the dental formula is-

$$
i \frac{3.3}{2.2} ; c \frac{1.1}{1.1} ; p_{4.4}^{4.4} ; m \frac{2.2}{1.1}=36 .
$$

The two middle incisors are small, suh-compressed, with the crown transversely notched; the simple erowns of the four incisors below fit into these notches; the outer incisors ahove are much larger, with a long-pointed conical erown, like a small canine. The truc canine is twice as large as the adjoining inrisor, and is rather less recurved. The molars have each a single fang. In Stemmutopus the last upper molar has two divergent fangs, at least in the young state.

In the great proboscidian and hooded Seals (Cystophora), the incisors and eanines still more predominate in size over the molars; but the incisors are reduced in number, the formula here is-

$$
i \frac{2.2}{1.1} ; c \frac{1.1}{1.1} ; p_{4.4}^{4.4} ; m \frac{1.1}{1.1}=30.1
$$

The molars are singlc-rooted, and the incisors laniariform. The two middle incisors above and the two below are nearly equal;
the outcr incisors above are larger. The canines are still more formidable, especially in the malcs; the curved root is thick and subquadrate. The crowns of the molar teeth are short, sub-eompressed, obtuse; sometimes terminated by a knob and defined by a constriction or neck from the fang; the last is the smallest.

In the Walrus (Trichechus rosmarus, fig. 265) the normal incisive formula is transitorily represented in the very young animal, wbicb bas tbree tceth
 in each premaxillary and two on eacb side of the fore-part of the lower jaw; they soon disappear, except the outer pair above, whicb remain close to the maxillary suture, on tbe inner side of the sockets of the enormous canines, and seem to commence the series of small and simple molars whicb tbey resemble in size and form. In the adult there are usually tbree such molars on cach side, behind the permanent incisor, and four similar teeth on each side of the lower jaw ; the anterior one passing into the interspace between the upper incisor and the first molar. The crowns of these teeth must he almost on a level witb the gum in skull and Tecth of the recent head; they are very obtuse, and worn the Walrus. obliquely from above down to the inner border of their base. The molars of the lower jaw are ratber narrower from side to side than those above, and are convex or worn upon their outcr side. Each molar bas a short, thick, simple and solid root.

The upper canines are of enormous size, descending and projecting from the mouth, like tusks, fig. 265, c, slightly inclined outward and bent backward; they present an oval transversc section, with a shallow longitudinal groove along the inner side, and one or two narrower longitudinal impressions upon the outer side; the base of the canine is widely open, its growtb being uninterrupted. Their homotype below retains the size and shapc of the succeeding molars.

The food of the Walrus consists of sea-weed and bivalves; the molars are well adapted to break and crush shells; and fragments of a species of Mya have been found, with pounded seaweed, in the stomacb. The canine tusks serve as weapons of offence and defence, and to aid the animal in mounting and clambering over blocks of ice.

A large extinct carnivorous animal (Machairodus, fig. 293, vi.), had the upper canine teeth, c, developed to almost the same disproportionate length as in the Walrus, whereby they were also compelled to pass outside the lower jaw when the moutb was shut. But these tecth were sbaped after the type of the feline canines, ouly with more compressed and trenchant crowns; and tbey were associated with other teeth in number and kind demonstrating the feline affinity of tbe genus Machairodus. Its remains occur in newer tertiary deposits and in caves. ${ }^{1}$

In older tertiary formations, remains of carnivorous Mammals have been found with the three true molar teeth as expressly modified for the division of flesh, and as worthy the term of 'scetorials" as the teeth so called in the lion. These teeth were associated with conieal premolars, long canines, and sbort ineisors, so as to exemplify the typical formula, e.g.-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{4.4}{4.4} ; m \frac{3.3}{3.3}=44 .
$$

The extinct Itycenodon and Pterodon of the upper eocenc formations of Hampshire and of France, manifest this interesting and instructive character of dentition.

A reduced view of the lower jaw of the Myamodon Requieni is given in fig. 266. After the canines, c, come four successively enlarging conical eompressed premolars, p 1-4; then, instead of a single carnassial representing the first true molar, there are three of these singularly modificd teeththe first, m 1, being of suddenly small size,

Dentition, luwer juw, of Hycutador. as compared with the antceedent premolar, and obviously illustrating its true nature as a continuation of the deciduous series, with whieh, doubtless, it agreed in size. It became a permanent tooth only because there was no premolar developed beneath it, so as to displace it. The succeeding carmassial true molars, $n_{2} 2$ and 3 , progressively incrense in size. The symbols in fig. 266 denote the homologies of the teeth. The marks of abrasion on the lower teeth in the My/tnodon prove the upper series to have been the same in number.

A sceond form of equally ancient Carnivore was a mixed-
Lent's Hole, Devonshire, e. g.; cxvi'. p. 17.4.
feeding animal, allied to the viverrine and canine families, the true molars prescnting the tuberculate modification, and the typical number and kinds of teeth being functionally developed, as in the Hyenodon. The serics in the upper jaw are shown in fig. 267. The term 'tubercular' is as applicable to the three true molars of the Amphicyon, $m_{1,2,3,}$ as the term 'carnassial' is to those of the Hyanodon.

$$
267
$$

Dentition, upper jaw, Arphicyon.
§ 221. Teeth of Ungulata. - The most common characteristic of this dentition is the large size, cuboid shape, and complex structure of the crowns of the grinding teeth. The enamel not only incloses but dips or penetrates into the substance of the dentinal body, and the cement, which is thick, accompanies the enamel. Thus the massive grinding organ is made up of substances of different densitics, and the working surface is irrcgular by the projections of the harder matcrial, as in the mineral 'grit' that is thereby suitable as a millstone.
A. Homologies of the parts of the grinding surface.-The pattern of the grinding surface, especially of the upper molars, varies in each genus of Ungulata, and is eminently characteristic thereof. Nevertheless, two leading types may be recogniscd. One, of unsymmetrical character, was early shown in Paleotherium, and is traceable in secondary modifications characteristic of Paloplotherium, Ilipparion, Equus, Hyrax, and Rhinoceros. A second was as early manifested in Anoplotlerium and Dichodon; it is more symmetrical in pattern, and is traccable, with modifications, in Dicotyles, Sus, Hippopotamus, and Ruminants. Indications of a more generalised type of molar have been obtained from tertiary
deposits antecedent in time to those characterised by Palaoor Anoplo-therium: they are afforded by Pliolophus, ${ }^{1}$ and Coryphodon. ${ }^{2}$ The answerable parts of the grinding surface will first be illustrated in the unsymmetrical series. In Palcootherium, c.g. fig. 268, the tract of dentine, a, b, extending along the outer side of the crown, has two indents, f, f, whereby it is divided into two lobes, an anterior or 'ant-external lobe,' a, and a posterior or 'post-external lobe,' b. The tract of dentine along the inner side of the crown is also divided by two deeper and more oblique clefts or valleys into an 'ant-internal lobe,' c, m, and a 'post-internal lobe,' d : these lobes extend obliquely inward and hackward from the outer ones, of which they are direct con-

Tppor molar (m a): Palceuthorium magmum.

269

Upper molar (on 2) ; Paloplolmarium.
tinuations. The anterior of the two inner clefts, e, i, extends from the middle of the inner surface of the crown obliquely outward and forward: the posterior one, g, h, enters at the posterior side of the crown, and extends nearly parallel with e, i : both vallcys cxpand and deepen at their blind ends. At an carly period of the attrition of the erown they intercommunicate, and extend to the anterior side of the crown, at l, as in the younger molar of Paloplotheriaum, fig. 269. But the shallow communicating passages between h and i, i and l, are soon obliterated, the dentinc of lobe d becoming continuous with b; and that marked e with a. In Poltophotherium a branch valley, also, extends from $a i$, to the anterior side of the crown, k, cutting off the part of the ant-internal lobe m from the rest of c; but, by continued abrasion, this valley is also obliterated, and the tooth assumes more of the palrotheriau pattern. In Equus, fig. 270, the valleys are of less equal depth than in Palcotherium, and are

$$
\mathbf{C x y}^{\prime \prime} \cdot \text { p. } 54 . \quad{ }^{2} \mathbf{~ G X Y I}^{\prime \prime} . \text { p. } 299 .
$$

so shallow midway that, at an early stage of attrition, the entry of the posterior valley, g, is separated from its termination, h; and that of the internal valley, e, from its termination i; the blind ends of hoth valleys, moreover, are more extended and irregular, than in Palcotherium, with the tendency to curve, so as to produce the crescentic form of the islands, i, h, in fig. 270. The obliteration of the mid-part of the accessory valley, k, unites the dentinal tract, m, to the rest of the lobe, c, as in Palcotherium, fig. 268: but it long remains separate in Hipparion, as in Paloplotherium, fig. 269.

The Rhinoceros and Hyrax more closcly adhere to the Palæotherium type: but the outer indents, f, f, are less marked. The

horse approaches nearest to the symmetrical type of the Ruminants, in which the homologous parts of the crown can, mostly, be well defined.

In the unworn crown of the Ruminant molar, fig. 271, the valley, g, h, extends across the crown more parallel with the long axis of the jaw, than in fig. 268, curving with the concavity outward: it communicates with the valley, i; and, as in Paloplotherium, this is continued to the foreside of the crown, as at l, fig. 269, severing the lobe c from a. In Ruminants, both the anterior and posterior entries to this antero-posterior doublecurved cleft are so shallow that they are soon ohliterated, and the lobe b is continued by a tract of dentine, with d, along the hiud part of the crown: as the lobe a is continued into lobe c at the fore part, as seen in the worn molar of the deer, fig. 271: the middle of valley, e, is separated from the end i, as in the horse: but the course of this valley is more transverse, and more directly bisects the antcro-posterior valley, h, i : thus the inner lobes c and d are more parallel with and similar to the outer
lobes a, b. Whether the aecessory lohule m, be a homologue of the end, so marked, of lohe c in Palaothcrium, Paloplotherium, and Equus, or a speeial development at the entry of valley e may be doubtful.

In the Hippopotamus, fig. 272, the valley eommencing at the inner side of the erown at e, extends straight across the tooth to n, bisecting the erown transversely: it is also biseeted, antero-posteriorly, by a shallower valley, answering to h, i, fig. 271. At the stage of attrition shown in fig. 272 , the remnant of the latter valley is seen at h and i : the deeper transverse valley, e, n, remains: the shorter indents, f, f, g, k, give
 the trefoil charaeter to the two chief divisions of the crown characteristic of Hippopotamus.

Another cxposition of the homologous parts of the complex crowns of the Ungulate molars assumes the crucial division into four quarters or lobes to be the primitive modification. The fore-and-aft cleft has already begun to be filled by the mid-lobules in Pliolophus: the arrest of the outer end of the transverse cleft produces the continuity of a with b : that of its mid-part, of d with e : the obliteration of both ends of the antero-posterior cleft insulates that cleft, as in the Ruminant. The ohliteration of the middle of the transverse cleft produees the eontinuation of a, b, with d, c; while the oblique continuation of e with i, and the retention of the continuity of g with h, leads to the type of P'alcotherium and Rhinoceros.

A suh-type of grinding surfaec is produced hy the existenee of Ω transversc without an antero-posterior valley, dividing the crown into a pair of transverse ridges; as in the Tapir; which, however, is mainly the greater development, and more transverse disposition, of the tracts b, d, and a, c, in Paleotherium, fig. 268. The ' hilophodont' sub-type hecomes more marked in Dinotherium, fig. 288, and in the anterior small molar of Mastodon : the sucecssivo multiplication of the transverse ridges completes the transition into the molar character of Elephas.
B. Artiodactyla. The extinct Charopotamus, Anthracotherium, Hyppotamus and Hippohyns, had the typical dental formula, and this is preserved in the existing representative of the same section
of non-ruminant Artiodactyles, the Hog. The permanent dental formula of the genus $S u s$ is illustrated in fig. 273.

The upper ineisors decrease in size from the first, i_{1}, to the third, $i 3$, receding from each other in the same degree; the first is relatively larger in the Sus larvatus than in the Sus serofa; the

basal line of the enamel is irregular ; that substance extends more than an inch upon the outer side of the tooth, but only two or three lines on the inner side. The lower incisors are long, subcompressed, nearly straight; the seeond is rather larger than the first; the third is the smallest, as in the upper jaw.

The upper eanines, in the Wild Boar, fig. 273, c, curve forward, outward, and upward; their sockets inclining in the same direction, and being strengthened above by a ridge of bone, which is extraordinarily developed in the Masked Boar of Africa. The enamel covering the convex inferior side of this tusk is longitudinally ribbed, but is not limited to that part; a narrow strip of the same hard substance is laid upon the anterior part, and another upon the posterior concave angle forming the point of the tusk, which is worn obliquely upwards from before, and backwards from that point. In the Sow the canines are much smaller than in the Boar. Castration arrests the development of the tusks in the male.

The teeth of the molar series progressively increase in size from the first to the last. The first premolar, ih. p i, has a simple, compressed, conical crown, thickest hehind, and has two faugs. The second, p^{2}, has a broader crown with a hind-lobe,
having a depression on its inner surface, and eaelı fang begins to be subdivided. The third, p 3, has a similar but broader erown implanted by four fangs. The fourth, p 4, has two principal tubercles and some irregular vertical pits on the inner half of the crown. The first true molar, $m 1$, when the permanent dentition is completed, exhibits the effeets of its early development in a more marked degree than in most otber mammals, and in the Wild Boar bas its tubereles worn down, and a smooth field of dentine exposed by the time the last molar has come in to place; it originally bears four primary cones, with smaller subdivisions formed by the wrinkled enamel, and an anterior and posterior ridge. The four concs produced by the crucial impression, of which the transverse part is the deepest, are repcated on the second true molar m 2, with more complex shallow divisions, and a larger tuberculate posterior ridge. The greater extent of the last molar, m a, is chiefly produced by the development of the back ridge into a cluster of tubercles; the four primary cones being distinguishable on the anterior main body of the tooth. The crowns of the lower molars are very similar to those above but are rather narrower, and the outer and inner basal tubercles are much smaller, or are wanting; the grinding surface of the last is shown in fig. 274.

274

Griutlag surfsce, (m 3) Sia.

The first or deciduous dentition of the H og consists of -

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.3} ; m \frac{3.3}{3.3}=28 \text { (fig. 294). }
$$

The canines are feeble, and have their normal direction in both jaws, the upper oncs descending according to the general type, which is not departed from until at a later period of life. The first decidnous molar is not succeeded by a premolar, but holds the place of such some time after the other deciduous molars are shed.

The dentition of the Wirt-hogs is reduced by the suppression of certain incisors and of the first two premolars- the toothforming energy being, as it were, transfermed to the last true molar, fig. $275, m$, which is even more remarkable than in the common hog for its size and complexity in both jaws: it is perlaps the most peculiar and complex tooth in the whole class of Mammalia. The surface of the erown presents three series of enamel-islands, in the direction of the long axis of the grinding surface; the eight or nine islands of the middle row are elliptic and simple; those of the other rows are equal in number, but are
sometimes subdivided into smaller islands. These islands or lobes are the abradcd ends of long and slender columns of dentine, encased by thick enamel, and the whole blended into a coherent crown by abundant cement, which fills up all the interspaces, and forms a thick exterior investment of the entire complex tooth.

The milk-molars are $\frac{3}{2}: \frac{3}{8}$ in number; but only the two last are succeeded by premolars. These are small, and, after the wearing out of the first true molar, are shed, leaving the remnant of the second true molar, fig. 275, m 2, with the last large one, $m 3$, to which the work of mastication is confined in old Wart-hogs. This interesting modification, as to order aud number, in the

Dentition, Inwer jnw, old Wart-hog (Phacochocrus).

change of the dentition, has thrown important light on the more anomalous dentition of the Elephant. ${ }^{1}$

The tendency to excessive development which characterises the canine teeth in the Suida, affects both these and the incisors in the genus Hippopotamus. The two median inferior incisive tusks, fig. 276 , i, are cylindrical, of great size and length; the two outer incisors are likewise cylindrical and straight, but much smaller. The upper canincs curve downward and outward; their exposed part is very short, and is worn obliquely at the forepart; they are thrce-sided, with a wide and deep longitudinal groove behind. The lower canines, ib. c, are massive, curved in the arc of a circle, subtricdral, the angle rounded off between the two anterior sides, which are convex and thickly cnamellcd, the posterior side of the crown being almost wholly occupied by the oblique abraded surface opposed to that on the upper canine. The implanted base of each of these incisive and canine teeth is simple, and excavated for a large persistent matrix, contributing to their perennial growth by constantly reproducing the dental matter to

[^72]replace the abraded extremities. The direction of the ahraded surface is in part provided for by the partial disposition of the enamel. The molar series consists of -
$$
p \frac{4.4}{4.4} ; m \frac{3.3}{3.3}=2 \mathrm{~s} .
$$

The first premolar is small, far in advance of the second, and is soon shed : the others (fig. 276, 2, 3, 4) form a continuous scries with the truc molars ($m, 2,3$). These have the double trefoil character shown in fig. 272. The crown of the last, in the lower jaw, is lengthened by a fifth cusp developed behind the normal pairs. The large tusks, fig. 276, c, exhihit the maximum of density in their component tissues. The enamel 'strikes fire' with steel like flint. The compact dentine has a high commercial valuc, especially for the fahrication of artificial teeth. It differs from truc ivory ly showing, in transverse section, the simple concentric instcad of the 'engine-turned' or curvilinear decussating lincs. ${ }^{1}$

The affinities of the Hippopotamus are clearly manifested by the character of its deciduous dentition; and if this he compared with the dentition at a like immature period in other Ungulata, it will be seen, by its closcr correspondence with that of Artiodactyles, and more especially the Phacocherc, that the Hippopotamus is cssentially a gigantic Hog.

The formula of the teeth which are shed and replaced, is-

$$
\frac{2.2}{2.2} ; c \frac{1.1}{1.1} ; m \frac{3.3}{3.3}=24
$$

If the small and simple tooth, which is developed anterior to the deciduous molars, and which has no successor, be regarded, from its carly loss in the existing Hippopotamus, as the first of the deciduous serics, we must then reckon with Cuvier four milkinolars on each side of hoth jaws.

The incisors in both jaws are simply conical and subequal, with an cutire cap of cnamel on the crown. The deciduous canines scarcely surpass them in size in the upper jaw, and not at all in the lower. I'rojecting forward, here, from the angles of the brond and straight symphysis, they appear like an additional pair of incisors; and this character of equality of development was retaincd by the ancient form of Hippopotamus with the morc typical number of incisors, $\frac{3}{3}: \frac{3}{3}$, which formerly inhabited India.

The first true deciluous molar, $d 2$, has a conical crown and two fangs in hoth jaws. That above has also a conical crown with onc strong postcrior and two anterior ridges. The second

[^73]deciduous molar, d, has a large trilobate crown, the first lobe small, with an anterior basal ridge; the second large, conical, with three longitudiual indentations; the third lobe still larger, and cleft into two half-cones by an antero-posterior fissure assuming the normal pattern of the true molars. The third deciduous molar, d_{4}, above more closely resembles the ordinary upper true molar; but its second pair of demi-cones are relatively larger. In the lower jaw the last deciduous molar, $d 4$, has a more complex erown than that of any other teeth of the permanent or deciduous dentition. It has three pairs of demi-cones, progressively increasing in size, from before backward, with an anterior and posterior basal ridge and tubercles. Like the last trilobate deciduous lower molar of the Hog, it increases in thiekness posteriorly, instead of diminishing here, like the last true molar of the lower jaw of the adult Hippopotamus.

The upper incisors, and the first premolar of botll jaws, are not developed in the typical Ruminants, rarely the upper canines: the dental formula being:-

$$
i \frac{0.0}{3.3} ; c \frac{0.0}{1.1} ; p \frac{3.3}{3.3} ; m \frac{3.3}{3.3}=32(\text { vol. ii. p. } 474, \text { fig. } 324)
$$

The gazelle, the sheep, the ox-respectively representing the families Antilopida, Ovida, and Bovida, which are collectively designated the 'hollow-horned ruminants' - all present this formula. It likewise characterises many of the solid-horned ruminants, or the deer tribe

Dentition, Moschus moschiferus, ? (Cervida), the exeeptions having eanine teeth in the upper jaw of the male sex, and sometimes also in the females, thongh they are always smaller in these.

The upper canines attain their greatest length in the Muntjac (vol. ii. p. 478, fig. 328, a α) and the small Muskdeer, and especially in the typical species (Moschus moschiferus, fig. 277.) These teeth, indeed, in the male Musk, ib. c, present proportions intermediate between those of the upper canines of the Machairodus and of the Morse. The inverse relationship in the development of teeth and horns, exemplified by the total absence of canines in the Ruminants with persistent frontal weapons, by thcir first appearance

The line traverses the Cuvierian 'dents candassières'; the interrupted line traverses the Blainvillian 'dents principales'.
in the periotically hornless deer, and by their larger size in the absolutely hornless Musks, is further illustrated hy the presence not only of canines, hut of a pair of laniariform incisors, fig. 278, i, in the upper jaw of the Camelida.

In the Camel and Dromedary the upper canines, fig. $278, c$, are formidahle for their size and shape, but do not project heyond the lips like the tusks of the Musk-deer; they are more feehle in the Llamas and Vieugnas, and are always of smaller size in the females than in the males. The inferior canines, o, moreover, retain their laniariform shape in the Camelide, and are more erect in position than in the ordinary Ru-
 minants. They are separated by a short diastema from the incisors in the Auchenix.

The true nature of the corresponding eanines in the ordinary Ruminants, in which they are proeumhent, and form part of the same series with the incisors, is always indicated hy the lateness of their development, and often hy some peculiarity of form. Thus in the Moschus, fig. 277, c, they are smaller and more pointed than the incisors ; in the Giraffe they have a much larger crown, which is hilobed. The laniariform tooth in the premaxillary bone of the Camelider, fig. 278, 1 , which represents the upper and outer incisor, i, is smaller than the true canine, c, which is placed behind it in the Camel and Dromedary; but in the Vieugna it is as large as, or larger than, the true canine.

Most of the deciduous molars of the Runinants resemble in form the true molars; the last milk-molar, for example, fig. 279 , d, in the lower jaw, has three lohes like the last lower true molar, m. 'The deeiduous molars in existing true Ruminants are three in number on each side,

Decidnons nud mernanent teeth of a Sheep. und, being sueceeded by as may premolars, the ordinary permanent molar formula is-

$$
p \frac{3.3}{3.3} ; m \frac{9.3}{4.9}
$$

but there is a rudiment of $d \mathrm{l}$ in the embryo Fallow-deer, and in one of the most ancient of the extinct Ruminants (Dorcatherium, Kaup) the normal number of premolars was fully developed.

The characteristic complexity of the Ruminant grinder, fig. 271 , is seen, in the permanent series, only in the three posterior tceth of both upper and lower jaws, which are the true molars; the three first, or premolars, having more simple crowns than those whicb they displace. The complexity in question is the result of peculiar plications of the formative capsule, some of which are longitudinal, or project inward from the sides of the capsulc, and form peninsular folds of enamel upon the grinding surface of the tooth, whilst others depend vertically from the summit of the matrix into the body of the tootb, and form islands of enamel when the crown begins to be worn. Of the longitudinal folds, two in the upper true molars are external, broad, but shallow, and often sinuous, and one is internal, narrow, and deep, cxtending quite across the summit of the crown of the tooth, and decreasing in depth toward the base of tbe crown. The corresponding fold of cnamel in the completed tooth, accordingly, extends more or less across the crown, from within outward, as the tooth is less or more worn. Tbe whole circumfcrence of this complex molar is also invested by a coat of enamel and a thinner layer of cement. Iu some Ruminants, e.g. Ox, Deer, and Giraffe, a small vertical column, fig. $271, m$, is developed at the internal interspace of the two lobes of one or more of the upper true molars, varying in height, and rarely reaching the summit of the new-formed crown, but longest in the Bovida. Different genera of Ruminants also differ in the depth and sinuosity of the two outer longitudinal folds, f, and in the depth and complexity of the two vertical folds, h, i, which likewise are united in some species by a longer common hase than in others, producing thereby a continuity of the enamcl, and complete antero-posterior bisection of the grinding surface during a longer period of attrition. The molars of the Camcl present the most simple condition of the Ruminant type of these teeth; the transverse fold dividing the crown being short, the dentine of the two lobes soon forms a continuous tract. The common base of the crescentic vertical folds of the capsule being likewise sbort, the enamel islands are soon separated from each other. They include a shallow or narrow crescentic cavity, with a simple but slightly sinuous contour. The two outer shallow longitudinal depressions of the crown have no middle rising; and there is no columnar process at the intcrspace of the two inner convexities.

The lower molars are like the upper oncs reversed. The single median longitudinal fold is external, and divides the convex outer sides of the two lohes. The hase of the fold extends, in some species, across the molar for some distance before it contracts in breadth, retreating toward the outer side, and the two lohes of the crown accordingly continue to be completely divided for a longer period, as in the Elk and Giraffe. The inner surface of the molar is gently sinuous, the concavities being rarely so deep as those of the outcr surface of the upper molars. The lower molars are always thinner, in proportion to their breadtb, than those ahove, and the crescentic islands are narrowar and less bowed. The diffcrences which the lower molars present in different gencra of Ruminants are analogous to those in the upper molars, hut are less marked. The accessory small column, when present, as in Bos, Urus, Megaceros, and Alces, is situated at the outer interspacc of the convex lobes, and nearer the base in the Cervide than in tbe Bovides. It is not developed in the Antclopes, Sheep, or Camcl, and is wanting in most of the smaller species of Decr. The last true molar of the lower jaw is characterised in all Ruminants by the addition of a third posterior lohe. This is very small and simple in the Camel and the Gnu, is relatively larger in the Bovidee and Cervida, and presents, in the Megaceros and Sivatherium, a deeper central enamel island or fold, which also characterises the smaller third lobe in the Giraffe. The lower molars of the genus Auchenia are peculiarly distinguished by the vertical ridge at the forepart of the antcrior lohe, which does not exist in the Camels of the Old World.

In all Ruminants, the outer contour of the entire molar series is slightly zigzag, the antcrior and outer angle of onc tooth projccting heyond the postcrior and outer angle of the next in advaucc. All the three lower premolars have compressed, subtrenchant, and pointed crowns in the small Musk-decr (Trayulus). The truc Musk (Moschus) more rescmbles the ordinary Deer in its promolars. The aherrant Camelide deviate most from ruminant type in the position, shape, and number of the premolars: the anterior one, fig. 278, s, is laniariform in hoth jaws.

As phenomena of dentition serve to determine, or indicate, the age of Hoofed beasts, a table is suhjoined in which the characteristic tecth are indicated hy the symhols adopted in my 'Odontography' (v), and illustratcd in figs. 279 and 294, with refercnce to those domesticated varietics raised for food, which are usnally exlibited, in competition, of prescrihed ages, at the great cattle
shows. The range of variety, for which allowance may he made, is noted in the Ox and Sheep.
Table of the Times of Appearance of the Permanent Teeth in the Ox, Sheef, and Hog.

Ssmbols	ox.				SHCEP.				нов.	
	Year.	arly. Month	$\text { Year. }{ }^{\text {Laz }}$	rite Sonth.		arly Month.	Year.	Late Month.	Year.	Month
¢ 1	1	9	2	3	1	0	1	4 to 8	1	0
$i 2$	2	3	2	9	1	6	2	0 to 1	1	6
13	2	9	3	3	2	3	2	9 to 12	0	9
c	3	3	3	9	3	0	3	6	0	9
$m 1$	0	4	0	6	0	3	0	6	0	6
$m 2$,	3	1	8	0	9	1	0	0	10
m3	2	0	2	3	1	6	2	0	1	6
dorp 1	0	0	0	0	0	0	0	0	0	6
$p 2$	2	6	2	8	2	0	2	6	1	0
$p 3$	2	6	2	8	2	0	2	6	1	0
$p 4$	2	8	3	0	2	3	2	6	1	3

C. Perissodactyla.-The Horse is selected as the first example of the dentition of the hoofed Quadrupeds with toes in uneven number, hecause it offers in this part of its organisation some transitional

Dentition of Forse (Equat),
features hetween those of the dental characters of the typical memhers of the artiodactyle and of those of the perissodactyle Ungulata.

All tbe kinds of teeth are retained, in nearly normal numbers, in both jaws, and with almost as little unequal or excessive development as in the Anoplothere; hut the prolongation of the slender jaws carries the canincs, figs. 280, c, and incisors, ib. i, to
nome distance from the molars, and creates a long diastema, as in the Ruminants and Tapirs. The first deciduous molar is very minute and is not succeeded by a premolar; yet, remaining longer in place than the larger deciduous molars behind, it represents the first premolar, and completes the typical number of that division of the grinding series. If the dental formula of the genus Equus he restricted to the functionally developed permanent teeth, it will he-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{3.3}{3.3} ; m \frac{3.3}{3.3} ;=40
$$

The outcr side of the upper molar of the Horse (Equus C α ballus, fig. 269) is impressed, as in the Palwothere, fig. 267, by two wide longitudinal channels: the other evidences of the perissodactyle type of grinding surface, and the modifications thereof, are given at p. 341. In the lower jaw, the teeth, as usual, are narrower transversely than in the upper jaw; they are divided externally into two convex lohes hy a median longitudinal fissure, and on the inner side they present three principal unequal convex ridges, and an anterior and posterior narrower ridge; but the crown of the molar is penctrated from the inner side hy deeper and more complex folds than in the Rhinoceros or Palæothere.

The incisors, figs. 280, 285, i, are arranged close together in the arc of a circle at the extremity of hoth jaws. They are slightly curved, longitudinally grooved, with long simple subtrihedral fangs tapering to their extremity, fig. 280. The crowns are broad, thick, and short. The contour of the biting surface, hefore it is much worn, approaches au ellipse. These teeth, if found detached, recent or fossil, are distinguishable from those of the Ruminants hy their greater curvature, and from those of all other animals by the fold of enamel (ib. c^{\prime}), which penetrates the hody of the crown from its broad flat summit, like the inverted finger of Ω glove. When the tooth begins to he worn, the fold forms an island of enamel inclosing scecton of tactior Horse a cavity, \therefore, partly fillod by cement and partly hy the discoloured substances of the food; this is called hy horse-dealers the ' mark.' In aged horses the incisors are worn down below the extent of the fold, and the mark disappears. The cavity is usually obliterated in the first or mid-incisors at the sixth year, in the second
incisors at the seventh year, and in the third or outer incisors at the eighth year, in the lower jaw. It remains longer in those of the upper jaw, and in both the place of the ' mark' continues for some years to be indicated by the dark-coloured cement or osteo-dentine.

The canines are small in the stallion, less in the gelding, and rudimental in the mare. The unworn crown is remarkable for the folding in of the anterior and posterior margins of enamel, which here includes an extremely thin layer of dentine. The upper canine is situated in the middle of the long interspace between the incisors and molars: the lower canine, fig. 280, c, is close to the outer incisor, as in the Ruminants, but is better distinguished by its cuspidate form.

The most obvious character by which the horse's molars may be distinguished from the complex teeth of other Herbivora corresponding with them in size, is the great length of the tooth before it divides into fangs. This division, indeed, does not begin to take place until much of the crown has been worn away; and thus, except in old horses, a considerable portion of the whole of the molar is implanted in the socket by an undivided base. This is slightly curved in the upper molars. It provides for mastication during a longer life than in the cow.

The following is the average course of development and succession of the teeth in the Equus Caballus:-The summits of the first functional deciduous molar ' ('first grinder' of veterinary authors) are usually apparent at birth; the succeeding grinder ${ }^{2}$ sometimes rises a day or two later, sometimes together with the

Decidaous meisors of l-3ear old Culf. Lower jaw. frst. Their appearance is specdily followed by that of the first deciduous incisor, fig. 282, d^{1} (' centre nipper' of veterinarians), which usually cuts the gum between the third and sixth days; but occasionally protrudes at birth. The second deciduous incisor, ib. d 2, appears betwecn the twentieth and fortieth days, and about this time the rudimental molar, ${ }^{3}$ comes into place, and the last deciduous molar ${ }^{4}$ begins to cut the gum. About the sixth month the inferior lateral or third incisors, ib. d 3 with the deciduous canine make their appearance. The lower minute canine is shed about the time that the contiguous incisor is in

[^74]place. The upper deeiduous eanine is shed in the course of the seeond year. The rise to working level of the third deciduous ineisors or 'eorner nippers' completes the stage of dentition called the - colt's mouth' by veterinary authors, fig. 282. The deeiduous ineisors are not only smaller than the permanent ones, but are whiter, lave a better marked ' neek,' the fang more slender and pointed, and are devoid of the median longitudinal groove. The first permanent

Inclulve dentition of Prear ond Cult. Lower Juw.

Inelalve dentition of a year old Colt. Lower jaw.
molar, $m \mathrm{~s}$, appears between the eleventh and fourteenth montlis. The 'seeond' molar, m 2, follows at the twentieth month or the sceond year. The first functional premolar, p_{2}, displaces the deeiduous inolar, $d 2$, at from two years to two years and a half old. ${ }^{1}$ The first permanent ineisor, fig. 283, $i 1$, displaees $d 3$, and protrudes fiom the gum at between two years and a half and three years. $\Lambda \mathrm{t}$ the same period the second or penultimate premolar, p_{3}, pushes out the penultimate milk-molar, and the penultimate true molar, m 2, eomes into place. The last premolar, p^{4}, displaces the last deciduous molar at between three years and a half and four years; the appearance above the gum of the last true molar, m_{3}, is usually some what carlicr. The second ineisor, fig. 284, i2, pushes out its decihnons predecessor at about three years and eight months. The permanent eanine or 'tusk,' c, next follows; its appearance indieates the are of four years and a half; but it sometimes comes earlier. The third, or outer ineisor, fig. 285, i3, pushes out the deeiduous incisor, $d s$, about the fifth year, but is seldom in full place before the horse is five years and a half old; the last premolar is then usually on a level with the other grinders. Upon the rising

[^75]$$
A \Delta: 2
$$
of the third permanent incisor, or ' corner nipper,' the 'colt' becomes a 'horse,' and the 'filly' a 'mare,' in the language of the horse-dealers; after the 'disappearance of the 'mar'k' in the incisors, at the eighth or ninth year, the horse hecomes 'aged.'

The modifications which the upper molars of Hyrax, fig. 286, present, as compared with those of Paleotherium, will he rcadily understood by the remarks in the section on the homologies of the grinding surface, asillustrated hy figs. 268270. The present genus is a miniature form of the family, and, like the primitive eo- and miocene bornlessrbinoceros (Acerotherium), retains large incisors, with a type molar series, c.g.

$$
i \frac{1.1}{1.1} ;=\frac{0.0}{0.0} ; p \frac{4.4}{4.4} ; m \frac{3.3}{3.3}=32 .
$$

Tbere are no canines. As to the incisors in Hyrax or Rhinoceros the species vary, not only in regard to tbeir form and proportions,

286

Dentition, upper jaw (Hyraven but also their existence; and in the varieties of these teeth we may discern the same inverse relation to the development of the borns which is manifested hy the canines of tbe Ruminants. Thus, the two-borned Rhinoceroses of Africa, which are remarkable for the great length of one ($R h$. bicornis, Rh. simus) or both ($R h$. Keitloa) of the nasal weapons, have no incisors in their adult dentition; neitber had that great extinct two-horned species (Rh. tichorinus), the prodigious development of whose horns is indicated by the singular modifications of the vomerinc, nasal, and premaxillary bones, in relation to the firm support of those weapons. The Sumatran bicorn Rhinoceros comhines, with comparatively small horns, moderately developed incisors in hoth jaws. The incisors are of larger size in the unicorn Rhinoceroses (Rh. Indicus and Rh. Sondaicus); still larger, relatively, in the hornless Acerotherium and Hyrax, figs. 286, 287, i.

The deciduous molars of the Rhinoceros are, in number as well as in shape, similar to those in Hyrax, which bcars the same relation to the great Rhinoceros as the small existing floth does to the extinct Megatherium. The change of dentition of the Rlitnocerotide is, therefore, here illustrated by the young Hyrax capensis, fig. 287.

The four premolars, $p 1$, $2,3,4$, are exposed above the four deciduous molars, $d 1,2,3,4$, which they push out; the first true molar, $m \mathrm{I}$, is in place; the second, m 2, and third, m 3, molars

Declduon ind permanent teetb, Hyrax, Nat, bize, are in different states of forwardness. The first premolar differs from the rest only by a graduated inferiority of size, which, in the last premolar, p 4, ceases to be a distinction between it and the true molars.

The dental formula of the Tapir is-

$$
i \frac{3.3}{3.3} ; c \frac{1.1}{1.1} ; p \frac{4.4}{3.3} ; m \frac{3.3}{3.3}=42 \text { (vol. ii. p. } 449, \text { fig. } 300, \text { immature) }
$$

The median incisors above have a hroad trenchant crown, k, separated by a transverse channel from a large basal ridge; the wedge-shaped crowns of the opposite pair below fit into the channel, and have no basal ridge; the outer incisors above are very large and like canines; those below are unusually small. The canines, l, have crowns mucla shorter than their roots, and not projecting, like tusks, beyond the lips; they are poiuted, with an outer convex, separated hy sharp edges from an inner, less convex, surface. The lower canines form part of the same semicircular series with the incisors. The first three premolars above have the outer part of the crown composed of two half-cones, the posterior one having a basal ridge; the anterior hasal ridge rises into a small cusp in the sccond premolar, which increases in size in the third and fourth; in this tooth the transverse depression divides at the hase of the anterior and outer demicone, and the postcrior division is continued into the interspace of the two demiconcs; these, therefore, now become in $m 1$ and $m 2$ the outer ends of the two transverse wedge-shaped eminences, giving their summits a curve whose concavity is turned backward; the last molar, m a, may be known by the shorter and more curved posterior eminence. In the dentition of the lower jaw the double transverse ridged structure prevails throughout the molar series,
the anterior talon being most produced and compressed in the first tooth, p.

Certain huge fossil hilophodont grinders, which seemed to indicate a gigantic Tapir, are now known, by the discovery of the cranium, and the enormous tusks of the lower jaw, fig. 288, i, to helong to a genus connecting the tapiroid with the proboscidian families.

The permanent dentition of the genus Dinotherium is-

$$
i \frac{0.0}{1.1} ; c \frac{0.0}{0.0} ; p_{2.2}^{2.2} ; m \frac{3.3}{3.3}=22 .
$$

The two deciduous molars in situ on each side of the fragment of the upper jaw of the young Dinotherium, which Professor Kaup ${ }^{1}$ has figured, answer to the third and fourth of the typical series. The crown of the anterior milk-molar supports two transverse

ridges with an anterior and posterior hasal ridge; its contour is almost square ; the last milk-molar has a greater antero-posterior extent, and supports three transverse eminences with an anterior and posterior hasal ridge, the anterior ridge being developed into a pointed tubercle at its outer end. The two premolars, fig. 288, p^{3} and 4, conform to the general rule in being more simple than the teeth which they displace and succeed. The transverse diameter of the second premolar exceeds the antero-posterior one, the proportions being the reverse of those of the deciduous molar, which it displaces. The first true molar, m 1, repeats the structure of the hindmost deciduous molar, its crown

[^76]Laving a disproportionate antero-posterior extent, and supporting three transverse eminences, with an anterior, posterior, and internal hasal ridge. The Dinotherc resumes the tapiroid character, and differs from the Mastodon, inasmuch as the posterior molars, $m 2$ and 3 , instead of having an increased antero-posterior extent and more complex crowns, increase only in thickness, and support two instead of three transverse eminences; they have also an anterior and a posterior hasal ridge. In the lower jaw the first premolar, p^{3}, is implanted, like that ahove, hy two fangs; hut it has a smaller and simpler crown, which is narrower in proportion to its antero-posterior extent, and is almost entirely occupied by the antero-posterior ridge, only the posterior of the two inner tuhercles heing developed; thus the crown presents more of a trenchant than of a grinding character; the second premolar, p 4, supports two transverse ridges. The third of the permanent series, which is the first true molar, $m \mathrm{l}$, has three transverse ridges, like the one ahove, hut is relatively narrower; the second, $m 2$, and third, m, true molars have each large square crowns, with two transverse ridges, and an anterior and posterior talon, the latter heing more developed than in the corresponding molars of the upper jaw.

The generic peculiarity of the Dinotherium is most strongly manifested in its tusks. These, fig. 288, i, are two in number, implanted in the prolonged and deflected symphysis of the lower jaw, in elose contiguity with each other, and having their exserted crown directed downward and hent hackward, gradually decreasing to the pointed extremity. In jaws with molar teeth of equal size, the symphysis and its tusks offer two sizes; the larger ones, which have been found four feet in length, with tusks of two fect, may be attrihuted to the male Dinothere; the smaller specimens, with tusks of half size, to the female. The ivory of these tusks presents the fine concentric structure of those of the IIippopotamus, not the decussating curvilinear character which characterises the ivory of the Elephant and Mastodon. No corresponding tusks, nor the germs of such, have yet been discovered in the upper jaw of the Dinotherium.
D. Proboscidia.-The dentition of the genus Elephas, the sole existing modification of the once numerous and varied Prohoscidian family, includes two long tusks, fig. 289, one, i, in each of the premaxillary hones, and large and complex molars, ih., d_{4}, m_{1}, m. in both jaws: of the latter there is never more than one wholly, or two partially, in place and use on each side at any given time, the series heing continually in progress of formation
and destruction, of shedding and replacement: and all the grinders succeed one another, like true molars, horizontally, from behind forwards.

The total number of teeth developed in the elephant appears to be $i \frac{2-2}{0-0}, m \frac{6-6}{6-6}=25$: the two large permanent tusks being preceded by two small deciduous ones, and the number of molar teeth which follow one another on each side of both jaws being not less than six, of which the last three answer to the true molars of other mammals.

The deciduous tusk appears beyond the gum between the fifth and seventh month; it rarely exceeds two inches in length, and is shed between the first and second year.

The permanent tusks cut the gum when about an inch in length, a month or two usually after the milk-tusks are shed. Their widely open base is fixed upon a conical pulp, which, with the capsule surrounding the base of the tusk and the socket, continues to increase in size and depth, obliterating all vestiges of that of the deciduous tusk, and finally extending its base

close to the nasal aperture, fig. $289, n$. The tusk, being subject to no attrition from an opposed tooth, but being worn only by the occasional uses to which it is applied, arrives at an extraordinary length, following the curve originally impressed upon it by the form of the socket, and gradually widening from the projccting
apex to that part which was formed when the matrix aud the socket had reached their full size.

These incisive teeth of the elephant not only surpass other teeth in size, as belonging to a quadruped so enormous, hut they are the largest of all teeth in proportion to the size of the hody; representing in a natural state those monstrous incisors of the rodents, which are the result of accidental suppression of the wearing force of the opposite teeth, fig. 239.

The tusks of the elephant, like those of the mastodon, consist chiefly of that modification of dentine which is called 'ivory,' and which shows, on transverse fractures or sections, striæ proceeding in the arc of a circle from the centre to the circumference in opposite directions, and forming by their decussations curvilinear lozenges. This character is peculiar to the tusks of the Proboscidian Pachyderms.

In the Indian Elephant the tusks are always short and straight in the female, and less deeply implantcd than in the male: she thus retaining, as usual, more of the characters of the immature state. In the male they have been known to acquire a length of nine feet, with a hasal diameter of eight incles, and to weigh one hundred and fifty pounds: but these dimensions are rare in the Asiatic species.

The elephant of Africa, at least in certain localities, has large tusks in both sexes; and the ivory is most csteemed by the manufacturer for its density and whiteness.

The molar teeth of the elephant are remarkahle for their great size, and extreme complexity of their structure, fig. 290. The crown, of which a great proportion is huried in the socket, and very little more than the grinding surface appears ahove the gum, is decply divided into a number of transverse perpendicular plates, consisting each of a body of dentine, d, coated hy a layer of enamel
 $i h_{1 .}, r_{\text {, and }}$ this again by the cement, ib., c, which fills the interspaces of the enamclled plates, and lieve more especially mocrits its name, since it hinds together the several divisions of the crown before they are fully formed and united by the conflnence of their hases
into a common body of dentine. As the growtb of each plate begins at the summit, they remain detached and like so many separate teeth or denticules, until their base is completed, when it becomes blended with the bases of contiguous plates to form the common body of the crown of the complex tooth from wbich the roots are next developed.

The plates of the molar teeth of the Siberian Mammoth (Elephas

Molars, African Elephath. primigenius) are tbinner iu proportion to their breadth, and more numerous in proportion to the size of the crown than in the existing species of Asiatic Elephant. In the African Elephant, fig. 291, the lamellar divisions of the crown are fewer and tbicker, and they expand more uniformly from the margins to the centre, yielding a lozengeform wben cut or worn transversely, as in mastication. From this modification the gradation is close in the many extinct species to the threeridged Mastodons and two-ridged Dinotheres.

The first molars of tbe Asiatic Elephant include four plates, are in place and use at three months, and are shed wben the elephant is about two years old.

The eight or nine plates of the second molar are formed in the closed alveolus, behind the first molar by the time this cuts the gum, and they are united witb the body of the tooth, and most of tbem are in use, when tbe first molar is shed.

The third molar has the crown divided into from eleven to thirteen plates; it averages four inches in length, and two inches in breadth, and bas a small anterior, and a very large posterior root; it begins to appear above the gum about the end of the second year, is in its most complete state and extensive use during the fifth year, and is worn out and shed in the ninth year. Its remains about this period are shown in fig. 289, d_{4}. The three preceding teeth answer to the deciduous molars, $d 2, d 3$, and $d 4$, in the Hyrax, fig. 287, and Hog, fig. 294.

The fourth molar, figs. 289 and $292, \mathrm{~m}$, presents a marked superiority of size over the third, and a somewhat different form: the anterior angle is more obliquely abraded, giving a pentagonal figure to the tooth in the upper jaw. The uumber of plates in the crown of this tooth is fifteen or sixteen: its length between seven and eight inches; its breadth three inches. The forepart of the grinding surface of this tooth begins to protrude
through the gum at the sixth year: it is in full use and place at the fifteenth year (fig. 289, mi): the tootb is worn away, and its last remnant shed, about the twentieth or twenty-fifth year. It is the bomologue of the first true molar of Hyrax, fig. 287, m 1 .

The fifth molar, ib., $m 2$, with a crown of from seventeen to twenty plates, measurcs between nine and ten incbes in length, and about three inches and a half in breadth. It begins to appear above the gum about the twentieth ycar: its duration has not been ascertaincd by observation.

The sixth molar is the last, and has from twenty-two to twentyseven plates; its length, or an-tero-posterior extent, following the curvature, is from twelve to fifteen inches: the breadth of the

Molars, lower jaw, Indian Elephant. AEL. 15 years. grinding surface rarcly exceeds tbree inches and a half. ${ }^{1}$

The molar teeth succeed each other from behind forward, moving in the arc of a circle, shown by the curved line in fig. 289. The position of the growing tooth in the closed alveolus, $m 2$, is almost at right angles with that in use, the grinding surface bcing at first dirccted backward in the upper jaw, forward in the lower jaw, and brought, by the revolving course, into a horizontal linc in both jaws, so tbat they oppose each other, when developed for usc. The imaginary pivot on wbich tbe grinders revolve is next their root in the upper jaw, and is next the grinding surface in the lower jaw ; in both, towards the frontal surface of the skull. Viewing both upper and lower molars as one complex wholc, subject to the same revolving movement, the section dividing such whole into upper and lower portion runs parallel to the curve described by that movement, the uppor bcing the central portion, or that nearest the pivot, the lower, the periphcral portion : the grinding surface of the upper molars is consequently convex from behind forward, and that of the lower molars concave: the upper molars are always broader than the lower ones.

The bony plate forming the sockets of the growing teetl। is more than usually distinct from the body of the maxillary, and

[^77]participates in this revolving coursc, advancing forward with the teeth. The partition between the tooth in use and its successor is pexforated near the middle; and, in its progress forward, that part next the grinding surface is first absorbed ; the rest disappearing with the absorption of the roots of the preceding grinder.

There are few examples of organs that manifest a more striking adaptation of a complex structure to the exigencies of the animal endowed with it, than the grinding teeth of the elephant. We perceive, for example, that the jaw is not encumbered with the whole weight of the massive tooth at once, but that it, is formed by degrecs as it is required; the division of the crown into a number of successive plates, and the subdivision of these into cylindrical processes, presenting the conditions most favourable to progressive formation. The fore and most abraded part of the tooth is fitted for the first coarse crushing of the branches of a tree: the transverse enamel ridges of the succeeding part of the tooth divide it into smaller fragments, and the posterior islands and tubercles of enamel pound it to the pulp fit for deglutition. The structure and progressive development of the tooth not only give to the elephant's grinder the advantage of the uneven surface which adapts the millstone for its office, but, at the same time, secure the constant presence of the most efficient arrangement for the finer comminution of the food, at the part of the mouth which is nearest the fauces.

The central part of the tusk especially near the base of such as have reached their full size, is occupied by a slender cylindrical tract of modified ivory, perforated by a few vascular canals, which is continued to the apex of the tusk. It is not uncommon to find processes of osteo-dentine or imperfect bone-like ivory, projecting in a stalactitic form into the interior of the pulp-cavity, apparently the consequence of the partial inflammation of the vascular pulp.
The musket-balls and other foreign bodies which are occasionally found in ivory, are immediately surrounded by osteo-dentine in greater or less quantity. It has often been a matter of wonder how such bodics should become completely imbedded in the substance of the tusk, sometimes without any visible aperture, or how leaden bullets may have become lodged in the solid centre of a very large tusk without having been flattened. The explanation is as follows:-A musket-ball, aimed at the head of an elephant, may penetrate, at α, fig. 289, the thin bony socket and the thinner ivory parietes of the wide conical pulp-cavity occupying the inserted base of the tusk; if the projectile force bc there spent, the ball will gravitate to the opposite and lower side of the pulp-
cavity, as indicated in fig. 289, b. The hole a is soon healed and filled up hy ossification of the periosteum of the socket, and of the pulp next the thin wall of ivory which has heen perforated. The ball sinks below the level of this cicatrix, and the presence of the foreign body exciting inflammation of the pulp, an irregular course of calcification ensues, which results in the deposition around the ball of a certain thickness of osteo-dentine. The pulp, then resuming its healthy function, coats the surface of the osteodentine inclosing the ball, together with the rest of the conical cavity into which that mass projects, with layers of normal ivory,

By the continued progress of growth, the hall so inclosed is carried forward, in the course indicated hy the arrow in fig. 289, to the middle of the solidificd exserted part of the tusk, c. Sbould the ball have penetrated the base of the tusk of a young elephant, it may be carried on, hy the uninterrupted growth and wear of the tusk, until that base has become the apex, and be finally exposed and discharged hy the continual abrasion to wbich the apex of the tusk is subjected.

Yet none of these phenomena prove the absolute nonvascularity of the tusk, but only the low degree of its vascularity. Blood circulates, slowly no doubt, through the prolongations of the pulp into the minute vascular canals which are continued through the centre of the ivory to the very apex of the tusk: and it is from this source that tbe fine tuhular structure of the ivory ohtains the correspondingly minute villi carrying the plasmatic colourless fluid hy which its low vitality is maintained. ${ }^{1}$

The modification of dentine called 'ivory,' is characterised partly by the minute size of the tuhes, which, at their origin from the pulp cavity, do not exceed $\frac{16}{} \frac{1}{00}$ th of an inch in diameter, in their close arrangement at intervals scarcely exceeding the hreadth of a single tuhe, and, above all, on their strong and almost angular gyrations, which are much greater tban the secondary curvatures of the tuhes of ordinary dentine.

The dentinal tubes of ivory, as they radiate from the pulp-cavity, incline obliquely towards the pointed end of the tusk, and de-

[^78]scribe two slight primary curves, the first convex towards that end, the second and shorter oue concave: these curves in narrow sections from near the open base of the tusk are almost obscured by the strong angular parallel secondary gyrations. The tubes divide dichotomously, at acute angles, and gradually dccrease in size as they approach the periphery of the tusk.

The characteristic appearance of decussating curved strix, with oblique rhomboidal spaces, so conspicuous on transverse sections or fractures of ivory, is due to the refraction of light caused by the parallel secondary gyrations of the tubes above described. The strong contour lines observed in longitudinal sections of ivory, parallel with the cone of the pulp-cavity, and which are circular and concentric when viewed in transverse slices of the tusk, are commonly caused by strata of minute opaque cellules, which are unusually numerous in the interspaces of the tubes throughout the substance of the ivory, and by their very great abundance and larger size in the peripheral layers of cement. The decomposition of the fossil tusks into superimposed conical layers takes place along the strata of the opaque cellules, and directly across the course of the gyrating dentinal tubes.

By the minuteness and close arrangement of the tubes, and cspecially by their strongly undnlating secondary curves, a tougher and more elastic tissue is produced than results from their disposition in ordinary dentine ; and the modification which distinguishes 'ivory' is doubtless essential to the due degree of coherence of so large a mass as the elephant's tusk, projecting so far from the supporting socket; and to be frequently applied in dealing hard blows and thrusts.
§ 222. Homologies of Teeth.- In Histology tissues differ according to the kinds and degrees of force which they exercise in the living body: some, the ncrvous and muscular, e.g. are ' active;' others, with lower endowments of clasticity, adhesiveness, hardness, \&c., may be "called 'passive,' and the classes of these tissues are less definite and distinct. In considering the homology of a tooth, in refcrence to its class of tissue, our vicw of it must not be restricted to its ordinary conditions in mammalia, where a central pulp-canal radiates a single system of dentinal tubes like the lacunal tubes from a Haversian canal, but should be extended to those less specialised states of tooth in which the body of dentine is traversed by several pulp-canals, either dichotomising, as in the molar of Orycteropus, vol. i. p. 369, fig. 247, or ramifying throughout the dentine, as in the laniariform tooth of Lamna (vol. i. p. 364, fig. 241).

A vascular matrix huds out in the shark from the membrane covering the jaw, as in the deer from that covering the cranium, and the blood-vessels, ramifying through such matrix, convey the phosphate of lime which hardens it; each ultimate ramification that radiates a system of dentinal tuhes in the shark's tooth, corresponds with the same ramification of the artery radiating lacunal tubes in the matrix of the decr's antler.

After the tooth of the shark has heen worn hy the uses for which it was calcified, it is shed like the antler, and is succeeded by another. There is merely a difference in the place of succession, the new tooth rising close to, but not, as in the antler, directly under, the base of the old.

But the basis from which the matrix of hoth tooth and antler grows is homologically the same. In both instances the gum, or corium, is pushed out by the growing matrix : in the deer it forms the ' velvet' which peels away from the ossified matrix, in the shark it is hardened into the enamel-like layer covering the matrix.

These are the differences that can be predicated in reference to the histological homology of the parts in question, and the shark's tooth answers to the deer's antler, plus the outer enamel-like covering, in mode of development, structure, grow th, shedding, and succession. They correspond, alike, with osseous texture; and, under a less genus, with the parts of the dermo-skelcton.

But the tooth of a shark is homologous with that of a porpoise; therefore, teeth are referahle to the dermo- or entero-skeletal parts of the osscous system.

Descending to the special homologies, we find that the idea of a recognition of answerahle tectl in different animals bas prevailed, more or less vagucly, in Auatomy, from an carly period of the science.

When 'incisors,' 'canines,' and 'molars' were predicated of the dentition in different species, homologous teeth were recognised so far as the characters of those classes of tceth were defined and understood.

The Cuviers ' went a step further, and distinguished the molar teeth into 'false and 'true,' into 'carnassial' and 'tuhercular.' De Blainville pointed out a particular tooth by the uame of 'principal,' which ho helieved himsclf ahle to trace from species to species. ${ }^{2}$

The first step in this inquiry is the elimination of those classes of Vertebrata and orders of Mammalia in which homology cannot be predicated of individual teeth. This limits the work to the group of mammals here termed ' Diphyodonts.'

[^79]Only in the Mammalian orders with two sets of teeth do those organs acquire fixed individual characters, supporting the application of special denominations; and this individualisation of the teeth is significative of the high grade of organisation of the animals manifesting it.

Oxiginally, indeed, the name ' incisors,' ' laniaries ' or ' canines,' - molars,' 'tuherculars,' were given to the teeth in Man and certain Mammals, as in Reptiles, in reference morely to the shape and offices so indicated; hut names of teeth can now be used as arhitrary signs, in a more fixed and determinate sense. In some Carnivora, e.g., the front teeth have tuberculate summits, adapted for nipping and bruising, while the principal hack teeth are shaped for cutting, and work upon each other like the blades of scissors. The front teeth in the Elcphant project from the upper jaw in the form, size, and direction of long pointed horns. In short, shape and size are the least constant of dental characters; and the homologous teeth are determined, like other parts, hy thcir relative position, hy their connections, and by their development.

Those teeth which are implanted in the premaxillary bones, and in the corresponding part of the lower jaw, are called 'incisors,' whatever be their shape or size. The tooth in the maxillary hone, which is situated at, or near to, the suture with the premaxillary, is the 'canine,' as is also that tooth in the lower jaw which, in opposing it, passes in front of its crown when the mouth is closed. The other teeth of the first set are the 'deciduous molars; the teeth which displace and succeed them vertically are the ' premolars;' the more posterior teeth, which are not displaced hy vertical successors, are the 'molars,' properly so called.

The premolars must displace deciduous molars in order to rise into place; the molars are a continuation, backward, of the primary or ' milk' series. It will he observed in fig. 294 that the last deciduous molar, $d 4$, has the same relative superiority of size to $d 3$ and $d 2$ which $m 3$ bears to $m 2$ and $m 1$; and that the crowns of p_{3} and p_{4} are of a more simple form than those of the milk-teeth which they are to succeed: this, however, is not a constant character (see fig. 287, Hyrax). Teeth of each of the kinds arbitrarily termed 'incisors,' ' canines,' 'false molars,' and ' molars,' have received other special names, having reference to certain peculiarities of form or other property. The premolars in the human subject have been called 'hicuspids.' The last upper premolar and the first true molar in the Carnivora are
t'rmal 'sectorials,' or 'molaircs carnassières.' Teeth of au elongated conical form, projecting considerably beyond the rest, and of uninterrupted grow th, are called ' tusks;' such, for example, are the incisors of the clephant, narwhal, dinotherium, and dugong, the canines of the hoar, walrus, and hippopotamus. Tbe long and large incisors of the rodents have heen termed, from the shape and structure of their cutting edge, scalpriform teeth, chiscl teeth, 'dentes scalprarii.' The lower incisors of the colugos (Galeopithecus), with the crown dceply notched like a comb, are termed 'dentes pectinati.' The canines of the baboons, which are decply grooved in front like the poison-fangs of some snakes, are 'dentes cannliculati.' The compressed crowns of the teeth of short-clawcd seals (Stenorhynchus) and of the extinct Zeuglodon, heing divided into points like a saw, are 'dentes serrati,' \&c. But a true knowledge of nature, a right appreciation of what is cssential in her phenomena, tends to explode needless terms of art invented for unimportant varieties, and to establish those names that are the signs of true species of things.

As most zoologists have adopted the Cuvierian system of nomenclature and homology of the tecth in Mammalia, it may not be superfluous to explain what is objectionahle in that system. In it the molar series of tceth, or those that follow the canines, are divided, according to their form, into three kinds, 'false molars,' "carnassials,' and 'tuhercular molars,' and the gencric dental characters of the Mammalia are formulised according to this system. Thus, the genus Felis has-' fausses molaires' $\frac{2}{2}: \frac{3}{2}$, 'carnassières ' $\frac{1}{1}: \frac{1}{1}$, ' tuberculcuscs' $\frac{1}{0}: \frac{1}{0}=\frac{8}{6}$. This scems a natural way of expressing the homotypal teeth, or the answerable teeth in the upper and lower jaws. But to illustrate its error, the subjoined diagram, fig. 293, is appended, in which the dental system of the Cat-tribe (Felis v.) is associated with that of other Mammals, and in which the line marked ' Cucier intersects the tceth in cach jaw, called "carnassières,' those anterior to them being the tceth called "fansses molaires; those behind-a single tooth in the upper jaw of Felis-heing the 'tuberculcuscs.' In this genus the tooth, $p 4$, above chiefly plays upon the tooth, $m 1$, helow, which has a similar sectorial or carmassial modification of form; they fit, indeed, almost as Cuvier describes, like the hlades of a pair of scissors. The two teeth in advance of the carnassial in the upper jaw, $p s, p_{2}$, in like manner are opposed to the same number of 'fausses molaires' in the under jaw, and the caninc, c, ahove plays upon the canine helow: vol. 1 II.

all seems fitting and symmetrical, save that the little tubercular, m_{1}, above has no opponent in the lower jaw. And, perhaps, the close observer might notice that, whilst the upper canine, c, glides behind its homotype below, the first upper falsc molar, p 2, passes anterior to the crown of thefirst false molar, p 3, below; and that the second false molar, p_{3}, and carnassial, p 4, of the upper jaw are also a little in advance of those teeth, $p \neq m 1$, in the under jaw, when the mouth is shut.

In passing to the dentition of the Dog, ib. III. Canis, formulised by Cu vier as 'fausses molaires $\frac{6}{8}$, carnassières $\frac{2}{2}$, tuberculeuses $\frac{4}{4}=\frac{12}{4},{ }^{1}$ it will be observed that here the first upper false molar, p 1, differs from the first, p 2, in Felis, inasmuch as, when the mouth is shut, it preserves the same relative position to its opponent below, p_{I}, in III., which the upper canine does to the lower canine, and that the same may be said of the second and the third false molars; but that, with regard to the carnassial above, p 4, this tooth repeats the same relative position in regard to the fourth false

Cxxi"- p. 95.
molar below, $p_{\text {4, and not to that tooth, } m \text { 1, which Cuvier regarded }}$ as the lower homotype of the carnassial; and, indeed, the more backward position of the lower carnassial is so slight that its significance might well he overlooked, more especially as the two succeeding tubercular teeth above were opposed to two similar tuberculars below.

How unimportaut size and shape are, and how significant relative position is, in the determination of the homologies of teeth as of other parts, may he lcarnt before quitting the natural order of ('ormirer"; e.g. hy the condition of the dental system in the Bear, ib. II. Ursus. Here the lower tooth, $m 1$, instead of presenting the carnassial character, and resembling in form the upler tooth, p, which is the homologue of the upper carnassial in the dog, has a tubercular crown, and corresponds in size as well as shape with the upper tooth, $m 1$, to which it is almost wholly opposed, and with the same slight advancc of position which we observe in the lower canine as compared with the upper one, and in the four lower premolars, $p 1, p 2, p 3, p 4$, as compared with their veritable homotypes above. F. Cuvier divides the molar series of the genus Ursus into ${ }^{6}$ fausses molaires $\frac{6}{8}$, carnassières $\frac{2}{2}$, tuhereulenses ${ }_{4}^{4}=\frac{1}{1}{ }^{2}{ }^{2}$. ${ }^{1}$ The tendency in every thinker to generalise and to recognise Nature's harmonies, has led him here to use the term 'earnassière' in an arhitrary sense, and to apply it to a tooth ahove (II. p 4), which he owns has such a shape and dininished size as would have led him to regard it as merely a false molar, but that the upper carnassial would then have entirely disappeared; and it has also led him to give the name 'carnassidre' to a tooth below, m, which he, nevertheless, descrihes as having a tubercular and not a trenchant crown. In so natural a group as the true Carnivora, it was impossihle to werlook the homologues of the trenchant carnassials of the lion, even when they had hecome tubercular in the omnivorous bear; and Cuvier, therefore, having determined and defined the teeth so called in the feline genus, felt compelled to distinguish them by the same names after they had lost their formal specific character. And if, indeed, ho hat sueceeded in diseovering the terth which were truly answerahle or homotypal in the upper and lower' jaws, the term 'carnassial' might have heen retained as an arbitrary one for such tecth, and have been applied to their homologues in Man and other diphyodonts, where they are as certainly determinable as in those aherrant Carnivores, in which they have equally lost their seetorial shape.

[^80]But the inconvenience of names indicative of such specialties of form will he very obvious when the term 'tuherculeuses' comes to he applied to the three hindmost teeth in the Hyønodon (fig. 266), which teeth answer to the broad crushing teeth, m l, m_{2}, and $m 3_{3}$, in the bear and some other existing Carnivora. The analogous term 'molar' having a less direct or descriptive meaning, is therefore so much the hetter, as the requisite arhitrary name of a determinate species of teeth.

Had Cuvier heen guided in his determinations of the teeth by their mutual opposition in the closed mouth, and had studied them with this view in the Carnivora with the dentition most nearly approaching to the typical formula, viz. the Bear, he could then have seen that the three small and inconstant lower premolars, p_{1}, p_{2}, p_{3}, were the homotypes of the three small and similarly inconstant premolars above; that the fourth false molar, p^{4} helow, wbich, as he observes, 'alone has the normal form,' ${ }^{1}$ was truly the homotype of the tooth ahove, $p 4$, which he found himself compelled to reject from the class of 'fausses molaires,' notwithstanding it presented their normal form ; that the tuhercular tooth, m I, which he calls 'carnassière' in the lower jaw, was the veritahle homotype of his first 'molaire tuberculeuse' ahove, m 1, and that the tooth in the inferior series, which had no answerahle one ahove, was his second 'tuherculeuse,' m, in the present work. The true second tubercular ahove, $m 2$, is, however, so much developed in the Bear as to oppose hoth $m 2^{2}$ and m s in the lower jaw, and it might seem to include the homotypes of both those teeth coalesced. One sees with an intcrest such as only these homological researches could excite, that they were distinctly developed in the ancient Amphicyon, fig. 267, which accordingly presents the typical formula.

Thus the study of the relative position of the teeth of the Bear might have led to the recognition of their real nature and homologies, and have helped to raise the mask of the extreme formal modifications, hy which they are adapted to the hahits of the more hlood-thirsty Carnivora. But the truth is plainly revealed when we come to trace the course of development and succession of these teeth. As the question only concerns the molar series, the remarks will he confined to those teeth. In the jaws of the young Bear, fig. 263 , the first premolar is the only one of the permanent series in place; the other grinders in use are the deciduous molars, $d 2, d$ a, and $d 4$; d_{2} will he displaced hy p 2, d^{3} hy p^{p}, and $d 4$ hy the tooth p 4, which, notwithstanding its
size and sbape, Cuvier felt bimself compelled to discard from the series of false molars, but which we now see is proved by its developmental relations to $d 4$, as well as by its relative position and similarity to $p 4$ in the lower jaw, fig. 292, i1., L'rsus, to be veritably the last of the premolar series, and to agree not in shape only, but in every essential character, with the three preceding teeth called by Cuvier 'fausses molaires.' So, likewise, in tbe lower jaw, it is seen that the primitive deciduous series, fig. 263 , $d 1, d{ }_{2}, d$, , and $d 4$, will be displaced by the corresponding premolars, p 1, p 2, $p 3, p 4$; and that the tooth m 1, called carnassic̀re by Cuvier, in the lower jaw, differs essentially from that, p 4, so called in the upper jaw, by being developed without any vertical predeccssor or deciduous tooth.

The same law of development and succession prevails in the genus Chuis as may be readily seen in the jaws of a dog of ten months' age. Although tbe tootb, m 1, III. fig. 293, in the lower jaw has exchanged the tubercular for the carnassial form, it is still developed, as in the Bear, behind the deciduous series, and independently of any vertical prodecessor, fig. 262, m; ; and the tooth, ib. p 4, above, although acquiring a relative supcriority of size to its homologue in the Bear, and more decidedly a carnassial form, is not the homotype of the permanent carnassial below, but of that premolar, p 4, which displaces the deciduons carnassial, d_{4}. The symbols in fig. 293, ini., sufficiently indicate the relations of the other teeth, and the conclusions that are to be drawn from them as to their homologies.

In the genus Felis, fig. 260, the small permanent tubercular molar of the upper jaw, m, has cut the gnm before $d 4$ has been shed; but though analogous in function, this tooth is not homologous with, or the precedent tooth to m, but precedes the great carnassially modified premolar, p 4. In the lower jaw the tooth, m, which is functionally analogous to the carnassial above, is also, as in the Dog, the first of the trine molar series, and the homotype of the little tubercular tooth, $m 1$, above. And the homolognes of the permanent teetl, $p 4$ and m i below, fig. 293, v., with those so symbolised in the Dog, ib. 1II., teach us that the teeth which are wanting in the feline, in order to cqual the number of those in the canine dentition, are $m 2$ in the 1 pper jaw, $m 2$ and m in the lower jaw; $p 1$ in the upper jaw, p I and $p 2$ iu the lower jaw; thans illnstrating the rule, that, when the molar series falls short of the typical number, it is from opposite cxtremes of such series that the tceth are taken, and that so much of the series as is retained is thus preserved mobroken.

In tbe great extinct sabre-toothed Tiger, Machairodus, fig. 293, vir., the series is still further reduced by the loss of p 2, in the upper jaw.

In the common Cat, the deciduous incisors, $d i$, begin to appear between two and three weeks old; the canines, $d c$, next, and then the molars, $d m$, follow, the whole bcing in place before the sixth week. After the seventh month they begin to fall in the same ordcr; but the lower sectorial molar, $m \mathrm{~m}$, and its tubercular homotype above, $m 1$, appear before $d 2$, d^{3}, and $d 4$ fall. The longitudinal grooves are very faintly marked in the deciduous canines. The first deciduous molar, $m 2$, in the upper jaw is a very small and simple one-fanged tootb; it is succeeded by the corresponding tootb of the permanent serics, whicb answers to tbe second premolar, $p 2$, of the Hyæna and Dog. The second deciduous molar, m 3, is the sectorial tooth; its blade is trilobate, but both the anterior and posterior smaller lobes are notched, and the internal tabcrcle, which is relatively larger than in the permauent sectorial; is continued from the base of the middle lobe, as in the deciduous sectorial of the Dog and Hyæna; it tbus typifies the form of the upper sectorial, which is retained in the permanent dentition of several Viverrine and Musteline species. The third or intornal fang of the deciduous sectorial is continued from the inner tubercle, and is opposite the interspace of the two outer fangs. The Musteline type is further adhered to by the young: Feline in the large proportional size of its deciduous tubercular tootb, d 4. In the lower jaw, the first milk-molar, $d 3$, is succeeded by a tooth, p^{3}, which answers to the tbird lower premolar in the Dog and Civet. The deciduous sectorial, d 4, which is succeeded by the premolar, p 4, answering to the fourth in the Dog, bas a smaller proportional anterior lobe, and a larger posterior talon, which is usually notched; thereby approaching the form of the permanent lower sectorial tooth in the Mustelida.

When the premolars and the molars are below tbeir typical number, the absent teeth, as a rule, ${ }^{1}$ are missing from the forepart of the premolar scries and from the back-part of the molar series. The most constant tecth are the fourth premolar and tbe first true molar; and these being known by their order and mode of development, the homologies of the remaining molars and premolars are determined by counting the molars from before back-

In some instances the fixst premolar or first milk-molar remains, of small size, when $p 2$ and $p 3$ are lost.
wards, e.g. 'one, ' two,' 'three'; and the premolars from behind forwards, ' four,' 'tbree,' 'two ${ }_{2}$ ' 'one.'

Examples of the typical diphyodont dentition are exceptions in the actual creation; but it was the rule in the earlier forms of placental Mammalia, wbetber tbe teeth were modified for animal or vegetable food.

Not only the Hyanodon, fig. 266, and Amphicyan, fig. 267, but the Diclodon, Anoplotherium, Palcotherium, Cheropotamus, Anthracotherium, Hyopotamus, Pliolophus, Hyracotherium, and many other ancient (cocene and miocene) tertiary Mammalian genera presented the forty-four teeth, in number and kind according to that whicb is here propounded as the typical or normal dentition of tbe placental diphyodonts. When the clue is afforded to their homologies, it infallibly conducts to the true knowledge of the nature both of the teeth which are retained, and of those which are wanting to complete the typical number. Thus may be deciphered the much modified dentition of the genus Felis; and the same clue will guide to the knowledge of the precise homologics of the teetb in our own species.

The known limits of the premaxillary in Man leads to the determination of the incisors, whicb are reduced to two on eacb side of both jaws; the contiguous tooth shows by its shape as well as position that it is the canine; and the characters of size and shape have also served to divide the remaining five teeth in cach lateral series into two bicuspids and three molars. In this instance the secondary characters conform with the essential ones, as exhibited in the dissection of the jaws of a child of about six years of age, fig. 258. The two incisors on each side, $d i$, are followed by a canine, c, and tbis by three teeth having crowns resembling those of the threc molar teetb of the adult. In fact, the last of the three is the first of the permanent molars; it has pusbed through the gum, like the two molars which are in advance of it, without displacing any previons tooth, and the substance of the jaw contains no germ of any tootb destined to displace it ; it is therefore, by this character of its development, a true molar, and the germs of the permanent teeth, which are exposed in the substance of the jaw between the diverging fangs of the molars, $d 3$ and $d 4$, prove them to be temporary, destined to be replaced, and prove also that the teeth about to displace them are premolars. According, therefore, to the rule previously laid down, we count the permanent molar in place the first of its series, $m 1$, and the adjoining premolar as the last of its series, and consequently the fourth of the typical dentition, $p 4$.

We are thus enabled, with the same scientific certainty as that whereby we recognise in the middle toe of our foot the homologue of that great digit which forms the whole foot, and is encased by the hoof, in the horse, to point to $p 4$, or the second bicuspid in the upper jaw, and to m 1, or the first molar in the lower jaw, of Man, fig. 293, r., as the homologues of the great carnassial teeth of the Lion, p_{4}, m_{1}, ib. v. We also conclude that the tceth which are wanting in Man to complete the typical molar series, are the first and sccond premolars, the homologues of those marked p_{1} and p_{2} in the Bear, ib. 11. The characteristic shortening of the maxillary bones required this diminution of the number of their teeth, as well as of their size, and of the canines more especially; and the still greater curtailment of the premaxillary bone is attended with a diminished number and an altered position of the incisors.

The homologous tecth being thus determinable, they may be severally signified by a symbol as well as by a name. The incisors, e.g., are represented in the present work by their initial letter i, and individually by an added number, $i 1, i 2$, and $i 3$, counting from the medial line outwards; the canines by the letter c; the premolars by the letter p; and the molars by the letter m; these also being differentiated by added numerals. Thus, the number of these teeth, on each side of both jaws, in any given species, Man, e.g., may be expressed by the following brief formula:-

$$
i \frac{2.2}{2.2} ; c \frac{1.1}{1.1} ; p \frac{2.2}{2.2} ; m \frac{3.3}{3.3}=32
$$

and the homologies of the individual tecth, in relation to the typical formula, may be signified by $i, i 2 ; c ; p 3, p_{4} ; m 1, m 2$, $m 3$; the suppressed teeth being $i 3, p 1$, and $p 2$.

The soundness of the foregoing conclusions as to the nature of the teeth absent in the reduced dental formula of Man, is exemplified by the mode in which the type is progressively resumed in descending from Man through the order most nearly allied to our own.

Through a considerable part of the Quadrumanous series, the same number and kinds of teeth are present as in Man, the first deviation being the sexual disproportionate size of the canines and the concomitant break or 'diastema' in the dental series for the reception of their crowns when the mouth is shut. This is manifested in Gorillas, Chimpanzces and Orangs, together with the sexual difference in the proportions of the canine teeth. Then comes the added premolar iu the New World Moukeys, fig. 251,
p 2, and the further additions in lower quadrupeds, until in the Hog genus we see the old primitive type of diphyodont dentition resumed or retained.

In the genus $S u s$, fig. 293 illustrates the phenomena of development which distinguish the premolars from the molars. At the stage exemplified the first premolar, ${ }^{1} p 1$, and the first molar, $m 1$, are in place and use, together with the three deciduous molars, d_{2}, d_{3}, and $d 4$; the second molar, $m 2$, has just hegun to cut the gum ; $p^{2, p 3}$, and $p 4$, together with $m 3$, are more or less incomplete and concealed in their closed alvcoli.

The premolars displace deciduous molars in order to rise into

place; the molars have no such rclations; it will be obscrved, that the last deciduous molar, $d 4$, has the same relative superiority of size to d_{3} and $d 2$ which $m 3$ bears to m_{2} and $m 1$; and the crowns of p^{3} and p_{4} are of a more simple form than those of the milk-teeth which they are destined to succeed.

The premolars have a more simple structure as well as smaller sizc, than the true molars, in all Artiodactyles. In the Ruminants they represent only the moiety of the truc molars, or one of the two semi-cylindrical lobes of which those teeth consist, with, at most, a rudiment of the second lobe. The Perissodactyles are distinguished hy the size and complexity of more or less of the premolars. In Equus, p_{2}, p_{3} and p_{4}, even exceed in size m_{1}, m_{2} and m_{3}. In Rhinoceros and Paleotherium the proportions of the molars and premolars are reversed; but the structure is the same. In Lophiodon, Coryphodon and Pliolophus the promolars hecome more sunplified as well as diminished, ap-

[^81]proaching to a common Ungulate type. In the Prohoscidian group, the oldest species indicate retentions of type unknown in the dentition of existing Elephants. A premolar, fig. 295, p^{3}, displaces vertically the second deciduous grinder, $d 3$, in some Mastodons: and, that the third molar in the order of appearance, $d 4$, is also the last of the deciduous series, is indicated by the contrasted superiority of sizc of the tooth, $m 1$, that follows. The great extent and activity of the processes of dental development required for the preparation of the large and complex true molar teeth, would seem to exhaust the power in Prohoscidians, which, in ordinary Pachyderms, is expended in developing the vertical successors of the deciduous teeth. In the miocene Mastodon ahove citcd, this normal exercise of the reproductive force was not, however, wholly exhausted : and one premolar, fig. 295, p_{3}, of more simple form than its deciduous predecessor, was developed on each side of both jaws. Another mark of adhesion to the archetype was shown by the development of two incisors in the lower jaw in the young of some Mastodons, by the retention

295
 and development of one of these inferior tusks in the male of the Mastodon giganteus of North America, and hy the retention of hoth in the European Mastodon longirostris, Kaup. No trace of these inferior homotypes of the premaxillary tusks have been detected in the foetus or young of the existing elephants. In the gigantic Dinotherium, the upper ineisors were suppressed, and the lower incisors were developed into huge tusks, which curved down from the symphysis of the massive lower jaw.

The chief modifications of the marsupial dentition have already heen descrihed and illustrated. The observed phenomena of the development and change of the tecth led to the generalisation that the marsupial differed from the placental Diphyodont mammals in having four true molars, i. e., $m \frac{4}{\frac{4}{4}: \frac{4}{4}}$ instead of $m \frac{3}{3} \cdot \frac{3}{3}$; and also that they differed in having only three premolars, i. c. $p \frac{3}{3} \cdot \frac{3}{3}$ instead of $p \frac{4}{4}: \frac{4}{4}$; the typical number of the grinding series, $\frac{7}{7}: \frac{7}{7}$, being the same; and it was convenient for comparison to symholise them accordingly, in figs. 221-230. Since, however, there is reason to conclude that $m i$ in the placental Diphyodonts, as, e. g., figs. 259 and 294, is a continuation of the deciduous scries of molars, which might be symholised as
$d s$, and only becomes a permanent molar because there is no premolar developed above it, so we may regard the tooth marked m t in figs. 221-230 as being an antecedent tooth of the deciduous series, readered permanent by a like reason, the suppression, viz. of p^{4}. In other words, tbat $m 1$ in fig. 227 is the homologue of d_{4} in fig. 294, and that the truc homologue of p_{4} is not developed in the Marsmpialia.

The homologies of the teeth of the Kangaroo are illustrated in fig. 296, according to this idea of them; the dental formula of both the Mucropodidee and Hypsiprymnide being-

$$
i \frac{3.3}{1.1} ; c \frac{1.1}{0.0} ; p_{1.1}^{1.1} ; d \frac{1.1}{1.1} ; m \frac{3.3}{3.3}=30:
$$

instead of-

$$
i \frac{3.3}{1.1} ; c \frac{1.1}{0.0} ; p \frac{1.1}{1.1} ; n \frac{4.4}{4.4}=30 .
$$

The canines, which are confined to the upper jaw, are small or minute when retained; and disappear after being represented en germe' in most of the true Kangaroos.

In tbe deciduous dentition of the great Kangaroo (Macropus major) the canincs are rudimental, and are absorbed rather than shed. No other of the deciduous series is calcified, save the molars $d 2$ and $d 3$, fig. 296, unless the permanent incisors be developed and retained milk-teeth. When the joung animal finally quits the pouch the dentition is-

$$
d i_{1.1}^{1.1} ; d m_{2.2}^{2.2}=12 ;
$$

the upper incisors being i, the molars $d 2$ and $d 3$ of the typical dentition. This stage is exemplified in the lower jaw at Λ (fig. 296). Tbe next stage shows the acquisition of $i 2$ in the upper jaw, and l_{4} in both jaws, and the formula is-

$$
d i \frac{2.2}{1.1} ; d_{32}^{\frac{3.3}{3.3}}=18 \text {, ib. } \mathbf{~ e . ~}
$$

At oue year old, the dentition is-

$$
d i \frac{3.3}{1.1} ; d m \frac{3.3}{3.3} ; m \frac{1.1}{1.1}=24 ;
$$

thic additional tecth being $i s$ and $m 1$ (ib. c), in whicb the demonstration of the true deciduous character of $d \underline{a}$ and d a is shown by the germ of their vertical successor p_{3}, which is exposed in the substance of the jaw. The next stage is the shedding of $d 2$, and the acquisition of $m 2(\mathrm{ib}, \mathrm{D})$. Then $d s$ is shed by

Werelopmont and snccession of the molar series, Kangaroo.
the ascent of p^{3} into its place (ib. E). Afterwards $m 3$ is acquired; and in the Macropus gigns, p 3, simultaneously pushed out (ib. F).

Tbus, four individuals of this species may be found to have the same number of molars, i. e. $\frac{4}{4}: \frac{8}{4}$; two of these individuals may seem, on a cursory comparison, to have them of the same shape, e. g., as in C and E, or as in D and F, fig. 296. In fact, to determine the identity or difference in such instances, it requires that the substance of the jaws be examined, to see if the germs of successional teeth are present, as at $p 3, \mathrm{C}$ and D , or at $m 3, \mathrm{E}$. The result of such examination may be to show that not one of the four Kangaroos with tbe $m \frac{4}{4}: \frac{4}{4}$ bad the same or homologous teeth.

The four grinders, e. g. may be- $d 2, d 3, d 4, m_{1}$; as in C ; or $d 3, d 4, m_{1}, m_{2}$; as in D ; or $p_{3}, d 4, m_{1}, m_{2}$; as in E ; or $d 4$, $m 1, m 2$, and $m 3$; as in \mathbf{F}.

The cbanges, however, do not end hcre. As age advanees, d_{4} is sbed, and the molar series is reduced numerically to the condition of B ; but, instead of $d 2, d 3$, and $d t$, it consists of $m 1, m 2, m 3$.

Finally, $m:$ is shed, and the dentition is reduced to the same numerical state as at A; the teeth, bowever, being $m 2$ and $m 3$.

The symbols used, it is hoped, are so plain and simple as to have formed no obstack to tbe full and easy comprehension of the facts cxplained by means of them. If these facts, in tbe manifold diversities of Mammalian dentition, were to be described in the ordinary way, by verbal definitions, e. g., 'tbe sccond deciduous molar representing the third in the typical dentition, instead of $d 3$, and so on, the description of dental development would continue to occupy much unnecessary space, nnd would levy such a tax upon the attention and memory as must tend to cnfeeble the judgment and impair the power of seizing and appreciating the results of the comparison.

Each ycar's experience has strengthened the writer's conviction that the rapid and successful progress of the knowledge of animal structures, and of the gcueralisations deducible therefrom, will be mainly influenced by the determination of the homology of parts and organs, and by the concomitant power of condensing the propositions relating to them, and of attaching to them signs or symbols equivalent to their single substantive names. In the writer's Works, cXL, CXLI, cXLIV, he bas denoted most of the bones by simple numerals. The symbols of the teeth are fewer
in number, are easily understood and remembered, and, if geuerally adopted, might take the place of names. They would then render unnecessary the repetition of phrases, harmonise conflicting synonyms, serve as a universal language, and at the same time express the expositor's meaning in the fewest and clearest terms. The entomologist has long found the advantage of such
 like; and it is hoped that the time is now come when the anatomist may avail himself of this powerful instrument of thought, instruction, and discovery, from which the chemist, the astronomer, and the geometrician have obtained such important results.

CHAPTER XXX.

ALIMENTARY CANAL AND APPENDAGES OF MAMMALS.

§ 223. Mouth.-Fleshy lips form the main characteristic of the mammalian mouth. But they are wanting in the Monotremes, with other significant shortcomings of mammalian excellence. Lips are, here, transitorily manifested, it is true, at the suckling period; but soon degenerate into the pergameneous border of the beak in Platypus, and are reduced, in Echidna, to the searcely movable margin of the small terminal oral orifice of the adult. The Cetacea show the greatest extremes within the limits of a natural group in the development of the lips. They are barely represented in the Porpoise, fig. 297, and other Delphinidee by

the low, firm, ridge of integument, supported by adipo-fibrous tissue with scarce a trace of 'orbicularis oris': while in the Whale (Balana) the upper lip falls down like a thick curtain some feet in depth coneealing the baleen, and overlapping the
mandible when the moutl is closed. The side-walls of the mouth are not dilatable and contractile so as to vary the capacity of the buceal cavity, like the 'cheeks' in most other mammals. As a rule, in the present class, the mouth is terminal: when not so, a rostral production, analogous to that in Sharks, makes the opening inferior, as in the Tapir, fig. 155. In the Chrysochlore the mouth is a small triradiate slit, like that of a leech, on the under surface of the muzzle: it has a like inferior position, but is more dceply cleft in Shrews, in which the groove that runs along the mid-line of the under surface of the snout represents the third ray of the closed mouth. The remoteness of the mouth from the end of the muzzle is in the ratio of
 the length of the latter: consequently, among the Shrews, it is greater in those (Petrodromus, Rhynchocyon, fig. 298) which, from the production of the snout, have bcen called 'Elephant Mice': still more so in the Elephant itself, vol. ii. fig. 162.
The Ornithorhynchus subsists on aquatic insects, larva, mollusks, and other small invertebrates which conceal themselves in the mud and banks of rivers, and is provided with a mouth nearly resembling the flat and sensitive bill of a lamellirostral bird. The jaw-bones are invested by a smooth coriaceous integument, vol. ii. fig. 199, A, E, a, devoid of hair, but perforated by innumerable minute foramina. At the base of the jaws this integument is produced into a free fold, which overlaps the hairy covering of the cranium immediately behind it. The integument covering the upper mandible extends beyond the margins of the bone, and forms a tumid, smooth, and highly sensible border; the narrower and shorter under jaw is more closely invested: the oral or upper surface of the lateral part of the under jaw supports a series of about twenty nearly transiverse folds, increasing in breadth as they approach the angle of the jaw: the corresponding surface of the upper jaw is smooth. On the outside of the posterior part of each molar in the lower jaw, is the orifice of an oblong cheek-pouch, fig. 3, F, F, about two inches in length, and half' an inch in diameter: the ponch is continued backward, and is lined with a hard dry cuticle. The raised posterior lobe of the tongue, fig. $212, f$, with the projecting horny bodies, g, g, can impede the passage of unmasticated food to the pharynx, and direct it on each side into the cheek-pouches; whence the Ornithorlynchus may transfer its store at leisure to the molar tecth, and complete
its preparation for deglutition. An air-hreathing warn-hlooded animal, which ohtains its food, while suhmerged, hy the capture of small aquatic animals, must derive great advantage from the structure whicb enables it to transfer them quickly to a temporary receptacle, wbence they may be extracted and masticatcd while the animal is floating on the surface or at rest in its burrow. The soft palate is thick, broad, and divided posteriorly into three fimhriated lobes. The pharynx is narrow, and is encompassed by two postcrior processes of the thyroid cartilage, fig. 212, c, c. The long tubular mouth in Eckidna, like that in the Antcaters, is remarkable for its small orifice, fig. 302. The palate is armed with six or seven transverse rows of strong, sharp, hut short retroverted spines. Tbe tongue is long and slender, as in the true Anteaters; its dorsum is hroad, flat, callous, and beset with hard papillæ, and the insects are doubtless crushed between these and the palatal spines. As, however, the food undergocs less comminution in the mouth of this Monotreme than in that of the Ornithorhynchus, the pharynx is wider.

The jaws of the Marsupialia are covered by well-developed fleshy lips; the upper one is partially cleft in the Kangaroos, as in some Rodents; the muzzle is clad with hair in Macropus major and a few other species; hut in most Marsupials it is naked, and gencrally red from the vascularity of the integument. The palatc is sculptured with transverse ridges. These are most numcrous in tho Bandicoots, heing fourteen in the Perameles nasuta, and are slightly curved forwards: the roughness thus produced must aid the tongue in retaining small insects. In a few species of Marsupials I have detected cleek-pouches. In the Konla they are wide and shallow, situated one on each side of the upper lip; the orifice is opposite the first superior premolar, and lcads forward above a horizontal fold of the mucous membrane whiel attaches the upper lip to the side of the premaxillary bonc, scparating this part of the cheek-pouch from the mouth. In the l'irameles lagotis there are also two small fosse, one on the inside of each cheek, about four lines in diameter, and lined hy a very distinot white epitheliun. The aquatic Opossium (Didelphys I'apock) has large check-pouches, extending far hack into tbo moutl, in which, like the Ornithorhynchus, it may stow away fresh-water insects, crustacca, \&c. The fauces are wide in the zoophagous, but narrow in the entomophagous and pbytophagous Marsupials. The tonsils arc represented by a pair of small glandular cavitics. ${ }^{1}$

$$
\text { xx. vol. iii. p. } 81 .
$$

VOL. III.
CC

In Rodentia the scalpriform incisors are commonly more or less exposed in front of the mouth; and, as their office is to roduce the food to small bits, the mouth is small. A groove running thereto from the nostrils divides the upper lip, conspicuously so in the species which has suggested for this modification in other animals the name 'hare-lip.' But in a few Rodents, e.g. Molerats (Orycteropus, Spalax), the undivided upper lip surrounds the bases of the huge pair of incisors by a kind of hairy sheath, and the lower lip is similarly modified in relation to the prominent lower incisors. The hairy integument is continued or reflected within the mouth in some degree in most Rodents. In the Paca (Cologenys) it is continued along the inside of the cheeks, witb an accession of glandular follicles; then, losing the hair, it lines a large cavity formed by the singular expansion of the zygomatic process of the

Cheek-pouchea of the Canada llat (Goomys bursartut). maxillary and by the malar bone, vol. ii. fig. 237, 21, 26 . Some Rodents have duplicatures of the buccal membrane, outside the zygomata, and capable of cxpansion, for storage and conveyance of alimentary substances. Fig. 299 shows these - cheek-poucbes' in Geomys bursarius, everted and inflated: a more natural view of this buccal appendage is given in the dissection, fig. 300, of the head of an African pouched rat. In this species (Saceostomus lapidarius, Peters) an orifice at the angle of the mouth leads to the pouch, widening from the orbit to the lower border of the mandible, and reaching back as far as beneath the ear. In the Hamster (Cricetus) the wide orifice of the pouch is just within the commissure of the short lips: the bag itself extends along the side of the head to the neck. The orifice has a sphincter, and from this there diverge longitudinal fasciculi backward over the wall of the cavity, which is also provided with fibres from the dorso-lateral panniculus carnosus: these tending to retract the poucb-walls, while the others draw them forward, and both combining to empty the pouch. Saccomys and Spermophitus
lave similar check-pouches. The roof of the mouth between the ineisors and molars is narrow and ridge-like: as it expands posteriorly it is commonly beset with two rows of hard obbique ridges. In no mammalian order is the food so mucb reduced by mastication as in Rodents, and many of them show concomitant modifications of the fauces; such as the constriction of the soft palate in the Capybara, reducing the communication between tbe mouth and pharynx to a small aperture. In Capromys the upper lip is furrowed longitudinally, but not bifid. On the middle line of the palate, between the incisors and molars, are three distinct hard white tubercles: the first, the largest and most prominent, is situated about half-an-incb behind the incisors; the second, which is the smallest of the three, is at a distance of three lines from the former; and immediately behind it is the third. On each side of the first tubercle there is a softer one situated on the margins of the upper lip.

The gape of the mouth is wide in insectivorous Cheiroptera. Some bate have a modification of tbe integument for an analogous office to the check-pouches in a part of the body remote from the mouth : the skin extended from the hind-legs to the incurved tail (interfemoral membrane) forms a bag into which flies are beaten, inclosed, and stored. The frugivorous kinds have not this structurc.

In Nycteris two converging ridges of the lower lip inclose a triangular promincace of the upper lip. In Otoöps the upper lip is transversely grooved. In Noctilio it is dependent. The palate is transversely ridged, the hinder ones usually divided by a medial cleft. The tongue can be protruded far in Cheiroptera; and, when retracted, usually shows transverse (Mormoöps) or oblique foldings of the dorsum: the minuteness or absence of incisors permits protrusion even when the molars are in a state of apposition. Bats use the tongue in lapping; also in licking off the juice of fruits, as e.g. in the tropical Phyllonycteris. The tip of the tongue is spinulose iu Rhinopoma. In the Vampire (Desmodus, Phyllostoma) tbe terminal papilloo resemble wart-like elevations, so arranged as to form a circular suetorial disk when they are brought into lateral contact by the action of a set of muscular fibres thereto adapted. Some bats (Saccolaimus) have a gular pouch : in Molossus this sceus to be sexual, and is peculiar to the male.

In the order Bruta, the mouth is remarkably short in the Slotbs, and attains its maximum of length and narrowness in the Anteaters in which it seems to be mainly a shenth for the retracted
tongue. The buccal orifice, fig. $9, a$, is little wider than is necded for the protrusile and retractile movements of that slender organ, so singularly modified for the prehension of the Termites which form the staple food of the so-called 'anteaters.' The tongue in Myrmecophaga jubata, ib. b, is covered by a smooth shining epithelium, which begins to present a softer, more vascular or mucous character fourteen inchcs from the apex, but the only papillæ anywhere visible are two fossulate ones, two lines apart, situated on the dorsum, about two inches in advance of the termination of the frænum. A linear groove, commencing two inches from the base of the tongue, extends along the dorsum to within four inches of the apex. The muscular substance of the free part of the tongue is formed by the intrinsic fibres, or 'linguales,' and by the lingual portions of the sternoglossi, genio-glossi, and epihyo-glossi (p. 23). The buccal membrane is smooth, perforated at its lateral and inferior parts, and also superiorly beyond the bony palate, by innumerable very minute orifices, from a quarter of a line to one line apart, by which the secretion of a thin glandular stratum behind the membrane enters the mouth. Four inches in advance of the angle of the jaw, near the lower border of the ramus, a longitudinal ridge or low fold of the buccal membrane begins to rise, increasing in depth and assuming a callous hardncss as it extends forward and upward: this ridge is about two lines in breadth, and bends down so as to leave a groove betwecn it and the lower membrane of the mouth. Introduced termites may be crushed by the action of the tongue against these two callous ridges, which seem to occupy the place of teeth on each side of the mouth. In the two-toed Anteater they take the form of a horny molar plate on each side of both jaws. The cavity of the mouth quickly expands as it passes backward, and acquires its greatest breadth opposite the base of the tongue, $\mathrm{ib} . g, g$, having there, in Myrmecophaga jubata, a diametcr of from four to five inches. The thin membrane, over which the diverging fasciculi of the sterno-glossi and hyo-glossi spread, is capable of considerable dilatation: it serves as a sheath for the spirally retracted tongue, and may also form a temporary receptacle for the Termites, there blended with the more alkaline and solvent salivary secretion of the parotids, after being pounded by the tongue against the callous ridges, before they are finally swallowed: the singular backward extension of the fauces and nasal passages appears to relate, in part, to the presence and function of this receptacle. The buccal carity gradually contracts beyond the receptacle to the hyoid
bone, immediately in advance of which, nineteen inches from the aperture of the mouth, are situated the tonsils, each tonsil heing an oval patch of a thin layer of muco-glandular substance with a finely reticulate surface. Behind the tonsils, and hetween them and the basi-hyal, a pouch of the gular memhrane, fig. 9 , s, descends bctween the epi-hyals; it is one inch and a half in depth, by one inch in width. The posterior margin of the soft palate terminates by a low angular projection, like the rudiment of a uvula, opposite the base of the epiglottis. From the sides of this uvula the membrane arches backward, and gradually subsides upon the beginning of the asophagus. The whole length of the nasal passages is twenty-two inches in the full-grown Myr.jubata. The first inch is surrounded by the cartilaginous part of the nose: the next thirteen inches is inclosed hy hone: the last eight inches of the canal has musculo-momhranous walls, and is an enormously developed homologue of the 'palatum molle' in Man. The canal of the posterior nares is continued far back beyond the base of the skull, and the homologues of the 'constrictor pharyngis' act upon this canal before they cmbrace the proper pharynx. They consist of several distinct musclcs. The most anterior one (cerato-pharyngeus) comes off from an extcut of more than an inch of the middle part of the cerato-hyal. It is a thin, hroad layer, the fasciculi of which diverge to spread upon the sides of the posteranial continuation of the nasal passage, interlacing with the constrictor fibres which spread over the back part of that passage. The second muscle (epi-pharyngeus) bas a thicker origin, of ten lines in cxtent, from the back part of the inner end of the cerato-hyal, and from the joint between this and the epi-hyal. The fasciculi diverge and spread over the sides of the posterior part of the soft nasal canal, partly overlapping the preceding muscle anteriorly, and heing themselves slightly overlapped hy the next portion behind. The third constrictor (hyopharyngeus) has an origin three lines in extent from the thyro-liyal and contiguous part of the basi-hyal : the fibres diverge upon the sides of the end of the nasal canal and the beginning of the pharynx, the anterior fibres overlapping and then blending with the postcrior fibres of the preceding musclc. The fourth constrictor (thyro-pharyngeus) comes off from the outer margin of the thyroid cartilage, having an origin of nine lines in extent. The fibres pass transversely round the pharynx, partially overlapping the preceding muscle, and slightly expanding at the back of the pharynx. The posterior continuation of this portion, which might be regarded as a fifth muscle (crico-pharyngeus), arises from the posterior and outer prolongation of the cricoid, behind the
three upper rings of the trachea. The retractor phuryngis is a slender longitudinal muscle, arising from a fascia conncetcd with the origin of the scalenus, runs along the outer side of a long slender gland, and then passes forward to the outer side of the crico-pharyngeus, where it hends backward, slightly expands, and appears to hlend with the contiguous fihres of the crico- and thyro- pharyngei. In the Armadillo (Dasypus 9-cinctus) the epiglottis projects through the arch of the soft palate, in the middle of which there is a thickencd part like a rudimental uvula.

The mouth is remarkable for its small relative size in the Manatce. In a specimen with a head eiglteen inches long and fifteen inches deep, the oral opening was only three inches from angle to angle. The anterior border of the premaxillarics, covered hy a callous gum, projects bencath the tbick upper lip, and the hornclad symplysis of the maudihle makes a similar projection ahove the under lip.

The mouth is relatively small in the Elephant; the under lip alone is free, and is produced into a pointed form; the upper lip blends with the nose, and is, thercwith, produced into the remarkable prehensile appendage characteristie of the proboscidian order. As it chiefly ministers to the mouth, conveying thereto the aliment, it will be described in the present section.

The proboscis of the full-grown Elephant forms an elongated cone of four or five feet in length, gradually tapering from the root towards the point, which is terminated by a kind of thumhlike appendage which is endowed with exquisite sensibility, so as to be useful in picking up the smallest objects. It is perforated lengthwise, hy a douhle tube, formed by a strong tendinous membrane, lubricated by the sccretion of innumerable mucous crypts. The membranous tubes are continued upward as far as the bony nostrils; hut, a little before their junction with the latter, they form two curves, the nasal passages heing closed at this point by a cartilaginous elastic valve, which may be opencd at the will of the animal, but closes by its owu elasticity when the muscles which open it cease to act. The interval between the memhranous tubes and the skin of the proboscis is filled up with a thick layer of muscular substance composed of several sets of fibres, and with sclerous tissue.

The nasal passages may he observed to he not in the centre of the trunk, but nearer the anterior surface: the muscles before them pass in a radiating direction to the circumference of the proboscis; those which are immediately behind the nasal passages
are disposed in a straight line from side to side; external and posterior to these again tbe muscular fibres resume the radiated coursc. The second series of muscles tend to diminisb, but cannot close, the arex of the nasal passages; the first and third series contract the diameter of the trunk witbout affecting tbat of the canals. All the muscles are distinct, and terminate at both extremities in slender tendons: tbey are imbedded in a eellular texture occupied by a white homogeneous substance.

The other muscles of the proboscis are disposed longitudinally, in a multitude of fasciculi, dispersed in short curves, so that the two extremitics of each fasciculus are implanted into the membranous tubes, while the convexity of the arch is adherent to the external aponeurosis. Tbese fasciculi surround the whole trunk, throughout its length; their effect being to shorten it from end to end or in any part, and by partial contractions, on one side or the otber, to bend the trunk in any direction. The longitudinal fasciculi are derivations from four great muscles, which, though almost blended together in the trunk itself, bave distinct origins. Of these the two anterior arise from the wholc breadth of tbe frontal bone above the ossa nasi, while the two lateral muscles take their origins from the superior maxillary bones beneath and in front of the orbit, answering to those in the Tapir, fig. 155, a. The postcrior surfuce of the basal part of the proboscis is supplied with fibres which seem to be continuations of a musele answering to the orlicularis oris of the Tapir, $\mathrm{ib} . d$, d, and which run obliquely downward and inward so as to meet their fellows from the opposite side at an acutc angle. With such a structure it is evidcut that the nasal prolongation of the proboscidian Pachyderms is able to move in every needfinl direction, and perform all the dutics of a lithe and flexible arm.

In the Horse, the callous roof of the mouth is disposed into alout sixteen curved ridges, with their convexitics forward. Miny mucous crypts perforate the membranc, above which, as in other Ungulates, is a remarkable plexus of veins and nerves. The pharynx is capacious and communicates with the pair of large sacculi at the ends of the eustachian tubes. The muscle which represents the middle constrictor descends from the pterygoid and palate boncs, along the sides of the pharynx, around which the fibres wind obliquely, uniting in the middle linc upon its posterior surface, where they form a thick muscular layer. The inferior constrictor is equally broad and strong, its flcshy fibres taking nearly the same direction as they proceed towards the back of the pharynx, where they join by a median rapbe. In addition to the above,
there is a crico-pharyngeus, arising from the posterior and inferior margin of the cricoid cartilage, whence its fihres extend obliquely upwards along the sides of the pharynx. The homologue of the stylo-pharyngeus is a cylindrical muscle, arising from the stylohyal, and, running from hehind forward upon the sides and upper part of the pharynx, mixing its fihres with those of the superior constrictor: its action is to raise the commencement of the pharyngeal sac, which it at the same time dilates and draws backward. There is likewise a small muscle derived from the middle part of the stylo-hyal, the fibres of which run backward and inward, so as to meet those of the muscle last mentioned. Lastly, there are two other muscles, the fibres of which take a longitudinal direction. One of these, the pharyngeus proprius, arises from the tendinous middle line that extends from below the inscrtion of the stylo-pharyngei, and is prolonged downward along the posterior and lateral walls of the œesopbagus: the other, the aryteno-pharyngeus, is a small muscular band proceeding from the back part of eacb arytenoid cartilage, and running down the front of the cesophagus towards the stomach.

The moutb of the Hog-tribe is scrved by the uprooting modification of the upper lip and nose, forming the 'snout.' The palate is ridged. In tbe Babyroussa Vrolik ${ }^{3}$ found a small pouch at the back part of the commencement of the œesopbagus: a pair of air-sacs continued from the postcrior nostrils communicate

Buccal papillac of the Bactrian Camel. with the back part of the pharynx.

The mouth of the Ruminants is chiefly remarkable for the callous pad covering the edentulous borders of the premaxillaries, and for the number of hard, commonly retroverted papillæ, developed from extensive tracts of the buccal membrane: those on the inside of the lower lip are large and pointed; interspersed with groups of mucous follicles. Along the roof of the mouth they are flattened, and disposed in parallel transverse rows with retroverted denticulate margins: the papillw usually attain their greatest size inside the cbeeks, opposite the masticating line of the molars. In the Camel they are aggregated and obtuse, fig. 301. In the Giraffe they are closeset, strong, retroverted, pointed, some of them half-an-inch in length, and giving off secondary papillæ. In the act of rumi-
nation the regurgitated holus is driven into the mouth with great force; and the use of these papillæ as mecbanical obstacles to its escape, and their tendency to confine the soft slimy comminuted vegetable substances to the molar region during the sccond mastication, appear to be offices of sufficient importance to found upon their presence an argument of adaptation. Neither the Hog nor the Horse have sucb buccal papille; but the front part of the mouth is closed by teeth both ahove and helow, and the food is not regurgitated for the purpose of undergoing a lengthened remastication.

The nouth of the Camel seems formed to save for the animal every drop of the fluid excretions of the nose: a channel leads from each nostril to the mid-fissure dividing the upper lip, which is continued down into the mouth. In the non-division and extonsibility of the hair-clad upper lip, the Giraffe resembles the Elk, but differs widely from that and every other ruminant in the elegant tapering form of the muzzle.

The Giraffe possesses great extensibility, flexibility, and extraordinary command and power over the movements of its tongue, fig. 144; its muscles are in number and kind as in other Ruminants. The principal difference obtains in the greater extent of the organ, anterior to the insertion of the genin-glossus; and as this free and active part consists entirely of a firm muscular tissuc, invested by a thin hut dense and very closely adhering intcgument, there is a corresponding increase in the hulk of the intrinsic as compared with those of the extrinsic muscles. Of these the stylo-glossi, whicb are the principal retractors of the free anterior part of the tongue, are relatively stronger than in other Ruminants; they arise hy a tendon from near the lower extremity of the stylo-hyal, and run forward, helow the lateral margins of the tongue, to which they are braced hy a thin sheet of fibres, desecnding ohliquely forward from the sides of the limyurles to the upper margin of the stylo-glossi. The lingualis inferior is a hroad thin sheet of muscular fihres which comes off from the condensed cellular tissue at the under part of the root of the tongue and runs forward parallel with the fibres of the styln-glossi, with which it becomes hlended anterior to the hyoglossi; these accessory fibres cross the inner surface of the hyoglossu: muscle, which is thus inclosed hetween the two layers of longitudinal retractors. The arteries and vcins of the tongue of the (iiraffe are not connected with a reservoir of blood, or with any ercetile tissue, as has been alleged. ${ }^{4}$ The movements of the

[^82]tongue arc due to muscular action. Any physiologist who has felt the firm but regulated grasp of the tongue of the Giraffe, when twined round the finger, must have recognised the difference of the action from the fitful force arising from vascular or erectile injection. The muscular fibres in the free and flexible part of the tongue present an arrangement adequate to all its movements. The stylo-glossi and inferior linguales expand into a layer of longitudinal fibres, about a line in thickness, covering the whole of the infcrior surface of the free portion of the tongue, and becoming continuous at the sides, with a corresponding but thicker stratum of longitudinal fibres on the upper surface of the tongue; these longitudinal muscles inclose a mass of fibres, which run in the transverse direction. The action of the transverse, combined with that of several short vertical, fibres near the margins, and of those forming the thin circular stratum surrounding the stylo-glossi at the middle part of the tongue, serves to attenuate or diminish the transverse diameter of the tongue and increase its length; while thus rigidly extended the apex of the tongue can be curved upward or downward by the superficial longitudinal fibres, which are less intermingled with the transverse fibres than in the tongues of most other Mammals: the contraction of the longitudinal fibres taking place with the relaxation of the transverse ones produces the retraction of the whole organ. The nerves of the tongue present the same disposition as those in ordinary Ruminants, but the ninth pair is relatively larger than the branch from the fifth pair; the nerve which runs along the inner or under surface of the stylo-glossi toward the free extrenity of the tongue is remarkable for its beautifully wavy course, by which it is accommodated to the variations which occur in the length of the organ in the living animal.
The back of the mouth appears to be as completely closed in the Giraffe as in the Capybara; but, instead of contracting, like a funnel, to a small circular depression, it terminates by a transverse slit, through which projects the broad upper margin of the epiglottis, which is folded upon itself, The faucial membrane is coarsely corrugated. ${ }^{1}$ The velum palati descends to the interspace between the epiglottis and the large arytenoid cartilages; and there is an uvular process from the middle of the inferior margin. The tonsils are well-developed glands of a flattened oval form, having each a short duct communicating by one wide opening with the fauces.

The hack of the mouth, in Ruminants, presents its chief modifications in the Camel-tribe. A broad pendulous flap hangs down from the fore part of the soft palate and usually rests upon the dorsum of the tongue. The velum palati extends beyond this process, some way down the pharynx and terminates hy a concave border. The pharynx hehind the velum dilates into a sac. In the rutting male the palatal flap is greatly enlarged. I have found it extending ten inches down the pharynx, passing below the margin of the soft palate and the opening of the larynx, into the œesophagus: in the living animal it is, at this season, occasionally protruded, with a helching noise, from the mouth. Its surface shows the pores of innumeralle mucous erypts, and in the ordinary state, in both sexcs, the flap may apply its own secretion, and water regurgitated from the storage-cells of the stomach, to the extended surface of the pharynx and root of the tongue, so as to allay the feeling of thirst and help the animal to endure the long remissions of drinking to which it is liable in traversing the desert.
The mouth in Carnivora is characterised hy the width of its gape, and the mohility, dilatahility, and contractility of its muscular and membranous walls. Cheek-pouches have not been found in any species. The great extent of faucial memhrane between the hack of the tongue and the larynx, with the coextensive soft palate in the Lion and some other large Felines, has heen adverted to (p. 198); also the retroverted spines, and the lytta of the tongue in connection with the work of the mouth, in certain Carnivora. In the Hyæna the tonsils are relatively larger than in the Lion. The palatal gum is transversely ridged in most Carnivora. The provision for the lubricating mucus at the back of the mouth and fauces is much less in the present than in the hoofed group of Mammals.

In Quadrumana the Cercopitheci, Macaci, and Cynocephali have cheek-pouches, the slit-like orifices of which are a little within the labial commissure; the cavity extends outside and below the mandibular rami, where it is oceasionally seen much distended with fond. The Semnopitheci and Colobi, remarkahle for their large saceulated stomachs, have not such cheek-pouches: they are wanting also in Lemuridd, Platyrhines, and tailless Apes.

The Jemurides have the palatal gum ridged. In the Aye-aye ${ }^{1}$ there are three curved transverse ridges anteriorly, convex forward, followed by four transverse pairs of similar ridges. In other Lemuridee the palatal ridges are similarly curved, but cur'. p. 41, pl. xii, fig. 6.
usually undivided, from five (Potto) to eight or nine (Galago) in number: between the two anterior ridges are the orifices of canals leading fiom the palate to the nose.

The uvula is represented in the Aye-aye and some other Lemuridee hy a medial longitudinal fold from the back of the soft palate close to the margin, but does not project so as to divide the fauces into two arches: this form of soft palate begins to appear in Platyrhines: in the Baboons the uvula is thick and short: in the Apes it approacbes nearer the proportions of that appendage in Man.

In the bigber Quadrumana the palate is smootb, or unridged, as in Man.
§ 224. Salivary Glands.-Fluids of different properties are poured into the moutb in aid of its various functions of receiving, retaining, comminuting, softening or dissolving, tasting, aud transmitting throatward, the food. For the preparation of these fluids corresponding modifications of glandular parts exist, from the simple mucous follicle to aggregates of three or of more comples follicles, with further multiplication and compaction of secerning surfaces, in groups and bodies, forming glands and ducts with definite names.

As the function of the mouth is simplified so is the condition of such ministering glands. In tbe piscivorous Cetacea, which bolt tbeir food like fishes, the parotids and submaxillaries are not present: the latter are represented with the sublinguals, in a diffused form in wbalebone whales. Tbe parotids are large in Sirenia; ${ }^{1}$ tbeir ducts open in the Manatee on two papillæ, one on cach side the fore part of the palate: in tbe Dugong the parotids are situated immediately behind the ascending mandibular rami: there is a thick layer of mucous glands above the memhrane covering the hard palate.

In the Ormithorhynchus the parotid, fig. 3, e, is divided into flat portions or lobes thinly applied to the fundus of the cheekpouch and anterior to tbe long meatus auditorius. The submaxillary, ib. D , is a moderately-sized, oval, compact body, situated hehind and below the meatus auditorius. The duct passes under the omo-mylo-hyoideus, ib . 10 , and then, contrary to the usual mode, begins to be disposed in a series of about twelvc close transverse folds, and terminates by a simple aperture at the frænum linguæ. In the Echidna the submaxillary gland, fig. 302, b, is of unusual dimensions: it extends from the meatus audi-
torius along the neek, and upon the anterior part of the thorax: it is a broad, flat, oblong lohulated hody, narrowest at its anterior extremity, from which the wide duct emerges. When the duct

Bubmaxiliars ghande, Echlden ectose ; pat, Bino.
has reached the interspace of the lower jaw, it dilates, and then divides into eight or ten undulating hranehes, which subdivide and ultimately terminate by numerous orifices upon the mem-
branous floor of the mouth. This modification of 'Wharton's duct' appears to be unique. The large size of the glands and the mode in which the secretion is spread over the floor of the mouth relate to the lubrification of the long, slender, and extensible tongue, and to its fitness as an instrument for obtaining the insect food of the spiny Monotreme.

The salivary glands in the carnivorous Dasyures consist of a small parotid and a large submaxillary gland on each side. They do not agree with the dogs in having the zygomatic glands. The submaxillary is placed in front of the neck, so that its duct passes on the dermal side of the tendon of the biventer maxilla, and terminates half an inch from the symphysis menti. There is a thick row of labial glands along the lower lip. The Opossums and Bandicoots present a similar salivary system. In the Phalangista vulpina there is a sublingual gland on each side of a firm texture, about one inch in length and three lines broad; a roundish submaxillary gland about the size of a hazel-nut; aud a broad and flat parotid, larger than in the entomophagous or sarcophagous Marsupials. The parotid glands are relatively larger in the Koala, in which the duct takes the usual course over the masseter and enters the mouth opposite the third true molar, counting backwards. In the Wombat I found the parotid glands very thin, situated upon both the outer and inner side of the broad posterior portion of the lower jaw; the duct passed directly upwards and outwards to the insertion of the sterno-cleido-mastoideus; here it was buried in the cellular substance anterior to that muscle, then turned over the ramus of the jaw, and, pursuing a somewhat tortuous course over the masseter, entered the mouth just anterior to the edge of the buccinator. The submaxillary glands were each about the size of a walnut; their ducts terminated as usual on each side of the frenum lingur. In the great Kangaroo the parotid is very large, extending from below the auditory meatus three or four inches down the neck: In the Potoroos it reaches as far as the clavicle. In both genera this gland is separated from the submaxillary gland by the submaxillary vein. The sublingual glands are elongate, but of moderate size. The tonsils are small in all the Marsupials, but are not represented in the carnivorous species, as in the placental Feræ, by simple glandular pouches at the sides of the fauces; for* example, they consist of an oblong glandular body on each side in the Dasyurus macrurus.

In Rodents, as in Marsupials, the proportions of the parotid and submaxillary differ according to the nature of the food. In the
omnivorous rats with ferine tendencies, the suhmaxillaries arc in excess: in most other Rodents which suhsist mainly or exclusively on vegetahle products the parotids are the largest. They are enormous in the Beaver, extending from hefore the ears forward and downward to contact with the suhmaxillaries, which are ahout one-twentieth their size; the whole forming a sort of glandular collar: the huccal glands are numerous. In Leporide the parotids partly inclose the hase of the ear-conch and also descend to mect the suhmaxillaries: the parotid duct crosses the upper part of the masseter and terminates opposite the last upper molar tooth. The suhnaxillary duct terminates at the side of the frenum lingux: the suhmaxillaries are thin and long: the chicf mass of the molar follicles is near the upper molars. The submaxillary glands are almost as large as the parotids in the Paca (Calogenys): hoth glands are large: the latter present a compact reddish tissuc. There is also a large zygomatic salivary gland, which exists, of smaller relative dimensions, in the Guinea-pig (Aperea). In the Hamster the parotids are elongate, narrow, and applicd, as in the Ornithorhynclus, to the hack of the cheek-pouches: there is also an accessory lohe, heneath the masseter. The suhmaxillaries are large, round, and of a reddish colour. The sublinguals are small, subglohular. In Bathyeryus the salivary glands are smaller than in most other Rodents.

Anongst Insectivora the hedgchog is remarkahle for a zygomatic gland which seems to he a development of the homologue of the 'molar' glands in Marsupials. The parotids are larger than the suhmaxillarics; but hoth are well-devcloped. The sublingual follicles are in two series, the larger onc next the mandibuhur ramus. The mole has large parotids and suhmaxillarics, the former ohlong, the latter subdivided into roundish masses: the suhlingual is placed very near the mandible: there is no zygomatic gland. In shrews the maxillary exceeds the parotid gland in size: the latter follows the auditory meatus in its inferior position. The same proportions hold in the insectivorons bats: hut in the fruit-eating Pteropincs the parotids are the larger glands.
(ireat is the diversity of the salivary system in the order Bruta, as the difference of food and ways of getting it might indicate. The parotids are somewhat less than the suhmaxillarics even in the phyllophagous Sloths, and are much the smallest in the insectivorous familics. In the Λ rmadillos the parotid gland is small : its duct opens into the month near the angle of the lips. The
submaxilitary glands are very large, subcervical in position, extending from the angle of the jaw to the anterior border of the pectoralis

Salivary gland and bladder, Atmadillo. major, where they meet at the middle line, under-lapping the sterno-hyoidei. The gland, fig. 303, $c,{ }^{1}$ is lohular, and sends its seeretion hy three or four short ducts, d, d, into a pyriform bladder, e, situated at the fore part of the gland, from the apex of which the duct, f, is continued forward to terminate hy a minute orifice on the suhlingual membrane of the mouth, immediately hehind the symphysis menti. The saliva which the bladder contains is tenacious, the serous part heing prohably ahsorhed during its detention. Thus prepared and accumulated it is expelled at the fore and under part of the mouth, in order to lubricate the tongue.

In the great Anteater the submaxillary salivary gland is a bilobed body, sixteen inches in length, two inches in greatest thickness at the posterior part where the two glands blend together. ${ }^{2}$ From this confluent base they diverge, extending outward and forward, and form, each, a flattened triangular mass, from four to five inches in hreadth

[^83]and two inches thick posteriorly, and hecoming thinner towards the outer and anterior border, where the apex is prolonged into a slender process. The isthmus, or base of the combined glands, overlies the anterior half of the thorax; the base of each lateral lobe is notched by the prominence of the shoulder-joint, round which its outer border extends; the contracting anterior prolongations of the gland pass forward along the sides of the neck, external to the sterno-maxillaries, and terminate a little in advance of the angle of the jaw.

The two packets of ducts, which indicate the essential doubleness of the gland, emorge from the inner and posterior part of the lateral lobes, five or six inches in a straight line from the posterior border of the isthmus, and nine or ten inches from the anterior attenuated extremity of the gland. After a short course, the ducts dilate and form a small reservoir on each side; they are here so closely covered and connected by elastic cellular tissue as to scem a single reservoir; they maintain, however, their distinctness, and continue, contracted, from each dilatation, as three closely united attenuatcd ducts, which at length unite into one long and slender duct. The dilated portion is surrounded hy a compressor muscle (constrictor salivaris). The gland is conglomerate, the primary lobes heing for the most part oblong, suhcompressed, from about thrce to nine lines in diametcr. The closely united ducts, after quitting the reservoir, are continued forward covered by the extraordinarily extended mylohyoideus, and, after their union, the common duct terminates at the symphysis of the lower jaw.

The parotid gland is small in proportion to the animal: it is situated in front and helow the root of the ear, is of a triangular form, two inches four lines in length, one inch two lines in breadth, with the duct continucd from the outer side of the antcrior apex of the gland, which apex terminates at the posterior cnd of the origin of the masseter muscle. The duct cxtends forward along the outside of the massetcr near its origin, passes along the huccinator near its upper border and beneath the tendons of three of the retractors of the mouth, then dips under the orbicularis oris, and terminates near the opening of the mouth. The length of the duct is eleven inches, its diameter scarcely half a line. This is perhaps the longest duct, in proportion to the size of the gland, in the animal kingdom : as the submaxillary is the largest gland outside a visceral cavity in the vertehrate sories. The depressor auris, which arises from the angle of the jaw, perforates the parotid gland. A chain of lymphatic glands

[^84]is continued backward from beneath the parotid on the side of the neck.

The representative of the 'sublingual gland' forms a thin layer, divided for the most part into narrow elongated lobes or groups of follicles, attached to and spread over the inferior buccal membrane for an extent of twelve inches: the greatest breadth of this layer is two and a half inches, and is opposite the angle of the jaw.

There is a small elongated 'labial gland,' lying upon the fore part of the buccinator, near its lower border, and sending its secretion into the side of the forc part of the mouth; apparently to lubricate that contracted aperture during the frequent and rapid protrusive and retractile movements of the tongue. The 'buccal glands' form a very extensive but extremely thin stratum of muco-glandular follicles, closely attached to the thin membrane of the mouth ; they are chiefly developed at the lower and lateral parts, and along the middle of the upper surface of that part of the mouth which is prolonged backward, below the similarly prolonged nasal canal, beyond the bony palate. These glands terminate by innumerable very minute orifices upon the smooth inner surface of the buccal membrane, which they serve to lubricate. They are continuous with the better-marked series of follicles extending along the sides of the under surface of the mouth, beneath the lower jaw, which represent the 'sublinguales.' But the glands that pour out the abundant viscid secretion which lubricates the tongue and is mainly subservient to its peculiar prehensile function in the Great Anteater, are those conjoined or interblended pair that answer to the submaxillary salivary glands in other animals; which glands are most modified and developed, for a like function, in other species of Myrmecophaga, and, as we have seen, in the Armadillos (Dasypus), and in the Echidna.

In the little scansorial Myrmecophaga didactyla, the homologues of the submaxillary glands are subcervical and blended together, as in the larger species; and a slender process is continued from them to the labial gland. The duct commences by three tubes continued on each side from the main body of the gland; and these tubes dilate into a small reservoir, provided with a compressor muscle, before the long and slender single duct is continued, covered hy the mylohyoideus, to the symphysis of the jaw. The parotid glaud is of very small relative size; and this striking difference in the proportions of the two chief salivary glands indicates the difference in their functions and in the quality of their respective secretions. The labial glands are relatively larger in the Myrmecophuga didactyla than in the Myrmecophaga
jubata; and there is a superadded aggregate of mucous follieles hehind the eyeball, in the shallow orbit of the smaller speeies, the secretion of which enters near the angle of the mouth.

In the Hyrax the parotid exceeds the submaxillary in size, and is of a redder colour: the sublingual is almost as large as the latter. In the Horse the parotid forms a considerable mass extending from its normal position behind the masseter, upward to the ear-eoneh, the base of which it embraces, and downward to the larynx, where it mects its fellow. Three duets quit the mass at different points of its lower half, eonverge and unite as they pass downward and forward; the common duet, which eurves down beneath the lower border of the masseter, rises in front of that muscle to pierce the bueeal membrane at a papilla opposite the last upper premolar. The submaxillaries are about one-fourth the size of the parotids, by whieh they are covered: the gland extends from the transverse proeess of the atlas to the angle of the jaw. The duet terminates on a valvular papilla anterior to the fromum lingur. The sublingual glands, beneath the sides of the frenum, are elongate, as large as the submaxillary, and communicate with the mouth by several orifiees. The buccal glands form large tracts of lenticular follieles along the upper naxillary bone, aseending to beneath the zygoma.

In the Hog-tribe the parotids have a large proportional size: the duct follows the lower border of the masseter, eurves upward; and opens into the mouth opposite the last premolar: there is a small patch of buceal glands near its termination. In the Babyrunsa and Wart-hog the parotid extends from its normal position, downward and backward, to the shoulder-joint and, mesiad, to the sterno-thyroids : resembling in size, shape, and proportion, the submaxillary of the Armadillo: its duet erosses the upper part of the massetcr. As in the Hog , there are two sublingual glands; one, which is very long and narrow, aceompanies the duet of the submaxillary gland, and is composed of small lobes of a pale reddish colour; the orifiee of its excretory duet is near thant of the maxillary. The seeond sublingual gland is placed in front of the former, and is of a square form; it discharges its secretion through eight or ten short duets, which pierce the inucous membrane of the mouth. Dr. Ward has given an illustration, fig. 304, from a preparation by Quekett, of the distrilution of the eapillaries in the parotid of a Pig. The arteries penctrate the areolar tissue at different points of the surface, and are condueted, as it were, by this tissue tluongh the interlobnlar spaces ns far as the primary aggregations of the vesicles, where
they form a network, which is distributed over the elementary parts of the gland.

The parotids arc large in all Ruminants. In the Ox the parotid is vertically extended behind the long ascending mandibular ra-
 mus from the lower border of the ear-conch to the angle: the duct, as in the Horse and Hog, follows the lower contour of the masseter, and penetrates the mouth opposite the first upper true molar.

The submaxillary lies behind and upon the angle or the jaw: it is relatively larger than in the horse; its duct traverses the sublingual gland in passing to its termination below the fringed fore part of the frennum. In the Giraffe its opening is similarly protected by a small valvular papillose fold. There are three small elongate masses of buccal glands, over the alveoli of both upper and lower molar scries: opening upon the angle of reflection of the gum-membrane upon the cheeks or lips.
In the Carnivorous order the salivary system is least developed in the Seal-tribe: they have the parotid either very small or wanting: and have no zygomatic glands. In the Dog the parotid, fig. 305, a, is comparatively small, flat externally, with the duct continued from near the lower end, and traversing the masseter, in an almost straight course, at an equal distance from the upper and lower borders of the muscle: it terminates opposite the upper carnassial, ib. b. The submaxillary, ib. c, is a large glohose gland, beneath and partly covered by the parotid behind the angle of the jaw: its duct terminates at d^{\prime}. The sublingual, ib. e, is more posteriorly placed than in Ungulates, and is in contact with the submaxillary, of which it seems an accessory lohe: its duct, f, has a similar termination at the fore part of the frænum lingux. The zygomatic gland, ib. g, seems to be a special development of part of the buccal system : its duct, h, terminates behind that of the parotid, opposite the interval between the penultimate and last molars. The parotid is relatively larger in the Cat, and more so in the Bear-tribe.

In the Aye-aye the parotid, of a subtriangular flattcned form, extends from its usual position to beneath tbe mandible wbere it is in contact with tbe submaxillary gland. Tbe duct leaves the parotid about tbree lines above tbe lower margin of the mandible,

Sallyary glands of Dog, $\mathbf{I V}^{\prime \prime}$.
crosses the masseter, and penetrates the buccal membrane close to the angle of the moutb. The submaxillary is smaller, thicker, more globose and compact in texture. ${ }^{1}$ Tbese forms and proportions of the two main salivary glands obtain in all Lemuride: : in Stenops the autbors of cxxiy ${ }^{\prime \prime}$ describe and figure ${ }^{2}$ the ducts of the submaxillaries as uniting, beneath the middle of the tongue, into a common duct whicb passes backward to tcrminate upon the mucous membrane of the moutb a little above the hyoid. In the Potto tbe submaxillary ducts open in the usual position, upon the free margin of the sublingual. In tbe higber Quadrumana the salivary system accords, in the main, with that in Man. The situation of the submaxillary agrees witb the name of the gland. The buccal follicles arc more numerous in the cheekpouched monkeys, and the parotids are relatively larger in tbe morc exclusive vegetarians.

The human parotid is a depressed, three-sided pyramid: its base forms tbe exterior surface, and the apex sinks deep to the stylo-hyal and its muscles, penetrating between tbem and the internal pterygoid muscle, as far as tbe pbarynx. A dense fascia scparates it from tbe submaxillary: tbat which covers its base is called 'parotid fascia:' and the gland is attacbed by similar tissuc, posteriorly, to the cartilage of the meatus auditorius. Λ portion of the gland whicb extends from the part overlapping
the masseter, forward helow the zygoma, is ealled 'socia parotidis; and in some cases it sends its seeretion hy one or two small trihutary eanals into the main duet. This crosses the masseter, perforates the huceinator, glides between that muscle and the mucous memhrane of the mouth, which it finally perforates opposite the penultimate upper molar, m_{2}. The parotid derives its arterial supply from the ectocarotid, direetly and through the medium of branches; the disposition of the terminal capillaries resembles that shown in fig. 304. The nerves are derived from the faeial, the anterior aurieular, and the external earotid plexus. The suhmaxillary gland, much smaller than the parotid and larger than the suhlingual, is situated in the anterior portion of the digastric spaee. It is irregularly ohlong in form, and is cnelosed in a loose investment of areolar tissue more delieate than that eovering the parotid. Its long axis is directed from hefore hackward, and is about an inch and a half in extent. Its external or maxillary surface is slightly concave, is lodged in a groove in the bone, and is in immediate coutact with the mylo-lkyoid nerve. The anterior extremity is the smallest, and from the part represented hy the confluence of the inner and outer surfaces ahove, generally proeeeds a process, longer than the gland itself, and passing along the upper surface of the mylo-hyoid muscle in company with the excretory duct, hut ahove it, as far as the suhlingual gland in front, with which it is oecasionally incorporated. This process may be regarded as analogous to the accessory gland of the parotid, and like it varies considerably in size and relatiou to the hody of the gland. A quarter of an inch helow the hase of the process appears the commencement of the exeretory duct. It accompanies the gustatory nerve toward the tip of the tongue between the sublingual gland and the genio-hyo-glossus muscle to the side of the frenum lingue: in the terminal part of its eaurse it is directed forward and inward, fig. 306, b, lies immediately heneath the mucous membrane, and opens hy a very narrow orifice into the mouth, in the centre of a papilla of mucous memhrane which projects from the side of the frenum. The duet is ahout two inches in length, its coats are more delicate and extensihle than those of the parotid. Its calihre exceeds that of the parotid duct, and, like it, its narrowest. portion is that inmediately beneath the mucous membrane, and this gradually contracts more and more, so that the terminal orifice hecomes so small as searcely to he visible hy the naked eye. The primary lohes of the submaxillary gland are much larger than those of the parotid, and the lobules
have an irregularly triangular arrangement. The arteries and veins that supply the submaxillary gland, are derived from the facial and lingual. The nerves are from the mylo-hyoid branch of the dental, and the gustatory, but chiefly from the submaxillary ganglion.

The sublingual gland forms a distinct eminence underneath the anterior part of the tongue by the side of the frenum. Its shape and position are shown in fig. 305, c, c : its lobules are smaller, firmer, and more distinct than those of either the parotid or maxillary: its ducts are numerous, their orifices conspicuous along the ridge of
 mucous membrane behind the terminal papilla of the duet of the submaxillary. Occasionally one duct is longer and larger than the rest: it is named, after the anatomist who first drew attention to it, 'Bartholin's duct,' fig. 306, a. For a like reason, Anthropotomy calls the duct of the submaxillary, ib. l, 'Wharton's,' that of the parotid 'Steno's,' and the short ducts of the sublingual 'Rivinns's.' The secretion of the latter gland is more viscid than true saliva: and it may be considered as the best defined of the subsidiary glands of the salivary system. The posterior part of the sublingual is occasionally represented by one or more distinct glands in juxtaposition, each furnished with a very short exeretory duct. The anterior lingual glands, fig. 307, b, are situate below the apex of the tongue, between the lower longitudinal and transverse muscular fibres, and emit their secretion during the movements of that organ upon the mucous membrane beneath the tip, by delicate ducts indicated by bristles in the figure.

The labial glands form a series of closely packed small, dense, sphcroidal erypts, situated in the areolar tissue between the mucous membrane of the mouth and the orbicularis oris muscle; their excretory duets open upon the posterior or free surface of the labial mucous membrane. They are not visible to the eye when the lips are in their natural lax position, but when the latter are everted, they appear as prominences upon the tense mucous inembrane.

The huccal are smaller than the labial glauds, hut resemble them in form and position, heing irregularly spheroidal, and placed between the huccinator and mucous membrane; they open hy the orifices of distinct ducts upon the free surface of the latter. The molar glands arè placed hetween the buccinator and masseter muscles. They are larger and more dense than the huccal, heing composed of scveral lohes. The ducts open upon the mucous membrane at the posterior part of the cheek. The palatine glands are very numerous and small, and situated partly between the mucous membrane and the palatine arch, and partly between the mucous and muscular layers of the soft palate. The formor are situated on cither side of the median line, and form a thick layer, heing more closely aggregated together in the front and behind than in the middle, opening on to the mucous membrane by distinct orifices. The latter, smaller than the former, exist hoth on the upper and lower surface of the velum, and are continuous helow, where they are more numerous than ahove, with the glands of the hard palate. The aggregate follicles opening near the fossulate papillæ at the hack part of the tongue are sometimes specified as the 'posterior lingual glands.' Like the other suhsidiary glands their secretion is more mucous and lubricatiug than solvent: and the homologues of most of these glands are maximised in herhivorous Mammals in relation to the movements and mastication of their coarse vegetable food.

The diversion of the parotid secretion from the mouth of a horse during mastication of oats, was followed hy dryness of the interior of the holus and an exte-

Antextor lingual gland, Human, nat, size, oxxy"。 rior envelope of tenacious mucus, which was as abundant as before the division of Steno's ducts; the experiment ${ }^{1}$ indicating that the secretion of the parotid is of the more fluid saliva which moistens, in ordinary mastication, the whole mass ; and that the submaxillary and sublingual, like the more diffused trihutary glands, provide the secretion of the slimy luhricating saliva. Further experiments showed ${ }^{2}$ that the flows from the parotid, suhmaxillary and sublingual glands are respectively regulated by conditions special to cach. Thus, the quantity of saliva secreted
by the parotid of a horse is in direct ratio to the dryness of the food and the difficulty experienced in its mechanical division. The mastication of straw and hay causes a greater flow than does that of oats and farinaceous matters; the mastication of moist forms of food hardly excites any. The saliva from the sublingual and submaxillary ducts flows ncarly in equal abundance whether mastication be cxerted on dry or moist forms of food; and, owing to its comparative tenacity, it is not easily imbibed in to the centre of the masticated material, but is gathered round the surface of the mass, thus favouring its passage along the alimentary canal.

The comparative anatomy of the salivary system supports the conclusions of experimental physiology : thus, the parotids are relatively largest in mammals that masticate most; the submaxillaries are largest in those that need the greatest amount of viscid lubricating secretion. In the anteaters, hairy or spiny, the parotid is so small as to have escaped the notice of Cuvier and his continuators: ${ }^{1}$ the submaxillary attains its maximum of size. In many long-tongued Edentates (Myrmecophaga and Dasypus) a bladder is superadded to the submaxillary gland both for storage of a quantity of secretion needed in a sudden excess of outflow, and also for adding to the tenacity of the secretion so poured out to lubricate the tongue. In Echidna the end is gained by subdivision with enlargement of Wharton's ducts.

Most analyses of saliva havc been made on that from the human mouth which is the combination of the secretions of the various glands above described. The pcculiar animal principle called 'ptyalin' is a nearly solid matter, adhesive, of a yellowish colour : it is neither acid nor alkaline, is readily soluble in ether, alcohol, and cssential oils, but more sparingly soluble in water. It appears to give the peculiar odour to saliva: when pure it may be kept long at a moderatc temperature without undergoing decomposition.

Dr. Wright's analysis of human saliva ${ }^{2}$ is as follows:-

Wator	$988{ }^{1} 1$
Ptyalin .	I. 8
Fatty neid	. 5
Chintilas of potassinm and soctium	$1 \cdot 4$
Albumen combined with socla	-9
Plogphate of lime	6
Albuminnte of sodn .	8
Lactates of potash and sooln	7
Sulphocynnide of potassium	9
Sodn . .	-5
Mucus, with some ptyalin .	$2 \cdot 6$

[^85]Pure saliva obtained from the parotids and submaxillaries of a dog, and from the parotids of a horse, is incompetent to effect the saccharine transformation of starch: but the secretion of the mucous and subsidiary glands of the mouth reacts upon either starch or sugar in the way of producing lactic acid.
§ 225. Alimentary canal, Lyencephala. - In the Ornithorhynchus the œsophagus becomes slightly dilated near the diaphragm, extends a little way into tbe abdomen, and expands into

Thoracic and abdominal visemb, Oruaborhyuchus. a moderate-sized membranous stomach, fig. 308, t, which is chiefly remarkable for the close approximation of the cardiac and pyloric orifices. The intestinal canal is moderately wide, five feet three inches and a half in length, and provided, at a distance of four feet three inches from the pylorus, with a small and slender cæcum, ib. w. The small intestines are chiefly rcmarkable for the extent of the mucous coat, which is disposed in numerous folds or valvulxe conniventes: these are transverse at the beginning of the duodenum, but are placed unore or less obliquely in the rest of the small intestine; they are about two lines broad, are close together in the duodenum, but diminish in breadth and number as they approach the cæcum coli. There are about fifteen longitudinal folds in the first half of the colon; the remaiuder of the intestine has a smooth inner surface. There is no valvula coli. The rectum, ib. z, terminates at the anterior and dorsal part of the vestibular compartment of the cloaca.

As the food undergoes less comminution in the mouth of the Echidna than in that of the Ornithorlhynchus, the pharynx and cesophagus are wider, and a
denso epithelium lines the inner surface of the latter tube: it is continued over the capacious stomach to the pylorus, near which orifice it is developed into numerous horny and sharp papilla. The subjacent mucous membrane is smootb; the tunics of the stomach arc thin, to near the pylorus, where the muscular coat assumes something of the gizzard-character, and the inner coat forms a prominent protuberance in the duodenum. The intestinal canal of the Ecbidna is seven times the length of the body; the mucous membrane is not raised into valvular folds; a small vermiform and glandular excum divides the small from the large intestines; the rectum terminatcs as in the Ornitborhynchus.

The various modes of loeomotion, resulting from the different modifications of the osseous and muscular systems observable in the several families of Mrrsupialia, relate to the acquisition of as various kinds of alimentary substances, whicb neeessarily requirc for their assimilation as many adaptations of the digestive organs. Food-means of obtaining it-instruments for preparing and meehanically dividing it-cavities, canals, and glands for chenically reducing and animalising it-form a closely connected chain of relationships and interdependencies. Tbe preparatory instruments have been deseribed in previous sections. In all Marsupials the asophagus in passing through the chest recedes from the spine as it approaches the diapbragm, and is loosely connected with the bodies of the dorsal vertebrx by a broad duplicature of the posterior mediastinum. In the Phalangers the ocsophagus terminates in the stomach almost as soon as it has piereed the diaphragm; in the Opossums it is continued some way into the abdomen; in the Didelplys virginiana, for example, for the cxtent of an inch and a half; in Did. brachyura ${ }_{2}$ for half an iucll. In the Kangaroos the abdominal portion of the cesophagus is of still greater extent; I have observed it five inches long in a malc Mereropus major.

The inner surface of the asophagus is generally smooth, or disposed in finc longitudinal plaits; but in the Virginian Opossum the terminal part of the ossophagus presents many transverse folds of the lining membrane analogous to, but relatively larger than, those in the Lion and other Felines. I bave not met with a like structure in the Phalangers, nor in any other genus of Marsupials; what is more remarkable is that the transverse cesophageal ruga are not developed in the carnivorous Dasyures or Phascogales, where aualogy would lead one to expect them, rather tban in the iusectivorous Opossums.

The stomach presents three leading modifieations of structure
in the Marsupialia; it is either simple, as in the Zoophagous, Entomophagous, and Carpophagous tribes; or is provided with a cardiac glandular apparatus, as in the Koala and Wombat; or is complicated by sacculi, as in the Poephagans.

It might have been expected that the stomach would have exhibited some modifications in the development of the left or cardiac extremity corresponding with the differences of food and dentition observable in the large proportion of the Marsupial order, in which this viscus presents its simple condition; but this is not the case: the form of the stomach is essentially the same in the carnivorous Dasyure, the insectivorous Bandicoot, and the leaf-eating Phalangers. It presents a full, round, ovate, or subtriangular figure, with the right extremity projecting beyond and below the pylorus; the longitudinal diameter seldom excceds the vertical or transverse by more than one-third; often, as in Phas-

Alinentary camal, Piascogale flavipes. cogale and Dasyurus viverrinus, by only one-fourth of its own extent; and the cesophagus enters at the middle of the lesser curvature, or sometimes nearer the pylorus, but always leaves a large hemispherical cul-de-sac on the left sidc. Daubenton ${ }^{1}$ has given illustrations of this characteristic form of the stomach in different species of Didelphys; it is here figured as it exists in the Phascogale, fig. 309. The stomach is relatively much more capacious in the carnivorous Marsupials than in the carnivorous Placentals. Some slight modifications occur in the disposition of the lining membrane; in the Phascogale a series of very thick rugr radiate from the middle of the upper part of the ceccal end of the stomach, some of which were continued along the lesser curvature to the pylorus. In the Perameles nasuta the internal surface of the left cul-de-sac is smooth; the right half of the stomach has rugæ, running chiefly in a longitudinal direction, and particularly numerous towards the pylorus.

The stomach in the Wombat and Koala does not materially differ in external figure from that of the above-cited Marsupials; the cesophagus terminates nearly midway between the right and left extremities, but further from the pylorus in the Wombat than in the Koala. The conglomerate gastric gland is of a flattened ovate form, relatively larger in the Wombat than in the Koala, situated to the left of the cardiac orifice, at the lesser curvature of the stomach, fig. 310. The gastric gland has a similar position in the Beaver, but in this animal the excretory orifices of the gland are arranged in three longitudinal rows, while in the Wombat and Koala they are scattered irregularly; in the Wombat they are

Htomach of the Wulliat, inverted. about thirty in number, and the bottoms of the larger depressions are subdivided into smaller cells. In the partially contracted state the inner membrane of the stomach of the Wombat is disposed in longitudinal rugre, which gradually subside towards the pylorus; but when the stomach is distended these folds disappcar, and the left extremity presents a full globular form.

The sacculated stomach of the Kangaroo, which offers the extreme modification of this organ in the Marsupial order, resembles the human colon both in its
 longitudinal extent, structure, and disposition in the abdomen. In a full-grown female Kangaroo (Macropus major) I found the abdominal cesophagus, fig. 311, a, four inches long, and terminating at six inches distance from the left extremity of the stomach: this was folded forward and to the right in front of the cosophagus; from the basis of the left cul-de-sac the stomach continued to expand, and descended into the left lumbar and
iliac regions, whence it stretched upward and to the right side obliquely across the abdomen, to the right hypochondrium, where it became contracted and finally hent downward and backward to terminate in the duodenum. The whole length of the stomach, following its curvatures, was three feet six inches, equalling that of the animal itself from the muzzle to the vent.

The cavity may be regarded as consisting of a left, a middle, and a right or pyloric division. The left extremity of the stomach is bifid, and terminates in two round cul-de-sacs. The saccnli of the stomach are produced, like those of the colon, by three narrow longitudinal bands of muscular fibres, which gradually disappear, together with the sacculi at the pyloric division. One of the longitudinal bands runs along the greater curvature, at the line of attachment of the gastro-colic omentum; the others commence at the base of the left terminal pouches, and run, one along the anterior, the other along the posterior side of the stomach: the interspace, between these bands, forming the lesser curvature of the stomach, is not sacculated. The largest of the two terminal sacculi, d, fig. 310, is lined with an insulated patch of vascular mucous membrane, which is continued for the extent of five inches into the cardiac cavity; the thick epithelium is continued from the œesophagus in one direction into the nearest and sraallest sacculus, c, and extends in a sharp-pointed form for a considerable distance in the opposite direction into a series of sacculi in the middle compartment of the stomach, ib. e: this epithelium is quite smooth. The vascular mucous surface recommences by a point at the great curvature, near the beginning of the middle compartment, and gradually expands until it forms the lining of the whole inner surface of the right half of the stomach. Three rows of clusters of mucous follicles, ib. g, g, arc developed in the mucous membrane of the pyloric half of the middle compartment; they are placed parallel with the longitudinal muscular bands: about fifteen patches are situated along the greater curvature, and there are nine in each of the anterior and posterior rows. These glandular patches disappear altogether in the pyloric compartment of the stomach, where the lining imembrane is thickened, and finely corrugated; but immediately heyond the pylorus there is a circular mucous gland three-fourths of an inch hroad: the non-sacculated pyloric division of the stomach was five inches in length.

In the smaller species of Kangaroo the stomach is less complicated than in the Macropus major; the number of saceuli is fewer : in Macropus parryi, e. g., the third longitudinal band at the great curvature of the stomach is almost obsolete: in the

Brush-tailed or Rock Kangaroo (Macropus penicillatus) the cardiac extremity terminates in a single suhclavate cul-de-sac: the cesophagus opens into the middle division of the stomach, close to the produced cresceutie fold which separates it from the cardiac compartment. In the great Kangaroo a second slighter fold is continued from the right side of the cardiac orifice parallel with the preceding, and forming witb it a canal, somewhat analogous to that in the true ruminating stomachs, and along which fluids, or solid food not requiring previous preparation in the cardiac cavity, might be conducted into the middle compartment.

I have more than once observed the act of rumination in tbe Kangaroos kept in the vivarium of the Zoological Society. It docs not take place while they are recumbent, hut when the animal is ercet upon the tripod of tbe hind legs and tail. The ahdominal muscles are in violent action for a few seconds, the hoad is then a little depressed, and the cud is masticated hy a rapid rotatory motion of the jaws. This act is by no means repeated in the Kangaroos with the same frequency or regularity as in the true Ruminants. A fact may, however, he noticed as an additional analogy between them; balls of hair, cemented by mucus, adpressed and arranged in the same direction, are occasionally formed in the stomach, of which I bave met with two, of an oval shape, in the Macropus parryi.

In the genus Hypsiprymnus the stomach is as singularly complicnted as in the Kangaroos, and the complication is cssentially the same in both; arising from the sacculation of the paxietes of a very long canal by a partial disposition of shorter hands of longitudinal fibres; but in the Potoroos this sacculation is confincd to that part of the stomach which lies to the left of the cesophngus, white the right division of the cavity has the ordinary form and structure of the pyloric moiety of a simple stomach. The left or cardiac division is enormously developed; in relative proportion, indeed, it is surpassed only by the true ruminant stomachs, in which both the rumen and reticulum arc expansions of the corresponding or cardiac moicty of the stomach. The relation of the stomach of a Potoroo to that of a Kangaroo may be eoncisely expressed by stating that the termination of the oesophagus in the former is removed from the commencement, or left, of the middle sacculated compartment to its termination.

When fluid is injocted into the stomach of a dead Potoroo, it distends first the pyloric division; it is prohably hy a kind of antiperistaltic action that the aliment is propelled into the long sncculated crecum to the left of the cosophagus.

Ilaving seen that, with the exception of the Potoroos and Kan-
garoos, the stomach is simple in the Marsupialia, presenting only some additional mucous glands in the Koala and Wombat, it is to the succeeding parts of the alimentary canal that we have to look for those modifications which should correspond with a vegetable, a mixed, or an animal diet; and never perhaps was a physiological prohlem more clearly illustrated by comparative anatomy than is the use of the cæcum coli by the varying conditions which it presents in the present group of Mammalia.

In the most purely carnivorous group of the Marsupial order the stomach presents in the magnitude of the left cul-de-sae a structure better adapted for the retention of food than we find in the stomachs of the corresponding group in the placental series. In the most strictly carnivorous Fera, as the cat-tribe, there is a cacum, though it is simple and short; but in the Marsupial Sarcophaga ${ }^{1}$ this part is entirely wanting, and the intestinal canal, short and wide, is continued, like the intestine of a reptile, along the margin of a single and simple mesentery from the pylorus to the rectum. The jejunum, in the Thylacine, has a diameter of two inches and a half.

In the entomophagous ${ }^{1}$ Marsupials, some of which are suspected with reason to have a mixed diet, the intestinal canal is relatively longer; the distinction of small and large intestine is established; and the latter division commences with a simple, moderate-sized, subclavate crecum, fig. 312.

In the carpophagous ${ }^{1}$ Phalangers, whose stomach resembles that of the predatory Dasyure, the compensation is made by a longer intestine, but principally by the extraordinary length of the cæcum, which in some species is twice that of the body itself.

312

Cæecuin of the Opossum,
Lastly, in the Koala, which is, perhaps, a more strictly vegetable feeder than the Petaurists or Phalangers, the cæcum, fig. 313, is more than three times the length of

Cæcum of the Kaola.

314

Ceccun of the Kangaroo.
' Lxxiv' and Ixxx', p. 330.
the inner secreting membrane, is furtber augmented by about a dozen longitudinal parallel, or nearly parallel, plaits, whieh are eontinued from the colon three-fourths of the way towards the blind extremity. When we reflect that the Sloth, which has the same diet and corresponding habits witb the Koala, has a singularly complicated stomacb, but no cæcum, the vicarious office of this lower blind production of the digestive tube as a subsidiary stomach is still more strikingly exemplified. In the Marsupials with sacculated stomachs the creum coli is comparatively short and simple. In the Potoroos, which scratcb up the soil in search of larvae and farinaceous roots, it is shorter than in the great Kangaroos which browze on grass. There is a slight tendency to sacculation at the commencement of the crecum in the latter Marsupials, by the development of two longitudinal bands, fig. 314. In the Wombat tbe cacum is

Checum of the Wombat. extremely sbort, but wide; it is remarkable for bcing provided with a vermiform appendage, fig. 315 . In this animal, howcver, the colon is relatively longer, larger, and it is puckered up into sacculi by two broad longitudinal bands. In the specimen dissected by me, one of these sacculi was so much longer than the rest as to almost merit special notice as a second cæcum.

The most interesting peculiarity which the Zoophagous Marsupials exhibit in the disposition of their simple intestinal canal, consists in its being suspended from the very commencement of the duodenum on a simple and continuous mesentery, like the intestine of a carnivorous reptile. The duodenum makes the ordinary fold on the right side, but it is not tied to the spine at its termination; the commencement of the jejunum may, however, be distinguished by a slight twist of the mesentery, and a fold of peritoneum is continued from the lowest curve of the loop of the duodenum to the right iliac region, as in the Kangaroos. The intestino is a little narrower at its middle part than at its two extrenes; the tunics increase in thickness towards the rectum. There is a zone of glands at the commencement of the duodenum.

In the Eitomophagans ${ }^{1}$ the duodenum is tightly connected to the spine, where it crosses to be continued into the jejunum : from this part the mesentery is continued uninterruptedly along the small intestines and colon to the rectum; so that although the crecuun is generally fonnd on the right side, its connections are sufficiently loose to admit of a change of position. In the Carpo-

Suo Lxxiv', for characters of these families of Marsupialia.
VOL. 111.
EE
phagans ${ }^{1}$ the pygny Petaurist (Acrobates) shows the duodenum attached to the spine as in the opossums, but it is not tied down to the right iliac region by a fold of peritoneum continued from the convexity of its depending curve. The cæcum is disposed in a spiral curve in the left lumbar region; the colon ascends a little way in front of the stomach, receiving a branch of the supcrior mesenteric artery, and is then continued straight down to the anus; again exemplifying the oviparous character by the shortness of the large intestine. In the Pet. taguanoides the duodenum is tied down to the iliac region, as in the Dasyure; the cecum is four inches long, and the colon is relatively longer than in Acrobates; it makes the tour of the abdomen much as in Man, but is continued into the rectum without forming a sigmoid flexure. In the Phalangers the duodenum winds round the root of the mesentery, descending pretty low down on the right side, and becoming a loose intestine or jejunum on the left side. The long cæcum is suspended by a broad duplicature of peritoneum continued from the mesocolon; and the colon is closely attached at its transverse arch to the duodenum and root of the mesentery. In the Koala the crecum and large intestines arrive at their maximum of development. The duodenum commences with a

Ileo-cacal valve, Koala. Half its natural gize. small pyriform sacculus nearly an inch in breadth, and soon contracts to a diameter of five lines, which is the general calibre of the small intestines. The large intestines, where the ileum terminates, have a diameter of two inches. The end of the ileum, fig. 316 , a, protrudes for the extent of a quarter of an inch within the cxcum, forming a very effectual valve: near this part there arc two wide and decp glandular fossæ: the longitudinal valvulæ conniventes of the large intestines have already been noticed.

In the \mathbf{P} otoroos the small intestines are disposed nearly as in the Phalangers: the short and wide crecum lies in the right hypogastrium: the colon makes the usual tour of the abdomen, but is disposed in long convolutions through its wholc course,
being suspended on a hroad mesocolon. The diameter of hoth small and large intestines is nearly the samc: in Hyps. setosus I found this to be half-an-inch.

In the great Kangaroo the descending portion of the duodenum is attached posteriorly, by means of a thin peritoneal duplicature, to the spine, and anteriorly to the ascending colon: it makes an abrupt turn upon itself, and a fold of peritoneum is continued from the convexity of the curve to the right iliac region. The small intestincs are strung in short folds on a rather narrow mesentery. The crecum is in part suspended from the same mesenteric fold. The colon, besides its posterior connections with a mesocolon, is attached, as before ohserved, to the duodenum; and also, hy means of the great omentum, pretty closely to the stomach, whence it passcs down, forming many large and loose convolutions, to the rectum, being attached hy a broad mesocolon to the left hypochondriac region.

The zone of glands at the commencement of the duodenum has been already noticed; they are present in other Marsupials, even in the most carnivorous species. The villi of the small intestines in the Kangaroo are of moderate length, compressed and closeset. Glandulæ aggregatw are arranged in narrow patches in the ileum. There are seven groups of similar follicles in the cercum; and a few long and narrow patches of glands occur in the colon interningled with numerous glandulæ solitariz; the surface of the rest of the lining mombrane of the large intestine is disposed in a very fine net-work.

Two faint longitudinal bands extend along the first ten inches of the colon and are continued along two-thirds of the caccum: the sacculi produced hy these hands are but very feebly marked. The contents of the cæcum in the great Kangaroo are of a pultaceous consistence, and the mass continues undivided along the first two fect of the colon, gradually becoming less fluid and then heginning to he separated into cubical faces ahout an inch squarc. 'The diameter of the large intestine in this species exceeds very little that of the small intestincs.

In all the Marsupials two sehaceous follicles open into the tcrmination of the rcctum. The anus has its proper sphincter, but is also surrounded, in commou with the genital outlet, by a larger one. When the penis is retracted, the fæcal, urinary, and genital canals all terminate within a common external outlet; so that in the literal sense the Marsupials are monotrematous.

The following is a talle of the length of the intestinal canal,
and its parts, as compared with the body, in a few species of the different families of Marsupialia :-

species,	Body from snout to vent.	Intestimal canal with cactur.	$\underset{\text { Intestines. }}{\text { Small }}$		Large Intestines.		Cwcum.	
Thylacinus Harrisii	$\begin{array}{cc} \text { fr. } & \text { inch. } \\ 3 & 4 \end{array}$	$\begin{array}{cc} \text { ft. } & \text { Inch. } \\ 9 & 8 \end{array}$		inch.		minh.	ft.	Incin.
Phascogale flavipes	05	014						
Dasyurus macrurus	14	50						
Perameles nasuta.	14	35	2	5	0	9	0	3
Didelphys Philander	09	35	1	11	1	$2 \frac{1}{2}$	0	4
Petaurus pygmous.	$0 \quad 2 \frac{1}{2}$	0 6\%	0	5	0	$0 \frac{2}{3}$	0	1
Phalangista vulpina	18	$24 \quad 10$	11	0	9	0	4	10
Ditto	17	18 8	9	9	6	10	2	
Phascolarctos fuscus	111	240	7	8	10	5	6	5
Hupsiprymnus setosus.	10	50	2	5	2	6	0	2
Macropus major . .	33	320	22	0	9	0	1	8
Phascolomys Vombatus	26	$25 \quad 6$	11	3	14	2	0	1

§226. Alimentary canal of Rodentia.-In relation to the de-
 gree of comminution of the food and in continuation of the character of the fauces the resophagus is narrow in all Rodents and is usually continued a short way into the abdomen before opening into the stomach. The position of the cardia is at or near to the middle of the upper curvature (fig. 317, f, Rat, fig. 318, f, g, Vole) as in Marsupials, and the modifications of the alimentary canal in relation to the nature of the food are, also, manifested chiefly in the cæcum. The left end of the stomach commonly projects beyond the pylorus, fig. 317, d, fig. $318, b$: and it is not unusual to find both 'blind saes' marked off by transverse constrictions from the mid-part of the cavity, fig. 317, b. The cosophageal epithelium is usually continucd upon the inner surface of the cardiac compartment, ib. a. In the Porcupine, which shows well this tripartite type of stomach,
the pyloric aperture is much larger than the cardiac one and is bounded toward the left side by a valvular ridge.

In the Squirrels (Sciurus) the stomach is of a pyriform or oval shape, quickly contracting to a conical or cylindrical portion, which is bent upon the small curve and terminates in the pylorus. Tbe cardiac compartment, which projects far to left beyond the œesophagus, is lined with a thick epidermis, which forms two oval lips, as it is prolonged around the opening into the second compartment, the lining membrane of which is gastromucous.

In the Hamsters (Cricetus) the stomach is divided into two pouches, separated by a deep constriction; the left pouch is cylindrical, the right globular. The cardiac orifice is situated in the constriction, so that food can pass at once into the pyloric compartment and be antiperistaltically moved and stored in the cardiac division.
In the Rat (Mus decumanus) the abdominal part of the gullet, fig. 317, f, is $1 \frac{1}{2}$ inches long, and carries forward a fold of peritoneum. The cardiac compartment, ib. α, has thin coats and is lined hy an epithelium which usually gives it a whiter colour than the rest of the organ. At the midpart, ib. b, there is a tendinous

patch from which muscular fibres radiate, as in the hird's stomach : the muscular coats of the pyloric division, d, are thicker, as is also the gastro-vascular lining membrane.

In the Water-vole (Arvicola amphibius) the cardiac and middle compartments form one elongated cavity, fig. 318, a, f, separated by a constriction from the pyloric portion, b. This swells out in two directions, ahove into a small sacculus, e, the coats of which are thin, like those of f, and helow into the true digestive pyloric part, with a thicker muscular tunic and gastro-vascular lining membrane. Tbe epithelial lining of $a_{j} f$, terminates hy a
fringed margin. The Lemmings have a similar type of stomach, complicated with a slight suhdivision, fig. 319, c, of the right compartment, ncar the pylorus, where the thicker glandular lining graduates into the thin smooth mucous membranc of the suprapyloric sac, e. From the cardiac orifice a pair of ridges curve toward the pyloric division, defining a groove or canal, f, analogous to that which will be shown in the Ruminants; the border of the epithelium of the cardiac half is well-defined and sometimes fringed. The gastric tubes of the compartment, b, are so complex as to give the character of a gland to the lining membrane.

In the Beaver (Castor) the stomach is transverse and elongated in that direction, the right portion being larger than that which is situated to the left of the cardia; the resophagus is inserted into the first third of its anterior margin by a narrow opening, surrounded with pointed processes, which are analogous to the fringes formed by the epithelium in many other Rodents. On the right of the oesophagus, at the lesser curvature of tbe stomach, is a gastric gland composed of numerous branched follicles, the blind ends of which, when exposed by removal of the muscular coat, give the gland a lobulated surfacc: the orifices of the glands are arranged on slight ridges in three longitudinal rows on a flat tract of the inner surface. On the rigbt of these orifices commences the pyloric portion, the termination of which is indicated by an external constriction, and by an internal thickened ring: the pylorus is approximated to the cardiac orifice. This pyloric portion, which is morc muscular than the rest, is sometimes dilated into a distinct pouch, separated by a constriction from the pyloric cul-de-sac. The internal membrane presents everywhere the same appearance, exccpt that in the pyloric portion it appears to be more smooth, and its folds talse a different direction. On the right of the cardia there is a very thick fold, separating the left from the right compartment. In the Dormouse (Myoxus glis) and Muscardine (M. avellanarius) similar follicular glands are aggregated round a dilated termination of the œsophagus, or cardiac commencement of the stomach, like the 'proventriculus' of birds. ${ }^{1}$ We have bere a repetition of the structure noted in the Womhat.

In the Cape Mole (Bathyergus) the abdominal œesophagus is an inch in length and terminates midway between the two ends of the stomach. The right compartment is of enormous size, elongated and pierced at its base by the cardiac orifice; the left

[^86]compartment is of smaller dimensions, of a glohular form, and separated from the preceding, hoth hy an external constriction and an internal fold of the mucous memhrane. There are, moreover, two additional folds nearcr to the pylorus, which seem to form a third compartment. The Oryctere (Orycterus) has its stomach slightly different: its position is more longitudinal, so that the left compartment is anterior, and the right posterior; the pyloric portion is short, cylindrical, and directed forward.

In Capromys Fournieri the œsophagus, after a short course in the ahdomen, terminatcs in a stomach six inches long, ahout $2 \frac{1}{4}$ inches from the left end: a pouch of the same extent is continued from the right of the pylorus, which is situated $1 \frac{1}{2}$ inches to the right of the cardia.

In the Coypu (Myopotamus) the stomach closely resemhles that of Capromys, heing of an ohlong figure, hoth extremitics laving pretty nearly the same volume; the cardiac extremity projects three inches heyond the entrance of the narrow cesophagus, and the pyloric sacculus, a little more than two beyond the pyloric orifice. The stomach, measured in a straight line from end to end, is $7 \frac{3}{4}$ inches ; its greatest depth $4 \frac{1}{2}$ inches.

In the Agouti (Dasyprocta agouti), with a stomach $5 \frac{1}{2}$ inches long, the constriction dividing it into cardiac and pyloric portions is deep: the latter hulges out on each side the pylorus so as to make the duodenum commence from a central depression. The Paca (Coclogenys) shows the same structure. In an Acouchi the gastric constriction was not present or had relaxed. In the ('apyhara the ahdominal œesophagus is two inches in extent: the greatcr curvature of the stomach is sometimes found puckered into sacculi by contraction of a hand of longitudinal fibres.

In the Rabbit and Harc (Lepus, Lin.) the stomach is roundish, hent in a quick curve, with the cesoplagus entering nearer the left or great end than the pyloric end: the left end adheres to part of the ahdominal cesophagus: it is usually found partially constricted into two compartments, the pyloric heing the thickest and most muscular. The sides of this division have a well-marked tendinous patch.

The intcstinal canal usually, in Rodents, hegins hy a well-marked dilatation, and the whole duodenum is more continuously and loosely suspended than in most higher Mammals. In the Dormice (Myoxus) which hybernate like the hear, there is no cæcum. In the common Mouse and liat (Mus, fig. 317) the cæcum, k, l, is short, widc, and hent; the colon, p, reduced to the calibre of the ileum, leaves the crecum, like the duodenum quitting the stomach. The
fæces begin to he divided in the colon, hy constrictions of the gut, as in the figure: the rectum runs some way along the hase of the tail hefore terminating. The small intestincs are five times the length of the hody, the large intestines once that length. In the Mole-rat (Bathyergus) the cæcum makes a close spiral turn, and its inner

Cecum of the Equirrel. cxari. memhrane is augmented by many transverse folds. The cacum is of greater length in the Sciurida: in the common Squirrel it is curved, fig. 320, c, and divided from the colon, e, by a constriction close to the termination of the ileum. The colon is wider at its commencement than in the Rats, and the whole intestinal canal is longer. In Sciurus griseus the small intestines are seven times, the large intestines twice, the length of the body; the crecum is half that length. In the Hamster the colon descrihes two direct and two reflected spiral coils at its commencement, decreasing in calibre, and then proceeds, of nearly the same diameter as the ileum, to terminate in the rectum. ${ }^{1}$ In the Marmots (Arctomys) the duodenum passes loosely down the right side until its attachment, hy a mesentery from its concavity, to the first hend of the colon, behind which it winds to the left; and after an attachment to the descending colon hy serous layers from its convexity, becomes jejunum. The long and large crecum has a mesentery; its inner surface is multiplied by circular folds, indicated outwardly hy constrictions which led Hunter to compare it ' to a quilted petticoat.' ${ }^{2}$ The indication of the low grade or affinities yielded hy the termination of the intestines, is thus noted in the present Lissencephalan:-"The rectum cannot he said to terminate at the verge of the anus; hut ahout three-quarters of an inch higher up, that lower part seems common to the anus and to a glandular apparatus whose ducts open into it. It is something like the common vagina to the bladder and uterus in fowls.' ${ }^{\prime 3}$ In Capromys the ileum

[^87]Ib. p. 243.
applies an expanded termination to a much smaller orifice at the side of the cæclum: the part so included forming the valve. The length of the cæcum is thirteen inches: its widest circumference six incbes: its parietes are puckercd up by two longitudinal muscular bands, one of which is continued a short way upon the colon. The cæcum is marked off from the colon by a valvular structure similar to tbat at the end of tbe ileum; the two orifices of the blind gut being analogous to tbe cardia and pylorus of the stomach. ${ }^{1}$

In the Coypu the duodenum commences with so large a dilatation that it projects toward the csophagus like a cæcum; its circumference here was $4 \frac{1}{2}$ inches; the decrease is gradual, and where the biliary duct enters the circumference is three inches, and a little distance below this $2 \frac{1}{2}$. The length of the small intestines is sixteen feet, their mean circumference $1 \frac{3}{4}$ inches. The crecun is large, making a circular turn at its base and gradually diminishing in volume : it is puckered into sacculi by two muscular bands, less defined toward the basal part: its longth is one foot ten inches, its greatest circumference eight inches. The ileum terminates in a sort of sacculus at the base of the cacum, close to the colon. This gut begins large, but gradually becomes narrow: it is slightly sacculated for a short distance: its mean circumference $2 \frac{3}{4}$ inches. The colon makes an abrupt turn from the cæcum, and after a course of one foot five inches suddenly folds upon itself, the reflected length running down for the distance of eleven inches, when it turns as suddenly back again, hut does not adhere so closely to the previous fold as that to the first length; it then contracts and soon proceeds to constitute the rectum. Near the end of the first loose fold, as in ("apromys, the faces begin to assume a solid form in separate wal masses. The total length of the large intestines was four feet four inches The enormous cæcum of the Capybara occupies almost the posterior half of the abdomen.

The parallel course of the arteries along the coats of the colon in Ihystricida, Chinchillida, and Ctenomyidar, connected at distant iutervals by transverse branches, without other ramification, is worthy of remark. ${ }^{2}$ In the Porcupine the cecal sacculi are puckered upon three longitudinal bands, two of which are continued some way along the colon. In the Chincbilla tbe sacculi project altcrnately from opposite sides of the cæcum. The abovedefincd general form of large intestines in vegetarian rodents is exemplified in fig. 321, from the Water-vole. Here the ileum

[^88]terminates at the base of the sacculate cæcum, n; the slender termination, q, simulates a vermiform appendage: the colon hegins by a pair of large sacculi, r, but quickly contracts to the calibre
 shown at s. Two oval patches are here, as usual, situated on either side of the ileo-cæcal valve. In the Leporide they are lodged in a special pouch, fig. $322, f$: the vascular mucous membrane of the cæcum, in these herbivorous rodents, is augmented hy heing produced into a broad fold, disposed spirally to near the slender termination of the cæcum, d, b, which is glandular, like the vermiform appendage in Man. Three longitudinal bands extend upon the colon; but two of these hecome hlended together as that gut con-

Cacum of the Fare. cxati'.
tracts, and the sacculi project from one side only, in which the fæcal contents begin to be moulded into the pellet-shaped excrenent. After the colon has completed its first long fold, returning to near its commencement, the sacculi disappear.

Besides the analogy already noted between the orifices of the caccum and those of the stomach, that of the different diameters of the entering and out-going tubes may be observed. Comparative anatomy concurs with results of undesigned experiments, as in cases where artificial openings have been established in the
human intestinal canal, in showing that a change to gastric digestion is repeated upon the food in the crecum: chemistry has, also, shown that the chyme here again becomes acidified, after having been neutralised by hile in the small intestines.
§ 327. Alimentary canal of Insectivora.-In this, as in preceding orders, the osophagus is usually prolonged some way into the abdomen before its termination. My examinations of the stomach in the different insectivorous genera lead me to generalise an approximate, rather than a remote, relative position of the cardiac and pyloric orifices: ${ }^{1}$ the form of this viseus, in most, aceords with that in Ornithorhynchus, fig. 308, b. In a Proboscis-shrew, e. g. (Rhynchocyon, Peters), the depth, or diameter of the stomach in the axis of the abdomen, exceeds the length, or transverse diamcter: the cardiac end does not bulge out to the left of the gullet so mueh as in Rodentia; hut there is usually an expansion beyond and to the right of the pylorus, and the proximity of that origiee to the cardia leaves but a short tract answering to the 'lesser curvature' of the stomach, fig. 323, s. The form of
 this viscus in Solenodon, Amphisorex, Hydrosorex fodiens, and Cladobates, is very similar to that in Rhynchocyon: in all Insectivora the duodenum expands to much more than the diameter of the oesophagus. In our small native Slrews the shape of the stomach depends much upon the quantity it happens to hold, and the transverse extent prevails most in the empty state. In Sorex araneus the cardiac sac projeets moderately heyond the esophagus; in S. leucodon, Hydrosorex hermanni and Amphisorex tetragonurus, the cardiac sac assumes almost rodent proportions: in many Shrews the contracted pyloric part of the stomach is much prolonged.

In the Hedgehog the transverse length of the stomaeh prevails over the depth: the blind end to the left is less produced than in the ahove-named Shrews: the coats of the narrow pyloric end are thick. ${ }^{2}$

[^89]In the Mole the ahdominal asophagus is long and enters the stomach midway hetween the two ends: the cavity, when distended with the worms and gruhs devoured by this voracious hurrower, 'fills nearly half of the ahdomen.' In the Tenrecs (Centetes) the cardia and pylorus are further apart than in most Insectivora: the cardiac sac is less prominent ; the pyloric end is hent upon itself.

As a rule the intestinal canal is uniform in diameter, and devoid of cæcum in the present order: it is loosely suspended on one continued peritoneal fold from the heginning of the duodenum to the rectum. In the common Shrews, fig. 359, the intestine is ahout four times the length of the body; in the Hedgehog about six

324

Croctum and colon, Proboscidian Shrew. Laxiv'. times, in the Mole seven times, that length. The Tupaias and some of the snouted-shrew's are exceptions: in the former (Cladobates) the cæcum is simple, straight, ahout an inch in length, not wider than the major part of the colon; and but little wider than the ileum. Macroscelides has a long, slender, pedunculate cæcum. In Rhynchocyon, the cæcum, fig. $324, c$, is ahout 3 inches long, and is twice the width of the ileum, ib. i. The colon, of similar diameter with the crecum, forms a short double hend, r, r, returning upon itself, hefore it is continued on into the narrow portion ending in the rectum.
The lining membrane of the Mole's intestine is disposed, along part of the canal, in close-set longitudinal folds; hut is remarkable for its smoothness and ahsence of visible villi. The mucous membrane of the Hedgehog's intestine is beset with minute flat, conical villi, changing toward the end of the canal into a fine reticulate surface.
§ 328. Alimentary canal of Cheiroptera.-The Cheiroptera present three forms of stomach; one relating to vegetahle diet, another to the times of taking the food and to the quantity taken, a third to the ordinary capture of insects during flight. The latter relation, which prevails in the order, is associated with a form of

[^90]stomach, resembling that in the common Shrew. In fig. 325, the cavity has been inverted, showing the ruga and the glandular character of the gastric membrane at the pyloric end. The difference in the diameters of the œsophagus and duodenum are also shown. In the Noctule a small part of the right end of the stomach projects beyond the pylorus. In Plecotus communis the left end of the stomach bccomes somewhat attenuated and bent up. In the Vampires (Desmodus) the cardiac portion is produced into a long intestini-

Atomach inrerted of common Bat (Teepertilio murinus). form reservoir, ${ }^{1}$ in which the blood is stored up, that may have been sucked during a night's adventure, and transported for digestion in the place of repose. In the Pteropines the left end of the stomach, fig. 326 , is much produced, but in a far less degree, than in Desmodus. It is sometimes found, in the partially distended state, divided into two dilatations: the extreme one smooth; the other, nearer the cardia, showing ruga longitudinally disposed: the œsophagus in these frugivorous Bats is wide and cxpands near its termination. To the right of this expansion the stomach is long and uarrow, bent upon itself, and produced into a cæcal pouch bcyond the pylorus, which is cxtremely small. The intestinal canal is usually devoid of cecum; but the colon begins with one ahout a quarter of an inch in length, in R/inopmmer Hardwickii and Mryuloma spasma. The whole intcstine is barely thrice the length of the body in Vespertilio murinus: in a Pteropus it is

Aconiuch of Pterodus, xxvin. nearly geven times that length. The intestinal villi in some Bats arc close-sct foliaceous processes, and form extremely heautiful microscopic objects when injected. In Rhinolophus the lining membranc presents fine transversc folds.

The low position of the volant and terrestrial Insectivora, as of Rodents and Marsupials in the Mammalian series, is shown by the loose and simple mode of suspensiou of the intestinal canal.
§ 329. Alimentary canal of Quadrumana.-The Galeopitheci indicate their lemurine affinities by their long and large cecum. The cosophagns opens on the cardiac side of the middle of the

[^91]small curvature; but leaves a wcll-marked semi-oval pouch to the left: the pyloric end loses in calibre and gains iu thickness of its coats, the inner one projecting in wavy longitudinal folds: the pylorus is a small constriction. In a male Caleopithecus Temminckii, measuring from the apex of the nose to the root of the tail 1 foot 4 inches, the small intestines were 4 feet 4 inches, the cæcum 1 inch, the large intestines 7 feet 7 inches. ${ }^{1}$

In the Aye-aye the oesophagus has a course of about a third of an inch in tbe abdomen beforc terminating at the cardiac orifice. This is situated, as in most Lemurs, nearer the pylorus than the cardiac end. The stomach is of a full, subglobular form : the pyloric end projects about half an inch below and to the right of the pylorus. A narrow glistening tract of fine aponeurotic fibres runs parallel with, and a little below, the short curvature between the cardiac and pyloric orifices, and from this tract the fibres of the outer muscular layer radiate. A narrow but well-marked crescentic fold projects into the cavity from the lesser curvature, four lines to the right of the cardia, subsiding about an inch down the fore and hind walls: this fold appears even when the cavity is fully distended, and it marks out internally the division between the cardiac and pyloric compartments. The pylorus is a subcircular aperture, above which projects a short thick longitudinal prominence. The duodenum, after its usual curve, crosses the spine below the root of the mesentery, then turns up the left side to commence the three principal folds of the small intestine, on the border of the mesentery, by which, with the cæcum, tbey are freely suspeuded. A duplicature of peritoneum is continued from the end of the duodenum, and from the lower part of the beginning of the colon, to the first lumbar vertebra, attaching them tbereto. The colon, after a course of 3 or 4 inches, forms a long narrow fold, 5 inches in length, then passes to the left, above and behind the root of the mesentery, and descends along the left lumbar and hypogastric regions to form the rectum.

The small intestines are rather more than three times the length of the body: the crecum is about one-fifth that length; measuring 2 inches 7 lines: for the first inch it is 10 lines in diameter, but suddenly contracts to a diameter of 3 lines; terminating ratber obtusely, and rescmbling an appendix vermiformis; but this is not marked off by any valvular structure from the wider part of tbe cæcum, aud it is continued, as in the human foetus, directly from

[^92]the end of the wider part, or cxcum proper. The large intestines are about 1 foot 10 inches in length. The colon, moderately distended, is 1 inch 2 lines in diameter at its commencement, and gradually decreases in width. Beyond the first enlargements it is not sacculated, but is slightly puckered on a longitudinal band, which may be traced a few inches from the heginning of the gut, where two or three pouch-like protrusions appear on inflation. The ileo-colic aperture is slit-shaped, bounded by two low ridges, that next the cæcum being most produced. ${ }^{1}$

This type of cecum is repeated in Stenops javanicus with a longer and narrower 'vermiform' termination: ${ }^{2}$ in Stenops tardigradus

Cuebm of Galago Mololl, hat Blae.
this part is shorter: ${ }^{3}$ in Tarsius, ${ }^{4}$ Perodicticus, ${ }^{5}$ Otolicnus, ${ }^{6}$ and the Galagos, ${ }^{\text {, }}$ it is wanting, and a moderately long and wide ceecum terminates obtusely, without contracting: in Galayo calabariensis it is comparatively short $:^{8}$ in Galago moholi, with a more efficient form of molars for mastication, the crecum is more than twice the length in proportion to its calibre, and it is puckered hy a mesentcriole into five or six short folds, fig. 327. The cardiac part of the stomach is large in all

Stomacli of Gulapo Mohoft, nat, size. Lemurincs, fig. 328, a: but the pyloric part rarely protrudes to the right of the pylorus, below the beginning of the gut. The duodenum is rather shorter in true

[^93]Lemurs than in Galagos: the cecum was 7 inches long in a Lemur Mongoz; it was loosely suspended, as in other Lemurida.

In the small Platyrhines (Midas, Jacchus) the ©esophagus is continued a short way into the ahdomen, and the stomach resembles that in Lemurido: the duodenum hecomes free in passing to the left. The crecum is of moderate length, cylindrical, curved: two longitudinal hands are continued from it along the colon. In Jacchus vulgaris the small intestines are twice the length of the body, the large intestines once that length. The cardiac sac of the stomach is large in all Platyrhincs, hut the cardia and pylorus are less approximate in the larger kinds. In Ateles and Mycetes Cuvier notes a tendency to sacculation along the great curvature. The cæcum is 4 inches long and 1 inch broad in Cebus; in Ateles it is subconical, the hase heing next the colon. In Mycetes the cæcum is proportionally shorter, but retains the simple unsacculated character.

In Cercopithecus the oesophagus, with a short ahdominal course, opens into the stomach midway between the left and right ends:

329

Stomach, distended; Somnopithocus Enteltus. cxsxix'. in Macacus and Cynocephalus the left sac is relatively less: the chief modification is presented by the Doucs, or those tailed monkeys which have a fifth tuhercle on the last lower molar, and are without cheekpouches. In a Semnopithecus entellus which measured 1 foot 8 inches from the mooth to the vent, I found the stomach, fig. 329, 2 feet 7 inches along the greater curvature, and 1 foot along the lesser curvature. To the left of the cardia it forms a large and suh-hifid pouch: the middle and widest part of the stomach is puckered up into several large sacculi: the pyloric portion is long, narrow, curved and sacculated along the line of the greater curvature to within onethird of the distance from the pylorus, where it is simple and gradually contracts to that orifice: the vascularity and structure of the lining membrane of the third division indicates it as the chief
seat of true digestion; the wider sacculated divisions have mainly a preparatory and a receptacular function: a firm epithelium is not eontinued into them from the cesophagus: the greatest eircumference of the dilated stomach is 1 foot. The stonach of the Semnopithecus fascicularis is similarly complex but proportionally smaller: as are also those of Nasalis larvatus and Colobus ursinus; in which, as in the Semnopitheci, a narrow band of longitudinal fibres, continued from the left end along the greater carre, puckers up the tunies into the larger sacculi, a second band along the lesser curvature eontributing in a ininor degree to this eomplexity. ${ }^{1}$ Evidence of the accumulation and detention of vegetable food is afforded here, as in Ruminants, by occasional 'bezoar' eoncretions.

Caxeum. Cercopithecus sabarus. oxxic

The stomach resumes its simple form in tailless apes: iu which the left end is less prominent than in Macaci, and the lesser curvature is of greater extent; the pyloric division is longer, and the entire form less globular: in the Orang the pyloric division shows a rather abrupt bend. The lining membrane of the stomach when in a moderately distended state is devoid of ruga in all Apes; and the small intestines are without transverse folds of the mucous membrane. The excum in Catarhines is always shorter thau in Platyrhines, is usually wider and more or less saeculated. In some species of (erropitherns it is puckered up by four longitudinal bands, of which three are continued along the colon: in most the cxeum is more conical in shape than in Macrems, the apex being narrower and more prolonged, e.g. Cerc. Sabceus, fig. 330. In Hylobates, fig. 331, the vermiform appendage reappears; it is terminal, and in some species sbort; but is more

[^94]differentiated as such by its glandular tunie and marked commencement than in Lemuride: the appendix is terminal, but is long and eonvolute in the Orangs (Pithecus): in the Chimpanzees (Troglodytes) there is a more marked eonstriction between the appendix and the cexcum. The eolon is sacculated and moderately long in all Catarhines: it is loosely suspended by a broad mesocolon, and only in tailless apes does the crecum begin to adhere, through an ineomplete peritoneal investment, to the right hypogastrie region.
§ 330. Alimentary canal of Bimana.--The chief characters of the canal in this order are the termination of the gullet almost as

332

Stomach and inteating "caua of the adult Human subject. exyyur: soon as it has entered the abdomen; the more extensive and closer adhesion of parts of the alimentary canal, as the duodenum, cxcum, beginning and end of colon, to the abdominal walls, which relates to the erect posture; the more definite and finished character of the several parts of the canal; and the modification of the lining membrane of the small intestines, ealled ' valyulx conniventes,' for a more complete and efficient extraction of nutritious matter from the chyme.

The stomach presents a greater extent transversely to the abdomen than in Quadrumana, and the blind left end ('saecus crecus,' Haller) is less extended and .expanded than in Monkeys and Lemurs, the csopbagus opening more to the left, and leaving a more extensive ${ }^{\text {c }}$ lesser eurvature,' fig. 332, c, r. Anthropotomy distinguishes the ' eardiac orifice,' fig. 333, a, g; the ' cardiac pouch ' or 'blind sac,' ib. g, d; the 'lesser curvature,' ib. a, c, b; the 'greater curvature,' ib. g, d, f, c, h; the pyloric portion,' ib. e, b, b, c; and its orifice or 'pylorus,' ib. b, b. In a state of moderate distension the length of the
stomach averages from thirteen to fifteen inches; its widest diameter five inches; its capacity five pints. It extends almost transversely across the upper (in Man) part of the abdomen from the left toward the right side, the pylorus entering the region called 'right hypochondrium :' as the stomach becomes distended, it gently rotates the great ourvature forward. The outer or 'serous' coat is continued from the lesser curvature and contributes with the end of the gullet and beginning of the gut to suspend or attach the bag: from the curve d, f, c, the serous coat cxtends down to form the 'great omentum,' fig. 388 ; thus provision is made for the digestive cavity to encroaelinpon the interspace of the two aerous layers during

expansion. Tho muscular coat of the stomach is in three layers which, from the general course of the fibres, are termed 'longitudinal,' 'transverse,' and •oblique:' the latter or innermost lnycr, fig. 333, g, d, f, c, is partial: the other two are completc. The longitudinal layer, like that of the gullet, is the outermost; and the fibres radiate from the cardia, becoming thinucr as they divcrge, spreading and decussating with the other filres, and hardly traceable contiouously to the pylorus, save along tho lesser curvature. The transverse fibros, which lie iminediately bencath the longitudinal, form a thicker and more uniform stratum: in the inverted stomach, from which the nucous membrane has been dissected, in fig. 333, they are the innermost at the pylorie end, c, e, b : at the cardiac end they are lined by the layer of 'oblique' fibres. The transverse layer inereases in thickness to the pylorus, fig. 334, the circular filres or sphineter oceupying the valvular fold of the mucons membrane,
ib. p. This membrane is usually of a pale pink colour, deeper tinted at the pyloric than at the cardiac portion, and produced

334

Longithdimal sectiun of the ploris. cxlyili". into numcrous wrinkled folds, or 'rugæe,' which are not so soon effaced, under distension, as in the quadrumanous stomach. The 'basal' part of the membrane is areolar or cellular tissue, i connecting it to the muscular coat; it also supports the vesscls and nerves, forms the cylinders of the gastric tubules, and is covcred by a delicate epithelial layer of the columnar kind. The gastric tubules, fig. 337, are cylinders of the basal membrane, packed vertically side by side, and filled by cells: their inserted end, d, is closed: tbey expand slightly before reaching the free surface of the membrane, where their margins become continuous with each other, so as to form a series of low ridges, the height and width of which vary somewhat in different parts of the stomach. The length of thesc tubes is about $\frac{1}{25}$ th of an inch at the middle of the organ, almost double that length at the pyloric portion, and half that length at the cardiac region,-a difference causing the different thickness of the mucous membrane in these parts of the cavity. Their diameter is about $\overline{5} \frac{1}{5}$ th of an inch, and is a little increased in the pyloric ones: in some of these, blind processes are continued from the inserted end; as commonly seen in the Dog, fig. 349. Toward the outlet the tubule is occupied by 'columnar epithelial cells,' fig, 337, c :

835

Arteries of the stomach, as sceu by ralsing it cxbyirl'. the deeper portion is filled by oval nucleate cells, attaining in some cases $\frac{1}{8}$ th of an inch in diameter, ib. b. The tubules are connected together by a finely fibrous form of areolar tissue, in which their bliud cnds, or brancbes, are imbedded.

The principal arteries of the stomach, derived from the 'coliac axis,' are the ' arteria coronaria ventriculi,' fig. 335 , a, which courscs along the lesser curvature; the 'gastro-daodenalis,' d, which gives off the 'arteria pylorica,' g; the 'gastro-epiploica,' - dextra,' e, and 'sinistra,' i. The branches of all these arteries have a tortuous course and freely inosculate; their ramuli per-
forate the mnscular coat and form, with the vcins, an expanse of network, fig. 336, e, in the loose snbmucous arcolar tissue: the capillarics, ib. a, penetrate the gastro-inucous coat, their ultimate branches, of from $T_{5 \frac{1}{5} \overline{6}}^{6}$ th to $T_{8}^{-\frac{1}{8} 00}$ th of an inch in diam., ib. d, passing vertically along or between the walls of the gastric tubes to their outlets, where they form a fine superficial network, b : from this the

Capilarles of the gastrn-mucous menthmene. oxlvitis".

337

Gastric tubule, from the middle of the Human stomach; miggn. L40 diatr. oxbvilis.
veins commence, and return by the vertical canals, c, c, to the submucons network, e.

The product of the tubules, called 'gastric juicc,' is a limpid fluid of a pale straw colour, acidulated by hydrochloric acid, and also by lactic acid (unlcss this be a secondary result of analysis): its peculiar organic principle, called 'pepsin,' contains about two per cent. more nitrogen tham the ordinary proteine compounds. If dilute hydrochloric acid be added to a solution of pepsin in cold water, the liquil excrcises solvent powers over organic substances, cspecially aniunal oncs, and a kind of artificial gastric juice is thus produced. The natural gastric juice exercises a coagulative and alterative as well as solvent power upon the food, and 'digests' or converts it into clyyme.

The canal which receives the chyme, called 'small intestine,' extends from the pylorns, fig. 332, \mathbf{p}, to the caccum, \mathbf{c} e: it is
about 20 feet in length and $1 \frac{1}{4}$ inehes in diameter. ${ }^{1}$ Its beginning, fig. $335, f$, eurves outward and baekward to the under surface of the right lobe of the liver, and has an entire investment of peritoneum: the gut deseends along the inner border of the right kidney, where the posterior wall is left uneovered by the peritoneum, and is attaehed by cellular tissue to the subjaeent

338

Valvule conntventes.' Human small intestine. oxcymi". parts: it then erosses below the panereas, behind the stomaeh, to the left, having a partial covering of peritoneum, and only regains the entire serous eoat where it emerges to form the beginning of the next part of the small intestine. This is termed 'jejunum,' fig. 332 , J , from its usual emptiness, and the rest of the tube is "ileum,' ib. I: these convolutions are suspended upon the dupliea1 ure of peritoncum called • mesentery.' The muscular tunic of the intestine consists of an outer longitudinal and an inner transverse or eireular stratum; both layers being somewhat stronger in the duodenum. The mucous membrane begins, in the seeond portion of the duodenum, to be disposed in transverse folds called by the old Anthropotomists 'valvulæ eonniventes,' fig. 338, as tending to impede, while, at the

Section of Fiunall jejunum ; magn. 50 dain. oxlpili". same time, conniving at, the passage of the chyme; but, in truth, extending the surface to which the ehyme adheres in the proeess of elimination of the chyle: their direction at right angles to the course of peristalsis not only checks the passage but insures the admixture of the varions constituents of the ehyme. The alterative and absorbent surface of the small intestine is further augmented, as in most Mammals, by the minute filamentary processes which, giving the free surfaee a velvety character, are termed 'villi.' In the magnified seetion of the intestinal tunies, fig. $339, a$ are the villi, c the suhmucous arcolar tissue, e transverse fibres, f longitudinal fibres of the

The length of the body from the rertex to the vent, not to the heel, is that which should be taken for comparison of proportionate length of the intestines in Man with those of brutes recorded in the 'Talles' of xir, tome iv. pp. 182-208.
museular coat; in fig. 341 the serous coat is marked g. In the interspaces of the villi minute pores may be seen by the aid of the lens: they are the outlets of the 'intestinal tubules, figs. 339, 3+1, b. Like those of the stomach they are hollow cylinders, fig. 340 , elosed at the ends, e, wbich are buricd in tbe arcolo-

fibrous tissue: their length is about five times their width, which averages ${ }_{7}{ }^{\prime} 0^{\text {th }}$ th of an inch : their proper wall consists of nucleated columnar cells, a, b; their mouths d, open into the area of the gut: their contents are a clear fluid and minute granules. Each villus is covered by an epithelium of columnar cells inclosing a parenchyme, with traces of unstriped muscular fibre, the commeneement of the lacteal absorbents, and a rich supply of capillary vessels. From the analogy of the gastric tubules it may be concluded that the intestinal ones continue the solvent and alterative operations on the chyme. Other arrangements of seercting surface relate to the furnishing of lubrienting mucus for accessory offices: these are noted as the ' follicles.' They are cither solitary,' fig. 341, i, or in groups, termel 'agminate,' fig. 342 , and such patches appear to be bare of villi. The size and structure of the follicles are the same under both arrangements: they are considerably larger than the intestinal tubules, fig. 3+1, b; the follicle, h, expands as it sinks into the submucous tissue, d, and its broad base is usually applicd to the muscular cont, e. The follicles are filled with an albumino-nucous pulp. Fig. 342 gives a moderately magnified view of a patch of ' agminate follicles,' of which patches about a
score may be found in the tract of the small intestine, situated opposite the line of attachment of tbe mescntery, and most nunerous in the ileum, where the intestinal contents become less

342

Patel of agminate foliteles, magu, 5 dam, cxLyiti". dilute: rarely are any seen in the duodenum. Viewed with a higher power, as in fig. 343, tbe follieular orifice, a, is surrounded by a circle of pores of the 'intestinal tubules:' and in the interspaces of the clustered follicles project short obtuse conical villi, b, of so much smaller size than the ordinary ones as to makc'the patcb appear bare. The looped eapillaries of the follicle come off from vessels encircling their capsule.

The ' racemose glands,' fig. 343, c, are peculiar to tbe duodenum, and most numerous at its commencement where tbey form a circular layer just beyond the pylorus. Here each gland is about ${ }^{\frac{1}{1}} \frac{1}{8}$ th of an inch indiameter. The duct at the arcolo-fibrous base of the intestinal glands, fig. 344, a, divides and subdivides in the thick submucous tissue, and ultimately terminates, or receives the secretion of numerous subglobular or polyhedral follicles, averaging $\frac{1}{300}$ th of an inch in diameter: these answer to what arc termed tbe 'acini' in larger glands: the nature of their secretion has not been determined : it, probably, resembles the pancreatic from analogy of structure.

The ileum terminates in the side of the beginning of the large intestine leaving a short and wide sacculated - ceccum' from near the end of wbich is sent off a slender ${ }^{\text {cles }}$, Ilasul 12 diallic oxLTHM". 'vermiform appendage,' lig. 332, c c. The human crecum is fur ther characterised by its fixed position; having only a partial covering of peritoncum, which passing off from its fore part binds it down to the 'iliacus internus' muscle to which its non-scrous surface is connected by areolar tissue and fascia. The intestine, as it riscs from the cæcum, is called ' colon' or 'ascending colon,' ib. A c, and continues, as it passes the right kidney and •quadratus lumborum;' to be attached
thereto by a progressively deereasing brcadth of non-serous wall: the gut then resumes a complete serous coat, which passes off into the progressively widening duplicature of peritoneum, forming the ' mesocolon :' nearing the duodenum it arches across to the left, Tc, at the line between the ' umbilical' and ' cpigastric, regions of Anthropotomy: then, deseending ventrad of the left kidney and 'quadratus lumborum,'it becomes attached thereto by areolar tissue: it next forms the folds called 'sigmoid flexure;' ib. s F ; and, bending to the mid line, contracts and passes as the 'rectum,' r , to the vent. Save at this terminal portion, the longitudinal fibres of the large intestine are specially aggregated along three nearly

Raccmose alnad; Ifuman durdenum; magn. 40 dinin, CXBYHIf: equidistant tracts, one of which runs along the line of attachment of the inesocolon: these 'bauc's, are nearly one-half shorter than the entire gut, and consequently pucker it up into sacculi. They commence at the setting on of the vermiform appendage and diverge thercfrom to their positions on the crecum and colon : at the sigmoid flexure they begin to expand and form, with added fibres, a strong continuous longitudinal strattm upon the rectum. The circular fibres, uniformly thin and feeble upon the colon, are thickened round the rectum. The luman 'vermiform appendage,' fig. $345, y$, is commonly from 4 to 5 inches in length : its diameter is about $\frac{1}{3}$ of an inch : the follicular glands are so numerous as to constitute sometimes a contimuns layer. The ileum, ib. n, opens by a transverse slit into the inner or mesial "rewm nud lle meral vivic, eancur side of the crecum, \boldsymbol{c} : the opening bring defeuded by a pair
of semilunar valvular folds, of which the lower, f, is the "ileocæcal,' the upper, e, the 'ileo-colic' valve. A transverse constriction, d, usually marks the boundary between eacum and eolon. In the apes and all

Section of Human pelvis, showing course of rectam. cxivili". lower quadrumana the ileo-cæcal orifice and valve are eircular. The mucous membrane of the cæcum and colon is the seat of hoth intestinal tubules and follicles: the latter are chiefly present in that of the rectum, which is disposed in numerous folds. Although this gut appears straight in a front view, it follows, in Man, the curve of the pelvic cavity, through which it passes, as shown in the side view, fig. 346. The peritoneum is refleeted from its upper third, forming the 'reeto vesical 'pouch, ih. r, v; and the rest of the gut is attached by the ordinary areolar tissue to the surrounding part. Anthropotomy accordingly distinguishes, in the rectum, an upper or 'ohlique segment,' $s, r 1:$ a middle or 'arcuate segment,' $r 2$, and a 'terminal portion,' r 3: inclosed at the end hy the 'sphincter ani,' q, n.
§331. Alimentary canal of Carnivora. - In this group the digestive system is adapted, as a rule, exclusively for animal diet. The œsophagus is usually
 wide. The museular fibres are arranged in an external longitudinal and an internal transverse layer: but, in the Lion, a third layer of longitudinal fihres is applied to the inner side of the circular ones at the terminal part of the tuhe: they are separated from the circular fibres hy loose areolar tissue; and are closely attached to the lining memhrane of the oesophagus, which they, here, pucker up into numerous narrow alternating
transverse ruga. The stomach of the Lion, fig. 347, shows its common form in the order: it is chiefly elongated from right to left; but lies less transversely to the abdomen than in Man: the eardia, a, and pylorus, b, are wide apart: there is but a small extent of 'blind sac,' d, to the left of the cardia, and the pyloric end, e, b, is bent abruptly and closely upon the middle of the stomach. The longitudinal fibres of the muscular coat form a strong band along the lesser curvature: the rugx of the inner coat affeet a longitudinal coursc: the pyloric valve is less prominent than in man. The branches from the arteria coronaria ventriculi' pass some way down the front wall before penetrating the gastrie coats; not entering at the lesser curvature, as in Man. In all Felirle the pylorus is suspended by a duplicature of peritoneum, and the duodenum has the same loose attachment, to its termination, which becomes more closely ticd to the vertebral body. The mesentery again expands to suspend the rest of the small intestines. In a full grown Lion these measured 18 feet, with a uniform circumference of $2 \frac{1}{2}$ inches. The caecum was 2 inches long : it is simple and conical, fig. 348: the longth of the large intestines was 2 feet 10 inches; the colon soon gains a circumference of 4 inches. The muscular coat of the intestincs is thick throughout. The terminal orifice of the ilcum is circular, and situated on a valvular prominence of the same form. The apex of the crecum is a cluster of intestinal follicles.

The lining membrane of the small intestinc has fine and closeset villi in the Lion; they are longer and coarser in the Bear, and secm to be rather flattened than cylindrical. In contracted parts of the tube the lining membrane is thrown into longitudinal rnge: the arminate follicles form long longitudinal tracts in the Liou. In the lIywna the caccum is about twice the length of that in the lion, melatively.

In the Dog the gullet extends about two inches beyond the diaphragn before terminating in the stomach. The duodenum is loosely suspended by a mesentery, except at its transit aeross the vertebre to become jejnnum. The ceeum is relatively longer than in the IIyrena, and after a short course is folded or curved. The intestinal canal is longer and narrower in the Dog than in the Wolt, and the cacenm in the latter is curved from its origiu: it has three coils in the Fox.
'The rigia of the gastric membrane are numerous and well-
marked in the contracted stomach of the Dog. Microscopic in$\mathrm{v} \in$ stigation of the gastro-mucous coat has shown the tubules to be more commonly subdivided at their blind ends than in Man. In fig. 349, A is a tubule from the cardiac half, and B one from the pyloric portion, of a Dog's stomach : a, b the columnar epithe-

Gastric tubules, Dog's stomach, magr. 60 ©iam. EXLYLII". tbelium; c the sub-sacculate brauches of the pyloric tubules. The intestinal mucous membrane is finely villous. Fig. 350 shows a magnified view of

Willus of the flam of a Dog, magn. 40 dian. cXLYIII".
one of the villi, b, from which the columnar epithelium, a, c, is partly detached: d, e, are columnar cells, more magnified, showing the nucleus. Some of the Civet tribe have a stomach of a fuller

form. In the Suricate ($R y$ zena tetradactyla) the aesophagus, fig. 351, a, runs half an inch into the abdomen before ending in the stomach, about half an inch from the left end, ib, b. The epithelial lining of the gullet terminates abruptly, as in all Carnivora, at the cardiac orifice. The stomach is of a full oval slape, maintaining much
width to near the pyloric end, c, which is too short to be bent. The duodenum, d, d, makes a large curve, and is a loosc intestinc, with a meso-duodenum which becones shorter as it approaches the spine at the lower end of the curve: it is continued into the jejunum before crossing the spine. The biliary and pancreatic ducts, d, terminate about an inch from the pylorus. The length of the small intestines is 3 feet 2 inches, with a general circumference of one inch. The cæcum, fig. $352, c$, is an inch in length, rather contracted at the neck, with an obtuse blind end: this is oceupied by a patch of agminate follicles: a larger patch is at the end of the ileum, ib, σ : the ileo-colic orifice and valve, b, are circular. The colon, d, is continued almost straight to the vent, e : the length of the large intestine was but 6 inches.

The Musteline, Subursine and Ursine ('uruinor, are, as a rule, devoid of cæcum. In the Martin (Mustela martes) the intestinal canal is three and a half times the

Large intertine, Surtane, Lalf u4t, sles. length of the body. In the Otter the great and small curves of the stomach appear angular through the abruptness of the bend of the pyloric upon the cardiac part. The intestinal canal is relatively longer in Evhydra than in Lutra. In the Racoon the beginniug of the colon is indicated by a slight enlargement and circular fold of the lining membrane, not produced so as to form a valve. In a Benturong (Ictides) I found a cacal projection of half an inch in length at the beginning of a large intestine two feet in length: the small intestines were seven feet long; the length of the animal, exclusive of tail, was two feet. The stomach of Ailurus is subglobular, with terminal orifices; the narrow termination of the pyloric part has a thick mucons membranc. In the Bear there is a more marked blind sac at the left end; both muscular and mucous coats are thick. The villi of the small intestine are longer and coarser than in the Lion. In Ursida the entire intestines are about twelve times the length of the body; in Felide from three to four times; in Vi verrida from four to six times: the longest in this family being in the frugivorous Palm-cats (Paradoxurus.)

In the common Neal (Phoca vitulina, L.) the osophagus opens
widely into the left end of the stomach, leaving no blind sac there: the pyloric end is bent acutely on the rest of the cavity: the pylorus is very small and is defended ahove by a valvular prominence, giving the opening a crescentic form; the diameter of the pylorus is $\frac{1}{2}$ an inch, while that of the cardia is $1 \frac{1}{2}$ inch. The duodenum descends abruptly from the pylorus, and is connected hy a continuation of peritoneum with the pyloric end of the stomach. It is contracted at its origin, but soon dilates, and a sacculus is formed between its muscular and mucous coats for the reception of the biliary and pancreatio secretions, which afterwards are conducted through a narrow passage into the intestine. Having descended as far as the right kidney, the duodenum turns to the left in the usual manner, but has a complete investment of peritoneum through its whole oourse: at the left side of the abdomen it carries forwand this process of peritoneum, which forms the mesentery in the usual manner. The small intestines do not exceed $1 \frac{1}{2}$ inch in circumference, but their deficiency in this part of their dimension is compensated by their great length. The large intestines commence by a short round crecum, which, in two instances, was situated close to the pyloric end of the stomach: the greatest circumference of the colon was 4 inches. The Walrus has a similar cacum. The interior of the stomach is smooth and without rugæ; the intestines have the same character. In a Seal mcasuring 3 feet from the snout to the end of the hind flippers, the small intestines were 40 feet long, the large intestines 2 feet, with a cæcum of nearly one inch in length. The agminate glands run in long narrow strips.
§332. Alimentary cunal of Bruta.-After exceptional instances in the Marsupial (Macropus) and Quadrumanous (Semnopithecus) orders, we now begin to find complex conditions of the gastric organ to predominate; the main eharacteristic of which in the present order is, that, when a laminate epithelium covers the lining membrane so thickly as to be comparahle with cuticle, its most constant position is at the pyloric divisiou of the stomach. There are, however, gradations, and the Armadillos retain most of the preceding more simple conditions of the alimentary tube. In Dasypus peba' the œesophagus, after the course of an inch in the abdomen, terminates in a stomach of a subglobular form about $1 \frac{1}{2}$ inch from the left end: its epithelial lining ends at the cardia. The lining membrane of the stomach is villous, becoming smoother toward the pylorus; to that part a few longitudinal ruga at the
middle of the cavity eonverge. The muscular eoat is thin at the wide cardiae end, but attains a thiekness of 2 lines near the pylorus, and here on each side there is a tendinous spot externally. I semilunar ridge dcfines the lower part of the pylorus; from the upper part depends a protuberanee: this valvular structure resembles that in the Sical. Beyond the pylorus is a well-marked zone of racemose glands. In Dasypus 6-cinetus I found a greater proportion of the stomach to the left of the eardia: the other eharacters were repeated. The duodenum is dilated at its commencement and is suspended on a fold of peritonoum which hecomes narrower as tho gut descends: after erossing the spine the fold again expands to form the mesentery of the rest of the intestine. A fter a lengtl of from 12 to 18 feet the gut suddenly expands, and here, in D. peba, the small intestine seems to enter, forming a narrow eireular fold within, the larger intestine. The former are smooth internally, the latter shows a few longitudinal rugre. In Dasypus 6 -cinctus the large intestino expands into a pair of short, wide pouches, one on cach side the insertion of the ileum. The terminal orifice of the ileum is a slit with tumid margins on the middlo of the ridge between the two creca. The length of the intestinal canal is 10 feet. ${ }^{1}$

In Orycteropus the lining membrane of the ocsophagus is smooth: the tube terminatos at the middle of the lesser curvature of the stomach: the lining membranc of the large cardiae sac is disposed in coarso reticulato folds, which becomo longitudinal toward the pylorio end: this is pyriform, with a museular coat inereasing to a thickness of 8 lines: the mucous coat showing strong rugr, with an epithelium. The small intestines are of unwonted length in the present genus, ahout 37 fcet: the lining membrane is without folds, but is beset with long and fine villi, and shows five or six elliptic patches of agminate glands in the ileum. The ceccum is lotween 4 and 5 inches in length; the colon about 8 feet long, and about 4 inches in circumfercnce at the commencement. ${ }^{2}$

In the Pangolins (.1/min) the distinction between the cardiac and prluric portions of the stomnel is still more marked: the latter has acquired a greater aocession of muscular fihres, and their turlinons ecntres are cxternally more conspienous: the structure is made the more gizzard-like by its thick papilloso outicular lining. At the middle of the great eurvature is a mass of complex grlandular follicles, the ducts of which intereommunicate and terminate by a common orifice in the eavity of the stomach. ${ }^{3}$ The valvular protuberance above tho pylorns is large.

[^95]There is no cæcum. In the great Ant-eater (Myrmecophaga iubata) the stomach, fig. 353, presents a spherical form, of about 8 inches dianeter, with a smaller subglobular appendage, as it secms, ib. h, h, of about 3 inches diameter, intervening between the main cavity, c, c, and the intestine, d. The œesophagus, a,
 terminates near tbe middle of the upper surface of the main, or cardiac, portion. On the middle of both the anterior and posterior surfaces of the stomach is a sheet of tendon, which extends from the large to the small division of the organ, expanding upon both divisions, but acquiring upon the latter its greatest tbickness and whitest colour. The cardiac cavity, c, c, has a vascular secreting surface, the lining membrane being disposed in very numerous small wavy rugx: the larger and apparently more permanent folds converge toward the aperture, f, of the pyloric cavity. The cardiac orifice has the form of a narrow, sligbtly bent crescentic slit. It is situated about $3 \frac{1}{2}$ inches from the similarly shaped aperture of cormmunication between the cardiac and the pyloric cavities: but the margin of this latter aperture is indented, as it were, by the ends of the converging folds of the lining membrane, wbicb are continued iuto the pyloric cavity. The pyloric division is remarkable for the tbickness of its muscular tunic and the density of its epithelial lining, which convert it into a veritable gizzard. The muscular coat, ib. h, h, varies from 1 inch to $\frac{1}{2}$ an incb in thickness; at the middle of the cavity it is separated from the lining membrane by an unusual accumulation of the elastic submucous areolar tissue, i, which is most abundant in the upper wall of the cavity. A very small proportion only of food can enter at one time into this cavity, to be subjected to tbe triturating force of its parietes, operating, with the aid of swallowed particles of sand, in the comminution of the unmasticated or imperfectly masticated Termites. The area of the pyloric cavity, as exposed
by the vertical longitudinal section in fig. 352, appears a mere linear, slightly sinuous, tract, with a dilatation near the pylorus, due to the valvular protuberance of the upper wall projecting toward that aperture. But, when the pyloric cavity is bisected transversely, its area presents a crescentie figure, owing to the protuberance formed by the thicker muscular tunic, h, and tbe more abundant submucous elastic tissue, i, in the upper parietes. The lower longitudinal plice, which commence on the cardiac side of the intercommunicating aperture, give a longitudinally ridged eharacter to the inner surface of the cavity.

This character is changed near the pylorus for a reticular rugosity: the pylorus, when viewed from the duodenal side, presents a crescentic form, with tbe horns of the crescent directed upward. The lining membrane of the duodenum soon becomes smooth. This intestine is suspended on a broad fold of peritoneum, and is continued into the jejunum without being tied by a contraction of the mescntery to the vertebral bodies. The ileum dilates rapidly into the colon which eommences without a crecal projection. The greatest circumference of the duodenum is $2 \frac{1}{2}$ inches: the calibre of the intestinal canal gradually contracts to a circumference of 1 inch 9 lines at the jejunum, and recovers a circumference of 3 inches near the end of the ileum. The colon, within 3 incbes of the ileum, has a circumference of $9 \frac{1}{2}$ inches; and has decreased to a circumference of 6 inches, where it forms the rectum, about 9 inches from the anus.

The inner surface of the duodenum and jejunum is smooth, offering no villi to the naked eye. A few short and narrow longitudinal folds of the lining membrane, not parallel to but following onc another, begin to appear in the ileum: these are succeeded by one or two longer longitudinal folds, which are soon followed by one cxtending continuously throughout the rest of the ileum, along the side of the grut opposite the attachment of the mesentery: this fold is from 2 to 3 lines in breadth, is narrowest where the canal has been most distended, but is not obliterated by the utmest dilatation of the gut: it is a permanent single longitudinal production of the vascular lining membrane, and forms the chief charactcristic of the lower half of the small intestines in the Myrmerophofa jubata. In this part of the canal there are patches of sliandular agminatae from 1 to 2 inches long, and with intervals af ahout 1 foot. The transition of the ileum into the colon is effected by a rapid increase of diameter, viz. from l.inch to $2 \frac{1}{2}$ inches; by a slight thickening of the muscular coat ; by the appearance of a few transverse ridges or vert low
folds of the mucous membrane at the beginning of the colon, and not extending round the circumference of the gut: hut the boundary of the ileum is not defned hy any ileo-colic valve nor by any appreciable altcration in the vascularity or other structure of the mucous membrane in the two divisions of the intestinal canal. The inner surface of the colon is smooth, finely reticulate, with a few very narrow transverse folds, from 1 inch to half an inch apart, suhsiding for the most part before reaching the attached line of the gut; these folds are not obliterated when the canal is fully distended; they commence ahout 18 inches from the ileum, gradually become shorter and narrower, and disappear about a foot from the rectum. The longitudinal folds of the rectum extend to the margin of the anus, where a little dark pigment is developed under the epithelium. The soft epithelial-covered integument extends from the fore part of the anus to the vulva, which is distant about half an inch. The longitudinal muscular fasciculi of the rectum and rectal end of the cloaca are strongly marked, and are from one line to one line and a half in breadth. The specimen dissected ${ }^{1}$ measured 4 feet 7 inches from the snout to the vent: the intestinal canal was 34 feet in length, the large intestines heing hut 4 feet of that extent.

In the little two-toed Anteater the douhle cacum reappears: ${ }^{2}$ hut each is relatively rather longer than in the six-banded Armadillo.

354

Stomach of twortoed sloth, cxxu ${ }^{\prime \prime}$. In the two-toed Sloth (Cholopus) the œesophagus is lined by a dense epithelium disposed in longitudinal folds: it communicates with both the first and the second compartments of the cardiac division of the stomach, fig. 354. The first compartment is the largest, and is suhdivided into a left and right portion; the left, b, terminating helow in a short cacal appendage, c : its inner surface is minutely villous and vascular. The right compartment of the paunch is partially suhdivided into a larger left and a smaller right cavity, d, both of which are lined hy a continuation of the thick epithelium of the oesophagus, the inncr surface of

[^96]which is minutely wrinkled, but not villous: the thick epithelium terminates in a frec, minutely jagged horder. A groove or canal is continued from the cardia along the right side of the incomplete septum dividing the right compartment of the paunch, d, and curves downward to communicate by a moderately wide crescentic aperture with the second or middle division of the stomach, g. This division presents the ordinary form of a simple stomach, hut in a reversed position, i.e. witb the great curvature turned toward tbe diaphragm : it communicates with the right compartment of the cardiac division by the right extremity of the crescentic oesophageal aperture, and with the third or pyloric division of the stomach by the left extremity of the same canal: a fold formed by tbc lower cnd of the left wall of the cesophageal groove divides thesc two communications. In the character of its lining membrane the second division resembles the right compartment of the cardiac division, and should be regarded, physiologically, as a tbird subdivision of it. The third, or pyloric cavity, f, has also the form of the ordinary simple stomach, but with the great end next the pylorus; the smaller or left end swells out about half an inch to the left of the crescentic aperture by which both the second cavity and the cesophageal groove communicate with it. The thick epithelium is continued over the inner surface of the third cavity to tbe pylorns, increasing in thickness toward that part, and taking on a coarse villous character. The thick epithelium is absent from an oval patch at the great curvature, e, the surface of which is vascular and minutely villous; about half an inch to the left of the free epithelial horder of the mucous patch, there is the apex of a gland, lodged in a circular fossa, 1 lino in diameter, aud closely resembling one of the 'fossulate papille' of the tongue.

The leading cliaracter of the stomach in Bruta is one tending to compensate for the poor masticating machinery in the mouth, indicated hy Cuvier's name of the order. It is, of course, least conspicuous in the toothed families: but even in these the mnsculo-tendinous structures at the pyloric portion, and the thick epithelium continued over the inner surface of that part in the Plyllophagous species, significantly indicate a community of type under the mask of the most complex modifications of the digestive cavity. The great expanse and subdivision hy broad and permanent folds of the cardiac cavity, in fig. 354 , simulates the ruminant stomach: but the position of the vasculo-villous part of the lining nembrane is similar to that of the more special glandular
part in the Manis. ${ }^{1}$ In all Sloths the duodenum is loosely suspended, and is continued without constriction of mesentery into the rest of the small intestines, which is disposed in many short convolutions, and enters a short and straight colon, without a cæcum. The anus is not distinct from the vulva.
§333. Alimentary canal of Cetacea.-The first peculiarity to he noted in this order is the small area of the gullet in the largest

Etomach, liver, and splecnf, of the Porpoise. cxary". (From a drawing by R. O. the prep, dry, is in Mus. Coll. Clifr) species, especially in the great Whale-hone Whale (Balana mysticetus) : its lining membrane is here disposed in longitudinal folds whicl close the area of the tuhe in the contracted statc: they are coated hy a thick irregularly rugous epithelium, and are connected with the strong muscular coat hy a deep layer of elastic cellular substance. The stomach is complex, divided into several cavities, in all true Cetacea. In the Porpoise (Phocena communis), fig. 355 , the first cavity is continued in the same line with the œesophagus, having the same structure, and not heing divided from it by any sensihle constriction; its commencement is indicated hy the orifice leading into the second. stomach, beyond which orifice it is continued in the form of a dilated ovate cavity, ih. a, a. It is lined with a cuticle, or thick laminated epithelium, and its inner surface is

[^97]beset with small rugæ. A number of large irregular projections surround the aperture leading to the second cavity, and are ealculated to prevent the passage therein of any substances save sueh as are of very small size. Notwithstanding the nature of the lining membrane the digestive processes are considerably advanced in the first cavity, which does not act simply as a reservoir. It is probable that the secretion of the second stomach regurgitates into the first and assists in producing the dissolution of the fishes, the remains of which are usually found in it. The thick cpithelial lining terminates abruptly at the small orifiee leading into the second stomach, ib. b. The interior of this eavity presents a series of close-set longitudinal wavy rugæ, laterally indented into one another. The internal layer is thick, and mainly consists of unusually long gastric tubes perpendicular to the two membranes which enclose them. The membrane next the cavity of the stomach is smooth; the one external to the fibres is a vascular and cellular tumic, and is invested by the layer of muscular fibres, continued from the preccding cavity. The communication with the third stomach is near the lower end of cavity, b. The third compartment is a small round vascular eavity, into whieh the second opens obliquely: it is lined by a smooth and simple villous tunic: it is not visible exteriorly, and docs not exceed an inch in length in the Porpoise, but in the Hyperoödon is about 5 inches long. The fourth cavity, ib. c, c, is long and narrow, and passes in a serpentine course almost like an intestinc; the internal surface is smooth and even, but villous. It opens on the right side into the duodenum, ib. d, which is much dilated. The pylorus is a smaller opening than that between the third and fourth cavities. ${ }^{1}$

In Balanoptera the œsophagus enters obliquely at the back part a little beyond the upper end of the first eavity : the second cavity is larger and longer, in proportion to the first, than in Phocana: the ruga are longitudinal, very deep, and here and there united by cross bands. The third cavity is very small, and, as in the Porpoise, appears only to be a passage between the second and the fourth. The latter is more definitely divided into two successive ravities.

The duodenum eonmences in all Cetreea, by so considerable a dilatation that it has been reckoned among the divisions of the complex stomach. In the Porpoise it soon contraets to the

[^98]ordinary diameter of the small intestines - about 1 inch: these are continued for between 40 and 50 feet to the vent. Broad and well-marked longitudinal folds of the lining membrane extend along the major part of this course : and the same character obtains in other Delphinida. In Balcenoptera the longitudinal folds are wavy, run into each other, and are connected by smaller oblique or transverse folds: the submucous areolar tissue is very loose and abundant. In Hyperoödon the complexity is carried out to such a degree as to occasion a sacculated structure of the mucous coat through nearly the whole tract of the intestinal canal. The orifices of the larger pouches are directed vent-ward: their cavity is divided into smaller cells. They begin gradually in the duodenum near its last abrupt bend, and subside near the anus.

In Balcenoptera the ileum opens in a valvular way into a comparatively short colon, leaving a cæcum of about 7 inches in length, and of a simple conical form: in the specimen 17 feet long, of Bal. rostrata, dissected by Hunter, he records the length of the small intestine at $28 \frac{1}{2}$ yards, of the large intestine $2 \frac{3}{4}$ yards; ${ }^{1}$ and notes that he ' never found air in the intestines of this tribe.' ${ }^{2}$

The complicated stomach and long intestinal canal of such carnivorous Cetacea as the Grampus have other relations than to the nature of the food: they are necessitated in the present order by the amount of nutriment which must be had from it. In no other carnivorous mammals is so great a quantity of blood and fat to be ohtained from the raw alimentary matcrial: in none are such active and extensive molecular changes concerned in the production and maintenance, under adverse external conditions, of so high a temperature of the body. The digestive system and processes are therefore perfected in these warm-blooded marine airbreathers to meet the contingencies of their aquatic life.
§334. Alimentary canal of Sirenia.-In these more slothful, tropical, or sub-tropical marine mammals, although the food is of a low vegetable kind, the digestive and assimilative tract differs from that of the carnivorous Cetaceans rather hy a minor than a major degree of complexity. The stomach, it is true, shows appended sacculi, special glands, and a suhdivision of the general cavity, not only through constriction, but by a difference of structure in the lining membrane. It is of considerable length, and nearly equally divided into a cardiac and pyloric portion. In the Manatee the oesophagus terminates at the middle of the cardiac por-
tion, the left end of which is produced into an elongate ohtuse glandular pouch, eommunicating with the gastric cavity by an oblique slit serving for the passage of the secretion. A fold of the lining membrane continued from the right of the cardia partially subdivides the cardiac chamber. A pair of ohlong, slightly bent, obtuscly terminated, suhpedunculate pouches open near each otber into the narrow heginning of the pyloric cavity, which, after a moderate expansion, gradually contracts to the pylorus. ${ }^{1}$

In the Dugong the eesophagus, fig. 356, f, terminates nearer the left end of the cardiac portion, from the cxtremity of whicb

Btomath of the Dugong. xxyilt.
the glandular pouch, ib. e, projects, but to a less extent and in a more conical form than in the Manatec: its gastric end or hase projects into the stomach as a low circular protuberance with an oblique crescentic orifice, which leads to a flattened winding sinus, formed by a broad membrane spirally disposed in ahout cight or ten turns, having both surfaces covered with the orifices of follicles; and their interspaces filled by the cream-like secretion. ${ }^{2}$ The muscular cont covering the spiral gland is 2 lines thick: but it quickly increases, as it spreads over the cardiac cavity, ib. a, to a thickncss of 8 lines, agrain becoming thinner near the pyloric portion. In order to defend the cardiac orifice against

[^99]the pressure of the contents of the stomach, when acted upon by the powerful muscular coat, the oesophagus enters in a valvular manner, and is surrounded at its termination by a great accession of muscular fibres, forming a coat of an inch or more in thickness: the outermost of these fibres run longitudinally; the middle ones decussate each other obliquely; the innermost are circular and form a sphincter round the cardia. The diameter of the canal so surrounded is but 3 lines and its inner membrane is gathered into irregular transverse ruga. That of the cardiac compartment is puckered up around the cardia, whence a few small irregular ruga extend along the lesser curvature and about the constriction leading to the pyloric compartment: over the rest of the surface the membrane was not folded and was finely reticulatc. At the constriction, ib. c, there is an accession of circular muscular fibres and a valyular production of the inner membrane about 3 lines broad. Immediately beyond this circular fold are the orifices of the two cacal appendages, ib, d, d : they arc relatively narrower than in the Manatee: their lining membrane is minutely rugous: there were comminuted fuci in both; their muscular coat is $1 \frac{1}{2}$ lines thick: they are, in some Dugongs, of unequal length. The pyloric stomach, ib. b, is long and narrow, and cxtends a foot beyond the creal appendages before terminating in the pylorus, ib. g : the ianer membrane presented a few rugæ: the cavity is bent upon itself, and the terminal part, g, is intcstiniform, but with thick walls. The small intestines, iu a balf-grown Dugong, presented a length of 27 feet and a uniform diameter of 1 inch: they have a similar uniformity in the Manatee. I_{n} the Dugong the mucous membrane, bcyond the pylorus, is for a few inches slightly rugous, and then becomes disposed in transverse wavy folds: at 5 inches from the pylorus the duodenum receives the biliary and pancreatic secretions on a mammillary eminence. Beyond this part the transverse rugre are crossed by longitudinal ones, and the surface becomes sub-reticulate: this disposition extends along about 6 feet of the gut, when the transverse disposition subsides, and the longitudinal folding prevails throughout the rest of the small intestine. The muscular coat is $2 \frac{1}{2}$ lines thick, the external longitudinal layer being about half a line. The orifices of intestiual follicles are arranged in a zig-zag line, thus . upon the mucous surface along the side of the intestine next the mesentcry, all the way to the cæcum, fig. 357 . Where the ileum, ib. a, enters that cavity it is surrounded by a sphincter as thick as that at the cardia. The crecum is conical ; in my half-grown
suhject it was 6 inches long, with a hasal diameter of 4 inches. The muscular coat rapidly increases toward the apex to a thickness of one inch: the inner surface is smooth, its capacity trifling as compared with the area of the rest of the large intestine, to which it may be said to act as a kind of heart, giving a first powerful impulse to the long column of vegetable 'magma' usually distending the colon. There is no constriction between this gut, c, and the cæcum, b. The parietes of the colon are thinner than those of the small intestine, the inner membrane is gencrally smooth. At the wider terminal part of the colon there are a few irregular folds: for about an inch within the anus it is of a dark lcaden colour, the pigmentum being continued so far bencath the rectal

Cacum of Dugogg. xxysti. epithclium.

The cecum of the Manatee is bifid: and the colon at its commeneement is sub-sacculate.
§ 335. Alimentary canal of Proboscidia. - In the EIcphant the stomach presents a simple exterior, but is longer than usual, with the cardiae sac much produced and conical : the lining inemhrane of this part is produced into twelve or fourtcen broad transverse folds which 'do not go quite round.' ${ }^{\text {I }}$ The duodenum is at first looscly suspended and convolute, as in some rodents: it is more closely attached at its termination. The mncous coat of the jejunum is thrown into sınall irregular folds, both transverse and longitudinal. There are oblong patches of agminate follicles. The termination of the ileum projects as a conical valve into the crecum. The longitudinal laycr of muscular fibres is continued directly from the ileum upon the cæcum: but the circular layer accompanies the valvular production of the mucous membrane, and is there thicker than on the free gut. The large caccum is saceulated on three lougitudinal bands, which are continued some way along the colon. In a young Indian Elephant, about 7 feet high at the sloulder, tbe following were the dimensions of the intestinal canal:-

Length of the small intestines	in.	in.
Circumference of ditto	2	0
Length of cereum	1	6
Cireumference of cecum	5	0
Circumference of colon	6	0
Length of colon and reeturn together	20	0
Total length of intestinal canal, exclusive of the cecum	58	6

§ 336. Alimentary canal of Perissodactyla. - In all this order the stomach lias the ordinary simple outward form; the cacum and large intestine are capacious and sacculate. In the Tapir ${ }^{1}$ the oesophagus ends about one third from the left end of the stomach: its thick epithelium is continued for the extent of 3 inches to the left of the cardia, and for that of 7 inches to the right, toward the pylorus: the rest of the stomach has a compact villous surface with a few narrow well-defined ruge: the gastro-mucous membrane increases in thickness, through lengthening of the gastric tubules, as it nears the pylorus. The stomach of the Sumatran Tapir presents a similar disposition and proportion of the cuticular lining. The pyloric part of the stomach shows a tendinous lustre on each side. In one subject the length of the stomach in a right line, was 1 foot 8 inches. In the duodenum of the American Tapir, the mucous coat is raised into transverse folds, along an extent of gut of about 5 inches: in the rest of the small intestines it is smooth and even. In the Sumatran species the valvulx conniventes are continued along a greater extent of the beginning of the small intestine, and reappear toward the crecum. The length of this carity is 1 foot, and its greatest breadth the same: it is honeycomhed internally, and its lining membrane developes short obtuse processes. The
 length of the small intestines in the Sumatran Tapir is 69 feet: in the American species 45 feet: the length of the large intestines in the Sumatran Tapir is 20 feet, but in the American kind only 10 feet. The comparative shortness of the intestinal canal in the American Tapir is a specific difference not explicable on any ohserved or knowu difference of food or habits.
In all the Equidoe the stomach is simple, differing from that in Man by the pyloric part, fig. 358 , d, being lcss contracted and

[^100]produced beyond the cardiac part : and this distinction is maintained by more important characters of internal structure. The cesophagus, b, is inscrted at an acute angle into tbe smaller curvature, which rather resembles a dcep cleft.' The cardiac cul-desac, c, is very capacious, and is lined throughout internally with a thick cuticular layer continuous with the lining of the osophagus, and extends toward the pylorus as far as the middle of the

Colan of the Mare in detu. exxin'.
cavity, where it terminates abruptly by a prominent indented elge : the interior of the pyloric half of the viscus, a, d, presents the usual villous mucous surfaec. The muscular coat of the stomach consists of several superimposed layers of fibres that cross cach other in different directions, some of them being appa-

[^101]rently derivations from the muscular bands of the ocsophagus. ${ }^{1}$ The alimentary canal is short in comparison with that of the Ruminants; but this want of length, together with the simplicity of the stomach, is compensated by the enormous capacity of the large intestine, which seems of itself to oceupy the whole of the abdominal cavity, fig. 359. ${ }^{2}$

Commencing from the pylorus, the duodenum, fig. $358, f$, is considerably dilated; but its diameter soon contracts, and the rest of the tract of the small intestines is of pretty equable dimensions throughout, or if it presents constrictions here and there, they disappear when the gut is distended. The ilcum, fig. 360 , d, terminates in a cæcum of enormous bulk, ib. a, b, c, e, f, which is separated from

360

Cecum of the Horse cxxir. the commencement of the colon by a deep constriction, g : the cæcum near its termination contracts to an obtuse end, \bar{b}, which is usually turned toward the diaphragm. It has four longitudinal bands. The colon itself is throughout its entire extent proportionately voluminous: commencing in the right flank, its ample folds, fig. 359, a, b, mount upward as far as the diaphragm, whence they descend to the left iliac region, where, becoming gradually contracted, the great gut terminates in the rectum. The ascending portion of the colon, a, b, is separated from the descending part, c, d, by a constriction; and the latter forms a third remarkable dilatation before it ends in the rectum. The whole colon is puckered up into huge sacculi by three longitudinal muscular bands, which toward the end of the colon are reduced to two; and these expand and coalesce at the beginning of the rectum, of which they form the strong outer muscular laycr. The small intestines are about 56 feet in length: the crecum is $2 \frac{1}{2}$ feet in length and about 2 feet in circumference. The colon maintains the same circumference to near its termination, save that, about a yard from the cæcum, it becomes much dilated: its length is 21 feet.

[^102]In dissecting the Rhinoceros ${ }^{1}$ I was struck by the general resemblance of the abdominal anatomy to that in the Horse. The epiploön was not observable when that cavity was exposed, the viscera which presented themselves being in immediate contaet with the sustaining parietes. A single but enormous fold of the colon, not less than 2 feet in breadth, formed more than one half of the exposed surface of the abdominal viscera: it passed obliquely across the middle of the cavity, from the right hypochondriac to the left hypogastric or iliac region; immediately below this was a smaller fold of colon running parallel with the preceding; below this was a second fold; and, occupying the right iliac region, a part of the smooth parietes of the cexcum appeared. The colon was not displaced without considerable difficulty, owing to the weight of its contents, and the strength of the duplicatures of the peritoneum attaching it to the spine and contiguous parts. Behind and above the great oblique folds of colon lay a short, thin and corrugated epiploön, devoid of fat; and behind and below them were several coils of the small intestines. The length of the great fold of the colon taken in a straight line as it lay first exposed was 6 feet 6 inches: some idea of its capacity may be formed from the fact that the portiou of the fold next the crecum could easily contain a man, with ample room for him to turn about in it.

The cesophagus extends about 6 inches into the abdomen, and terminates at the cardiac orifice about 1 foot 5 inches from the left extremity of the stomach. This obtuse sac expands to the cardiac orifice, opposite to which the stomach, as in the Horse, presents its greatest circumference ; it gradually contracts to near the pylorus, on the cardiac side of which the stomach shows its smallest circumference: it then expands into a blind end, of a hemispheric form, beyond the pylorus. The length of the stomach in a straight line was, in the male, 4 feet; its diameter from the cardia to the opposite part of the great curvature was 1 foot 10 inches. Thic small curvaturc between the cardia and pylorus was 1 foot 9 inches. There is a glistening aponeurotic shcet upon the anterior and posterior surfaces of the contracted pyloric end of the stomach. A shect of white thick quithelium, continued from the cesophagns, spreads from the cardia over the inner surfacc of the cardiac portion of the stomach, about 1 foot 4 inches along the lesser curvature. This epithelial laycr is 1 line thick, smooth, or with very finc ruga on
its inner surface, and terminates by a well-defined border, near which it is perforated by numerous orifices of mucous follicles. The rest of the inner surface of tbe stomach presents the usual vascular structure, with the minute orifices of gastric tubules. There is no crescentic fold or valve at the cardia, as in the horse: nor is there any valvular protuberance on the gastric side of the pylorus, as in the cow and most ruminants: the thickened rim of the pylorus is slightly produced into the duodenum.

The outer layer of tbe muscular tunic is one-fourth the thickness of the inner layer, and becomes thinner over the pyloric end of the stomach. The areolo-vascular tunic begins to increase in thickness near the termination of the thick cpithelium in relation to the lodgment of the gastric tubules.

	Rhinoceros indicus.	
	Female.	Male.
The length of the small intestines was	50 feet.	65 feet.
The circumference of the ducdenum	8 inches.	10 inches.
The circumference of jejunum	6 inches.	8 inches.
The circumference of ileum	7 inches.	9 inches.

Tbe lining membrane of the duodenum, at the beginning of that gut, is puckered up into small irregular rugæ: flattened triangular processes begin to make their appearance about 6 inches from the pylorus; in the jejunum three or four of these processes are often supported on a common base; as they approach the ileum they begin to lose breadth, and gain in length, until they assume the appearance, near the end of the ileum, of vermiform processes, like tags of worsted, from two-thirds of an inch to an inch in length. Intestinal follicles are scattered here and there; a conspicuous reticular agminate patcb was situated close to the end of the ileum. The small intestines bave nearly the same disposition as in tbe Horse ; they are suspended by a sbort mescntery, in which the anastomosing arteries form only one series of arches. The mucous membrane of the ileum projects in the form of a circular fold within the cecum; but it seems inefficient as a valve for preventing regurgitation of at least fluid matters from the large intestincs. The length of the cxcum from this orifice to its blind extremity in the male Rhinoceros was 3 feet, and its greatest circumference was $4 \frac{1}{2}$ feet. In the fomale Rhinoceros the length of the croum was 2 feet; its circumference 2 feet 6 inches; tbese proportions to the colon and the rest of the intestinal canal being rather less than in the Horse. The anterior surface of the crecum is traversed longitudinally by a fibrous band, 4 inches broad, upon which it is slightly sacculated : a second band appears, nearer the colon. Its
lining membrane is puckered up into innumerable irregular small transverse rugæ, which appear, however, to be but temporary foldings of the mucous membrane, and are easily obliterated when this is stretched. The colon for tbe first 4 feet of its extent is puckered up upon three longitudinal bands into sacculi, cach about 5 inches long: it is here suddenly bent upon itself, forming the long and large fold, the two parts of which are very closely connected to each other; and here it dilates into the very wide portion which forms the most prominent objeet on laying open the abdomen; the beginning of this dilatation is also closely adherent by its posterior surface to the opposite surface of the beginning of the crecum. The circumference of this part of the colon (which, if its capacity was not due to accidental accumulation of alimentary matter, might be regarded as representing a second crecum or reservoir) is 5 feet: beyond this fold the colon becomes gradually narrower, its smallest circumference being 20 inches, where it passes in to the rectum, which forms several short convolutions before its termination.

	Rhinoceros indicus.	
	Fnale.	
The entire length of the colon was	19 feet.	25 feet.
The ontise length of the rectum	3 feet.	5 feet.

The total length of the intcstinal canal, including the crecum, was in the female 73 feet; in the male 96 feet, or eight times the length of the entirc animal. The circumference of the rectum was 10 inches in the female, and 16 inches in the male; but it widens toward the anus. The masses in which the fæces are discharged from the immense receptacles formed by the large intestine, are greater than in the Elephant, and are softer and more amorphous. The longitudinal muscular fibres of the rectum are developed into powerful fasciculi. The contrast betwcen these fibres and those of the external sphincter is well marked, the latter presenting the striated character of voluntary muscles.

In the little Hyrax, as in the Rhinoceros, the chief feature of the abdominal viscera is due to what Pallas justly calls 'insignis crassorum intestinorum apparatus:' but there are complexities of the large gut superadded to those in other Perissodactyles. The osophagus has a course of 2 inches in the abdomen: it teruninates in the same relative position to the stomach as in the Rhincerns. Two-thirds of the cavity are lined by a thick, white, wriukled epithelina: the stomach is bent upon itself wbere this lining censcs.

The duodenum is not so loosely connected with the back part
of the abdomen as in most Rodentia; but it has througbout its course an entire investment of peritoneum. It descends in front of the right kidncy for 4 inehes, and then suddenly returns upon itself, passing behind the ascending colon, and runs along the middle of the spine as higb as the stomaeh, where it becomes a loose intestine, or jejunum. The small intestines are about 8 lines in diameter, and present, internally, a series of about twelve small pouches, distant from 3 to 5 inehes from eaeh other, about 3 lines in diameter and the same in depth, their orifices pointing toward the crecum. These pouehes make no projection externally, being situated wholly beneath the muscular coat. They consist of duplicatures of the mucous membrane, and are surrounded by the agminate follicles, which open into them by numerous orifices. Their use would appear to be to prevent the secretion of these glands being mixed as soon as formed with the chyme, but, by retaining it, to alter its qualities in some degree. ${ }^{\text { }}$ The rest of the inner surface of the small intestines is beset with long and fine villi. For the extent of about a foot from the commencement of the small intestines I found that many of these villi terminated in a black point. The length of the small intestines is 4 feet 6 inches.

The cæcum is saceulated, and in form like that of the Tapir, its magnitude arising more from its breadth than its lengtb. Its length from the orifice of the ileum is 3 incbes, its circumference 8 inches. The colon gradually diminishes as it leaves the cæeum, 4 inches from which its diameter is nearly that of the small intestines: the dilated part of the colon is bent in a sigmoid form, and the remainder is convoluted on a broad mesocolon, and at a distance of 2 feet from the dilated part (when umravelled) terminates between two conical crea in a second dilated intestine. Each of these lower creca is an inch and a half in diameter at its base, and gradually contracts till it terminates in a glandular vermiform appendage about half an inch long, and 2 lines in diameter. The intestine contimued from these is 3 inches in diameter, but also gradually contracts, so that at a distance of 6 inches it also becomes as small as the small intestines. The whole length of this intestine, or second colon, is 2 feet 6 inches; making the length of the whole intestinal canal, exclusive of the creca, 9 feet 4 inches, or about six times the length of the animal. Notwithstanding the complexity of the intestinal canal, it is suspended from a single continuous duplicature of the peritoneum advancing from the

$$
\text { CLII". p. } 203 .
$$

bodies of the vertcbra and extending from the beginning of the jcjunum to the rectum.
§ 337. Alimentary canal of Artiodactyla.-In this order the stomach is the usual seat of complication; the cæcum is simple. The Hogs (Sus) present the least complex form of stomach. The epithelium continued from the osophagus into the cardiac cad is unusually dense: and the part to the left of the gullet is more distinet and pouch-like than in the ordinary simple stomachs; the remaining and larger portion of the stomach has its soft and vascular lining membrane thrown into many ruga. "Where the oosophagus enters there is a doubling of the stomach on the left which would seem as if designed to conduct the food toward the pylorus: and there is another doubling of the great end, at that surface where the oesophagus enters, as it were, dividing the great end from the rest of the stomach.' 1 In short, one may plainly discern the initial steps in the modifications for affecting the course of the food which culminate in the ruminants. On the left side of the cardia the hard epithelium extends as far as a ridge which partially divides the general cavity of the stomach from the small blind pouch at that end: on the right side the cuticle terminates at the ridge formed by the angle between the cardiac and pyloric portions of the cavity: the muscular tunic of the latter portion is very thick. The pylorus is defended by an oval protuberance.

In the Babyroussa the cardiac portion to the left of the gullet is much more extensive than in the common Hog: and derelops a more distinct blind pouch, curved and of smaller calibre than the rest of the cardiac end. The epithelium of the margin of the cardiac orifice gives off small processes, and these also appear as tubercles in the cardiac pouch. The pyloric part of the stomach is marked by the thickness of its walls: its mucous surface is reticulate. In the Peccary (Dicotyles torquatus) the stomach is divided into threc compartments by the iuward production of two broad ridges, which are situated, one to the left, and the other to the right of the cardiae orifice, like the narrower ones in the stomach of the Hog. The cardiac division of the stomach is greatly extended in the transverse direction, and terminates in two moderatcly elongated blind pouches. This division communicates with the middle compartmont by a broad circular aperturc. The osophagus opens into the middle compartment, which is of less extent than the preceding, and communicates by cexxxyr. rol. ii, p. 120.
a smaller transverse aperture with the pyloric division. The whole of the middle compartment is lined with laminate epithelium continued from the osophagus, and this is extended a short way into both the cardiae and pyloric divisions. But the greater part of the cardiac cavity, with the two cul-de-sacs, being lined hy a vascular and villous membrane, proves that it has a greater share in the digestive processes than as a mere preparatory receptacle. Both muscnlar and gastro-mucous coats of the pyloric cavity are remarkably thick; and the pyloric valvular protuberance is well defined.

Daubenton ${ }^{1}$ has left the following record of the structure of the stomach in a fætal Hippopotamus. Externally it appeared to be composed of three parts; the principal portion, extending from the cardiae extremity to the pylorus, was much elongated, resembling more a portion of intestine than an ordinary gastric receptacle. Besides this central part, extending from the cosophagus to the pyloric valve, were two long appendages like two cecums, one arising on the right side of the cardia and running along the exterior of the stomach throughout almost its entirc length, and then folding backward, the other and shorter cul-desac issuing from the posterior aspect of the cardiac extremity of the stomach and projecting toward the right side. The interior of this stomach is so divided by septa, that food coming into this viscus through the œesophagus may pass by different channels, either into the central portion, which seems properly entitled to the name of stomach, or into either of the great diverticula appended to it. The inferior walls of the central stomach have nine or ton cavities in them, something like those of the Camel and Dromedary. The lining membrane both of the stomach and diverticula is granular and wrinkled except near the pylorus, where the parietes become smooth and folded into numerous plice somewhat resembling those of the third stomach of a ruminant.

Professor Vrolik ${ }^{2}$ received from the Cape of Good Hope drawings of the viscera of a half-grown Hippopotamus, and states that they showed two pouches on each sidc of the cardia, which communicate with a large pouch the cavity of which is divided transversely by numerous folds, like valves: between that large cavity and the pylorus there is a narrow appendage which opens at the pylorus: this latter appendage is not indicated in Daubenton's figures or description. Thus, the stomach resembles that

$$
\text { cxxin'. tom. xii, p. } 55, \text { pl. ir. "cLiv". p. } 86 .
$$

of the Peccary, with the exception of the greater length and transverse ridges in the middle portion of the cavity. I long ago expected the opportunity of testing and supplementing these descriptions by dissection of the stomach of the full-grown animal : but the Hippopotamus received at the Zoological Gardens in 1850 still lives, in good health (1867), to the credit of that noble and well-administered estahlishment.

The stomach of ruminant Artiodactyles is divided into cavities so distinct in boundary, structure, and function, that they have received special names. The first, called 'rumen,' or 'paunch," is the largest, forming a capacious reservoir; its inner surface is commonly villous: that of the second cavity, called 'reticulum,' ${ }^{2}$ is divided into small compartments or cells, mostly hexagonal in form: the third cavity is occupied by hroad longitudinal folds, like the leaves of a book, whence the name 'psalterium'; ${ }^{3}$ it is the least constant of the divisions: the fourth and last cavity, - abomasus, ${ }^{4}$ has the usual structure of the true digestive stomach, with a vascular and finely tubular gastro-mucous inner coat.
In a pigmy Musk-Deer (Tragulus Kanchil), the paunch is of a subglobular form, partially divided into three chamhers hy the folding inwards of the parietes, forming prominent ridges: the inner surface is heset with filamentary villi, covered hy dense epithelium. The second cavity, or reticulum, is less distinctly separated from the rumen than usual : the cells are very shallow, and are lined by dense epithelium. The passage leading from the aesophagus to the third cavity is bounded hy two low parallel ridges: the longitudinal lamellæ which arc characteristic of this cavity in other ruminants are wanting, hut as it possesses the dense epithelium, it may be regarded as a rudimentary form of ' psalterium:' it is partially separated from the fourth cavity by a semilunar fold. This cavity has a smooth gastro-mucous membrane: the muscular tunic is thickest at the pyloric end, whero a small valvular protuberance projects above the orifice leading to the intestine. This least complex condition of the true ruminaut stomach represents a stage in its development in the larger species.

The next modification is more simple than the true ruminant stomah in some cssential characters, hut more complex in acces-

```
    Syn. 'penuln,' ' l'berbier,' ' la double,' (fig. 362, b.)
' Syn. 'bonnet,' 'reseau,' ' honey-comb-bag,' ' water-bag;' (ib. c.)
Syn, 'ceatipellis,' 'maniplus,' ' le feuillet,' ' omasus,' (ib, य. .)
- Syn, 'la caillette,' 'rennet-bag'(ib, e.)
sory particulars: it is presented hy the Camelide, and will be first described as it appears in the stomach of a foctal Llama (Auchenia Glama, Desm.). Like the stomach of Tragulus, the psalteriunn is less distinctly separated from the abomasus, and at this early period of existence it exhibits in the Llama a similar deficiency of the characteristic longitudinal lamine; but it is also devoid of the dense epithelium. The reticulum, however, is much more complex, eacb of the larger alveoli being developed into many smaller ones,-a structure partially indicated in the reticulum of tbe Goat, and more strongly marked in that of the Ox. There are, moreover, two groups of cells developed from distant parts of the rumen, wbich differ from those of the reticulum in being sballower and being visible from witbout, giving a sacculated character to those parts of the pannch. The rumen has the dense epithelial lining, but is destitute of the villi which characterise it in the horned ruminants. It is partially divided into two compartments by a strong fasciculus of muscular fibres, which, commencing on the left side of the cardiac orifice, traverses the paunch longitudinally. Ou the right side of this ridge, about fourteen smaller muscular fasciculi pass off at right angles, and theseridges are connected by still smaller fasciculi, running transversely between them, at definite distances from each other; the quadrangular spaces which result from the above arrangement of fasciculi are partly closed by a production of the lining membrane, leaving a circular aperture in the centre of each square for the passage of liquids into the cells beneath. Tbe compartment of the paunch, to the left of the great longitudinal ridge, terminates in two sacculi, at what may be considered the cardiac extremity. The sacculus nearest the œesopbagus is simple; the one farthest from it is developed into a series of cells, of a smaller size, but of precisely similar construction to those on tbe opposite side of the paunch,-a serics of smaller muscular bands passing off at right angles from the larger one which separates tbe two sacculi, and these lesser bands being connected by transverse fasciculi, in the intervals of which the cells are developed. The reticulum or water-bag, shows tbat the cells are situated between a series of parallel muscular fasciculi, as in the rumen; but their further subdivision is carried to a greater extent, and their orifices are not guarded by membranous productions. The dense epitbelium is not eontinued into this cavity: its muscular coat is so disposed that the exterior is smooth and uniform, and the cells are scarcely visible from without. A muscular ridge, longitudinal at the end of the cosophagus, winds round the upper part of the reticulum
to terminate at the orifice of the psalterium. liy the contraction of this fasciculus, all communication hetween the first two cavities and the oesophagus is cut off, and food is conducted into the third cavity. A slighter degree of contraction cuts off the communication with the rumen, and allows the passage of fluids direct into the reticulum or water-bag, which probably takes place when the Camel or Llama drinks. A frcc communication, however, subsists hetween the watcr-hag and paunch. The ohlique canal leading to the third cavity, forms, in the Camel, a small sacculus, distinct from, and intervening between, the reticulum and psalterium: it is not so distinct in the Llama; hut on a close inspection, the inner membrane nearest the orifice above mentioned may ba seen to be produced into ridges, which are arranged in a reticulate or alveolar form; and as a similar structure is more distinctly observahle in the Camel, this cavity was considered by Dauhenton as the homologue of the reticulum, and the waterbag as a peculiar superaddition. The remainder of the stomach, in the foctal Llama, may be seen to form one elongated continuous cavity, hent upon itself at its lower third, without rugæ or laminæ; the latter being afterwards developed at the cardiac half of this cavity. The pylorus is a small transverse aperture, protected above hy a large oval protuberance. The duodenum is considerahly dilated at its com* mencement.

The cuticular villi are not doveloped in the paunch at auy age or in any species of the Camelider; but the appended pouches, fig. 361 , augment in relative size. They are arranged, as in \(A u-\) chenia, in two groups - one on the right, the other on the left


Water-celli from the pnunch of the Came cxanis. side; the former heing the larger, and in the adult Dromedary measuring ahout one foot and a half in length, and six inches in hrcadth. The cells of each group are disposed in parallel rows, separated from onc anotliel by strong muscular bundles, given off from a single large band of fibres which commences at the cardiac extremity of the rumen, and proceeds in a longitudinal direction, dividing the cntire cavity into two compartments. The muscular fasciculi arc arranged transverscly, and give off
- secondary hundles at right angles and regular intervals, so that the orifice of each sacculus, of a square-shape when not contracted, is guarded hy a powerful sphincter. Some of the cells are more complicated than others, heing suhdivided into numerous loculi hy folds of the lining momhrane. The largest of the reservoirs in the adult Dromedary, when dilated, have a depth and width of about thrce inches. The second cavity, or reticulum, has not the dense epithelial lining in either Dromedary or Camel: the muscular longitudinal fasciculi forming the principal ridges hetween the cells are less thick than the corresponding ones of the paunch-cells: the middle fihres in each become tendinous in the Llama; hut the transverse fasciculi continue muscular, and spread over the circumference of the cells, continuously with the general muscular tunic of the cavity. In the Camel the tendinous character is not ohvious in the fasciculi which close the primary cells of the reticulum. This cavity and the paunch freely intcrcommunicate, and hoth have the same relation to the œsophagus, as in true ruminants. The muscular channel also exists for conveying the ruminated or remasticated food past them, to a small third unlaminated cavity in the Camel, through which it passes to the last or true stomach. This, however, is divided hy a modification of the lining memhrane into two parts: in the first the membrane is produced into many parallel longitudinal folds, not covered by laminate epithelium, and gradually suhsiding into the ordinary rugre of the lining membrane of the rest or pyloric part of the true stomach: there may he a slight constriction between the parts of the stomach ahove modified. The pyloric protuberance exists in the Camels.

The experiments of Clift \({ }^{1}\) proved the direct transit of water drunk hy the Camel into the reticulum, where it was found 'pure,' and also into the appended cells of the rumen, where it was discoloured: while the concurrent testimonies of travellers in the arid regions traversed hy this animal estahlish its power of there retaining water, as in a reservoir, for some days.

In true or ordinary Ruminants the muscular fibres of the cesopliagus are disposed on two layers of spirals, taking reverse directions, which decussate at onc or other of two opposite longitudinal lines: the outer layer contains more muscular and less cellular tissue than the inner one: the fihres of hoth are of the striated kind; and, as is usual where such are in more hahitual and energetic action, they have a redder colour than in non-ruminating
mammals. In the Giraffe the outer layer is more transversely disposed than the opposite spirals of the inncr layer. The mucous membrane of the cesophagus is thick and firm; it is lined hy a smooth and dense epithelium, and is connected to the muscular coat by a very lax cellular membrane. The entire tube in the Giraffe is remarkable for its length, and well displays in the living animal the rapidity witb wbicb the bolus is shot upward to be remasticated.

The food when first gathered into the mouth is subject in all Ruminants to a coarse and brief mastication, and is swallowed without interruption of the act of grazing or hrowsing: the coarse bolus pushes open the lips of the groove, \(g\), fig. 362 , and at once enters the first cavity of the stomach, ib. \(b\); water that may he drank finds its way mainly, as in the Camel, into the cells of the


Amulnant atomach ot the Gheep, coxxts"
second cavity, c. The paunclı is most capacious, is usually bifid, nod the thick epithelium is continucd over its inner surface, which is multiplied by close-set villiform processes. In the Giraffe, though varying at some parts of the paunch, they are, in the main, more regular and uniform in their size and shape than in the Ox; they are relntivcly narrower and longer; their margins are thickened hut entire, not notched, and they hecome expanded and rounded at their free extremity, instead of tapering to a point, as in many parts of the paunch of the Ox: they resemble more those of the Reindcer. In the Shcep the villi are flattened and expanded at the end: in the Reindeer they are longitudinally plicated: they are larger and coarser in the Bison
than in the Ox: in the Goat they are elongate and spatulate, but become shorter as they approacb the reticulum.

Tbere is more variety, however, among the horned Ruminants, in the form and depth of the cells of the reticulum, fig. 362, \(c\), and these modifications mainly relate to differences in the power of retaining fluids. Tbe structure of the Reindeer's stomach exemplifies this relation: the snow which must be swallowed witb the lichens through a great part of the year would render any reservoir for water unnecessary, and the cells in the reticulum are remarkably shallow. The same structure also obtains in the Giraffe sustained by juicy leaves and buds: the cells are not, however, as has been stated, entirely wanting; but their hexagonal boundaries appear as mere raised lines supporting a row of pyramidal papillae larger than those in the interspaces: for any imaginable use they might have been arranged in any other, even the most irregular, forms; but that pattern is closely adhered to, which grouping together a number of cells in the least possible space renders necessary in other Ruminants, and which is almost universal in uature. In the Goat some of the bexagonal cells are divided into smaller cells. In the \(O x\) the deep cells are chiefly disposed between broad parallel septa: and these are also divided into smaller cells.

The food is subject to a rotatory movement in the paunch, \({ }^{1}\) and is brought, successively, in this course, to be moistened by the fluid of the reticulum. If a Ruminant be alarmed in his pasture or browsing ground, it can transport the mass of hastily swallowed food in the paunch, as in a receptacle, to a place of safety and concealment, and there, the animal, at rest, can complete tbe act of digestion. This is done by the abstraction of the softer portion of the macerated food, successively brought within the grasp of the muscular walls of the groove, \(g\), fig. 362 , where it is moulded into a bolus and transferred by an antiperistaltic action of the muscular coat of the œesophagus to the mouth. It is there subjeeted to a longer and better process of mastication than at first; and, being mixed more thoroughly with the saliva and other fluids of the mouth, it is a second time swallowed. The soft mass is now less fit to push its way out of the oesophageal groove; but, the muscular walls being stimulated to contract, they close the entry to

\footnotetext{
The arrangement of the outer hairs in the agglutinated masses called 'ægagropiles,' occasionally found in the paunch, is the effect of this movement: the peculiar concretions called 'bezoars' are most commonly found in the paunch of Antelopes; and are probably due to the long sojourn in recesses of that receptacle of parts of the gutmy shrubs-on which they browse.
}
the first and seeond cavities, and, drawing that of the psalterium, ih. \(d\), nearer to the gullet, eonduet the remasticated bolus into the third eavity, the deep parallel crescentic folds of the lining nembrane of which occupy almost its whole area: the thick epithelium is continued upon these folds. In the psalterium of the Giraffe, hetwecn each two narrow folds there is alternately one of great and one of moderate hreadtb, as in the Ox: \({ }^{1}\) these lamella are besct with short pyriform papillæ. The bolus is squeezed into the interspaces, deprived of the superfluous alkaline fluid, and is passed on in a less dilute state to undergo the action of the true digestive acid secretion of the fourth and last compartment, ib. \(e\). The communication between this cavity and the psalterium is wider than hetween the latter and the oesophageal groove: hut the distinction is marked by the ahrupt termination of the thick epithelium. The vascular and finely villous lining of the ahomasus is usually thrown into large ohlique wavy rugæ; which subside toward the pylorus. In the Giraffe these ruga are slightly developed and chiefly longitudinal: the pylorus is protected by a valvular protubcrance placed above it, as in other Ruminants, just within the stomach; this protuherance is relatively smaller than in the Llama.

When the Giraffe ruminates, it masticates the bolus for about fifty seconds, applying to it from forty to fifty movenents of tbe lower jaw, and then swallows it: after an interval of three or four seeonds a second bolus is regurgitated. A sligbt contraction of the ahdominal parietes accompanies the action of the stomach hy which the regrurgitation is commenced. This action of the abdominal parietes in rumination is much stronger in the Camel. The Camelida differ from the true Ruminants in the mode in whieh the cud is chewed; it is ground alternately in opposite directions from side to side: in Oxen, Sheep, Antelopes, aud Deer, the lower jaw is ground against the upper hy a uniform rotatory motion : the movements may be from right to left, or from left to right, hut they are never regularly alternate throughout the masticatory process as in the Camels.

In the sucking Ruminants the first and second cavities of the stomach arc iclatively small, collapsed, and the milk flows almost wholly, at oncc, into the psalterium and abomasus. The laminæ of the psalterium are early developed in the fotal calf.

In all Artiodactyles the duodenum is dilated at its commencement: it therc forms a distinet pouch in the Camel. The gut

\footnotetext{
In this mminant Daubenton counted 24 large folds, and each interspace included ono middle sized and two small folds, ninety-six in nll. cexxnis, tome ir. p. 494.
}
is loosely suspended. In the \(\mathrm{H}_{\mathrm{og}}\) it adheres to the back part of the ascending colon before bending forward to hecome jejunum: the small intestines form numerous short convolutions: their lining memhrane is not produced into folds. Hunter found them twenty times the longth of the body of the domestic Hog: they are much shorter in the Wild Boar. Tbe cæcum is about four inches in length and an inch in diameter, lying loose, but attached by a peritoneal fold to the ileum. The colon in part of its course is disposed in five spiral coils 'like a screw, coming nearer the centre; at the cnd of which it is bent back upon itself, passing between the former turns as far as the first, but in this retrograde course it gets nearer the centre of the screw, so that it is entirely hid at last, then makes a quick turn
 upward, as high as the first spiral turn: thence it crosses the spine before the mesentery, adhering to the lower surface of the pancreas, and, as it were, inclosing the fore part of the root of the mesentery: then passes down before the duodenum, gets bebind the bladder and forms the rectum.' \({ }^{1}\)
The spiral turns of the colon, above described, form one of the characteristics of the Artiodactyle order: they are represented, as they appear in the Sheep, in fig. 363. The ileo-crecal valve consists of two semilunar folds in the Hog. The cæcum of the Babyroussa consists of an expanded, sub-bisacculate part and a narrower sbort
straight obtusely terminated part. The cæcum of the peccary is similar but less capacious, and more pointed at the end.

In Ruminants the small intestines, of almost uniform calihre, are suspended in short convolutions upon a hroad mesentery, fig. 363, \(a, b\). In many species the agminate follicles are lodged, as in Hyrax, in fossæ of the mucous memhrane, \({ }^{1}\) fig. 364 . The cæcum, fig. \(363, c\), is of a simple ohlong form : a patch of follicles, usually lodged in a pouched recess, \({ }^{2}\) is situated near the ileo-cæcal orific. This is surrounded hy a circular ridge; the cæcum is less dilated in the Vicugna than in the Sheep. In the Giraffe, also, the crecum is a simple cylindrical gut: it is ahout two feet in length and six inches in circumference: it extends downward from where the ileum enters, and its hlind end appears on the left side ahove the pelvis; hut this position might he accidental as its connections are loose. The ileum terminates by a circular tumid lip within the cæcum, \({ }^{3}\) fig. \(365, a\); the contiguous glandular cavity is sacculate. The disposition of the colon rcsembles that of the Decr. The extent of this intestine, hefore it begins to make the spiral


Pouched disporithon of agminate forifelea, Glrafie, xoyin". turns, is ahout eight feet; it hecomes narrower where it takes on this characteristio disposition, and the separation of the feces into pellets hegins at the end of this part. The spiral coils are situated to the left of the root of the mesentery, which, with the small intestines, must be turned to the right iu order to hring them into view : there are four complete gyrations in one direction, and four reverse coils in the interspaces of the preceding, the gut heing hent back upon itsclf: the length of this part of the intestine when unravelled is about fourteen feet. The spiral coils are not on the same plane, but form a depressed and ohlique cone, whose concavity is next the mesentery. The colon, emerging from its coils, passes to the right, hehind the root of the mescntery, becomes connected with the duodenum and the

\footnotetext{
cxlvit, vol. i. 2nd ed. (18.2\%) p. 229, No. 760 A, and No. 760 d (Camelus).
* exlmi", vol. i. p. 220, Nua. 726 c (I'icugna) 726 D (Llama) p. 221.
- mevil. p. 227.
}
first part of its own course, then winds round to the left of the mesentery, and finally recedes backward and descends to form the rectum. In those Ruminants, as the Ox, whicl have soft undivided feces, the coils are less numerous and regular; the cacum is between two and three feet long in the Ox ; it is sub-


Heo-cecal valve and contiguous agminate follicles, Girafte, xori.
bifid at the end in the Buffalo: the colon is shorter and wider in both, than in the Giraffe, Deer, Sheep and Goat tribes, where the freces are expelled in small pellets. In such Ruminants the anus is a more contracted aperture than in the Bovines or in Perissodactyles.

The herbivorous Mammals differ from the carnivorous more in the character of their large than of their small intestines. The less putrefactive nature of thcir food renders it susceptible of a longer retention in the hody; and the receptacular and sacculate structures, and convolute extension, of the large intestines seem especially designed to retard the course of the alimentary substances. In the anomalous instance in a Human body, recorded by Abernethy, of a reduction of the length of the small intcstine to about two feet, the compensation was effected hy an unusual length and size of the colon. The condition of the subject 'showed that nutrition was not scantily supplied.' \({ }^{1}\) Dupuytren noticed in a patient who had an artifical anus near the end of the small intestines, that the vegetable parts of the food thence ejected were undigested. Dr. Beaumont also observed that the vegetable substances underwent much less change than the animal substances in the stomach of the man (Alexis) with the fistulous opening into the stomach. That organ in the Artiodactyles (Peccary, Hippopotamus, and Ruminants) is rendered specially complex for overcoming the difficulty, and the cæecum and colon are comparatively small : but in the Perissodactyles (Horse, Tapir, Rhinoceros) the more simple stomach is compensated by the increased capacity and complexity of the large intestines. The subdivided stomach in the Sloths is in some respects, as e.g. the glandular appendage, and vascular secerning surface of the paunch, more complex than that of Ruminants: and here accordingly we find the cæcum absent and the colon undefined. The Dormouse and other hybernating Rodents are far from being the sole exceptions to the presence of a proportionally large crecum in herbivorous quadrupeds; such receptacle is only found in those species, in which, through the necessity of a correlation with other circumstances than that of the nature of the food, the stomach retains the simple form and moderate size of that of the carnivorous or omnivorous mammals. Comparative Anatomy demonstrates that neither a complex stomach nor a large caccum is essential to the digestion of vegetable food: but it teaches that a capacious and complex alimentary canal, as a whole, is related to that purpose, at least in the Mammalia. Either a highly-developed and concentrated glandular apparatus must be added to the stomach, as in the Dormouse, Wombat and Beaver; or the stomach must be amplificd, subdivided or sacculated, as in the Ruminants and herbivorous Marsupials; or both complexitics must be combined, ns in the Sloths, Dugongs aud Manatees; or, cxıy1". p. 63.
if a simple condition of stomach is retained, it must be compensated by a large sacculated colon and cæcum.
§338. Liver of Mammalia.-Tbe liver, as a rule, is divided into a greater number of lobes in the present than in the preceding classes, the body being more flexuous at the seat of the viscus. In the stiff-trunked Whales and erectly-moving Man the organ is more compact: and it is least subdivided in the purely herbivorous Ungulates where a minor degree of hydrocarbonates has to be eliminated. Thus, in a full-sized Giraffe, the liver weighed but 6 lbs. 11 oz , avoirdupois; it was of a flattened, wedgelike form, consisting of one lobe, with a small posterior Spigelian process; its greatest breadth was 12 inches; its dorso-ventral diameter, 8 inches. The postcaval vein passed through a notch at the posterior edge of the liver, and did not perforate it. In all Ruminants the liver is confined to the right hypochondriac and epigastric regions. In most, two lateral lobes are indicated by a small fissure at the entry of the suspensory ligament. In the \(O x\), the main part to the right is partially subdivided into two, with the "Spigelian 'process from the back part of the right subdivision: with a breadth of 13 inches and a dorso-ventral diameter of 10 inches, the greatest thickness does not exceed 3 inches. In the Camelide the under surface of the liver is subdivided into many polygonal lobules of small but varying size: the fissures between some of which extend to the convex surface.

In Cetacea the liver more resembles that of the human subject, but is not so thick at its base nor so sharp at the front or ventral edge. The rigbt lobe, \(e\), fig. 355 , is the largest and thickest; the falciform ligament is broad, and there is a deep fissure, \(g\), between the two lobes, into whicb the round ligament passes. The left lobe, \(f\), is extensively and firmly attached to the stomach, tbe small omentum being a thick substance.

In Sirenia the liver is flatter and more transversely extended. In tbe Dugong the liver is a transversely oblong viscus, divided into three lobes with a fourth small process at the root of the left lobe, representing the lobulus Spigelii. It is as usual convex toward the diaphragm, but rather flattened than concave toward the viscera, the antcrior margin is thick and rounded. Of the three larger lobes the middle one is the smallest, of a square shape, projecting forward, and as it were over-hanging the gallbladder, which is lodged in the middle of the inferior surface. The ligamentum suspensorium is continued upon the middle lobe, immediately above the gall-bladder, the anterior margin of this lobe being notched to receive it, and the remains of the umbilical
vein enter the liver an inch above the fundus of the gall-hladder. The two lateral lohes are more than double the size of the cystic lobe, and of these the left is the largest. Both these lohes are concave toward the small middle lohe, which they thus surround and conceal. The lobulus Spigelii is of a flattened and square shape, measuring \(1 \frac{1}{4}\) inch in length. The Manatee has a gallbladder.

In the Hog-tribe the liver begins to encroach more upon the left hypochondrium; and the mass to the right of the suspensory fissure is suhdivided into a 'cystic' and a right lobe, besides the spigelian lobule.

The Perissodactyles in general have a larger and more subdivided liver than the Artiodactyles, especially than the Ruminants: no species has the gall-hladder. In the Horse this viscus extends as far to the left as the right: the suspensory ligament enters the fissure which defines the left lobe: the mass to the right is divided by a second fissure, answering to the "cystic in beasts with the gall-bladder; and a fourth small lohe is defined hy fissures on the under surface of the right lohe. In the Rhinoccros the liver is of a dark colour, and has the usual flattened form in Ungulates; its greatest thickness not exceeding 6 inches in a liver weighing 44 lbs : it consists of a middle portion with the suspensory fissure, answering to the "cystic" lobe, of a smaller left lobe, and a still smaller right, or posterior, or spigelian lobule. The hepatic duct, \(\frac{1}{2}\) inch in diameter, receives the duct of the larger portion of pancreas as it passes between the coats of the duodenum, and such common duct opens upon a protuberance of the mucous membrane. \({ }^{1}\) In the Hyrax the homology of the cystic lohe is hetter marked by the presence of a cystic notch, although without the hladder, to the right of the suspensory fissure: the left and right lobes have the same relative proportions as in the Rhinoceros. The duct from each lohe dilates on quitting it, \({ }^{2}\) and the united capacities of thesc receptacles equal an ordinary-sized gall-hladder; the common duct continued therefrom is 3 lines in diameter, contracts gradually to the intestine, and opens therein 9 lines from the pylorus.

In the Elcphant the liver is divided into two lohes, the right being the largest: the suspensory fissure is the boundary. Therc

\footnotetext{
\({ }^{\prime} \mathbf{v}^{\prime \prime}\). pl. 14, fg. i. \(p, h\).
\({ }^{\text {a }}\) clin", p. 205. In the largest of these dilatations I found a Distoma. Daubenton found (April) a specties of the same genus in the bile-ducts of an Ass, exu", tome iv. p. 419.
}
is no gall-bladder. The hepatic duct, fig. 366, \(f, g\), is wide and very long: it has a reticulate inner surface: it expands, between the coats of the duodenum, into an oval receptacle, ib. o, irregularly divided into compartments : the first pancreatic duct, ib. \(i\), also pours its secretion into this receptacle, which contracts and is surrounded by a sphincter of the circular layer of fibres, before penetrating the muscular coat, which here protrudes, as a mammillary eminence, traversed by the probe, \(q, r\).

In a female Giraffe I found a large gall-bladder, bifid at its


Tcrminal blle-pouch, Elephant.


Double gall-bladder of a Glrate
fundus. It was attached in the usual position to the under part of the undivided liver, having a covering of peritoneum over three-fourths of its surface. It was divided throughout its length by a middle vertical septum, fig. 367. The lining membrane of each chamber was smooth; they communicated with the cominencement of a single cystic duct, the terminal orifices admitting freely the blunt end of a common probe and being protected by a valvular fold. In two males, subsequently dissected, there was not a vestige of a gall-bladder, but the bile was conveyed
hy a rather wide hepatic duct to the duodenum. I conclude, therefore, that the alssence of the gall-hladder is the rule, or normal condition; and that the Giraffe in this respect, as in the structure of its horns, has a nearer affinity to the Deer than to the Antelopes. In these and all hollow-horned Ruminants, a gall-bladder is present; as it is, also, in Moschus and Tragulus. In the Camelidat the gall-hladder is ahsent as in the Cervida. A like absence characterises all Perissodactyles, and suggests some relationship with the small capacity and simple structure of the stomach compared with the quantity of food taken, and with the rapid and eontinuous transit of the gastric contents through the small intestines to the enormous exeal and eolonic receptacles where digestion is finally completed. But the somewhat capricious appearanee of the gall-bladder in vegetarian Mammals discourages such attempts to physiologise. Thus the Hog, e.g. with the simple stomach has the gall-hladder, while the I'eecary, with a complex one, has it not.

The liver, fig. 308, \(r, r\), closely retains the mammalian type of the organ in Monotremes. Four lohes may he distinguished in the Echidna: the prineipal or cystie lobe receives the suspensory ligament in a fissure; the large gall-hladder is placed a little to the right of this; the left lobe occupies the left hypochondrium; the Spigelian lohule is of moderate size; it is an appendage of the right lobe. The liver presents nearly the same form in the Ornithorhynehus, which las likewise a large gall-bladder, ih. s. There are threc hepatic ducts in the Echidna which join the cystic, and the common canal terminates in the duodenum rather more than an inch from the pylorus. In the Ornithorhynchus the two chief hepatic duets join the cystic near the neck of the bladder; the third hepatic joins a more distant part of the cystic ; the ductus choledochus receives the pancreatic duct about 9 lines before its termination, as in the Marsupials, where its coats are thickened and glandular, and opens into the duodenum ahout 8 lines from the pylorus.

The liver is subdivided into many lohes in all the Marsupial gencra. It is relatively largest in the hurrowing Womhat and carnivorous Dasyure; relatively smallest in the graminivorous Kangaroo, in which it is situated, as in the placental Ruminants, entirely to the right of the mesial plane. The small or Spigelian lobe, whieh fits into the lesser curve of the stomach, is given off from the left lohe of the liver in the Kangaroos, hut from the right in most other Marsupials; the difference just noticed in the Kangaroo depends on the peculiar disposition of its revol. III.
markable stomach. In the Koala the under-surface of the liver, fig. 368, is subdivided into thirty or forty lobules: this condition is presented in a minor degree in the Ursine Dasyure. In a long-tailed Dasyure, which weighed 3 lbs .8 a az ., the liver weighed \(3 \frac{1}{2} \mathrm{oz}\). avoirdupois. The suspensory fold in Lyencephala shows hardly a trace of ' ligamentum rotundum.'

The gall-bladder is present in all Marsupials, is of large size, and loosely lodged in a deep eleft of the eystie lobe. In the Opossum it generally perforates that lobe, and the fundus appears at a round opening on the convex surfaee of the liver. I have ob-

368


Liver and gall-bladder, Koala. served a creeal process from the cystic duct, like tbe beginning of a secoud gallbladder. \({ }^{1}\) The coats of the ductus choledochus are thickened toward its termination, and become the seat of numerous mucous cysts which open into the interior of the duct. In the Phalangers the terminal half-inch of the ductus choledochus is similarly enlarged and glandular. The biliary and pancreatic ducts generally unite togetber before perforating the duodenum: in the Virginian Opossum, the long-nosed Bandicoot, and tbe long-tailed Dasyure, they pour their secretions into the gut an inch from tbe pylorus: in the great Kangaroo the glandular ductus choledochus is joined by the pancreatic duct, and terminates in the duodenum 5 incbes from the pylorus.

The answerable parts of the liver under its various degrees of division are indicated by the suspensory fold or ligament, which enters a fissure ealled 'suspeusory,' and by the gall-bladder, whieh oceupies a depression, fissure

\footnotetext{
cxivint. p. 247.
}
or canal, ealled 'cystic,' to the right of the suspensory one. The cystic fissure is the less constant charaeter; the suspensory fold is almost obsolcte in some Bats, which pass the greater part of their time head downward.

In the more simple or entire forms of liver, as the human and cetaeean, fig. \(255, e, f\), the suspeusory fissure, ib. \(g\), and fig. 369 , 3 , divides the left, ib . 1 , from the right lobe, \(\mathrm{ib} .16,18\); the process sent off from the under and back part of the gland to the lesser curvature of the stomach, in Man, being the 'Spigelian lobule,' ib. 20. In the majority of Mammals a lobe is more definitely marked off by a deeper cleft to theteft of the suspensory fissure, and a right portion is similarly defined by a cleft to the right of the cystic fissure. These two superadded clefts thus define a middle, commonly the largest, portion of the liver, which is characterised by the 'suspensory' and 'cystic' fissures. It is the 'eystic' or gall-lobe, \({ }^{1}\) and is the homologue of the right portion of the left lobe and the left portion of the right lobe, including the cystic fossa, of the human liver. \({ }^{2}\) The portion of the gland to the right of the eystie lobe, in most quadrupeds, is subdivided into two or more lobules; the lobe to the left more commonly remains single. The


The undernurface of the human liver. transverse depression usually abont the middle of the under-surface of the liver, or ot the cystic lobe, by which the portal vein enters the gland, is the 'portal' fissure, ib. 7. Another groove or canal is called 'posteaval,' being traversed by the vein, \(i b .13\), of that name.

In the large Shrew, fig. 323, and in most Insectivora, the more subdivided condition of the liver, \(h, h\), exists: the cystic lobe is

\footnotetext{
1 'The "gall-lohe" is the largest." Anat. of Capybara, ccxaxyl, vol, ii. p. 213.
'I do not regurd the wholo buman liver as the homologue of the 'cyatic lobe' in quadrupeds, and the 'right and left lohes' in them as superadded parts, as in the following riew :- Il faut considérer le foie de lhomme comme composé d'un seul lobe, que nous appelons " lobe principal " avec un rudiment de lobule droit, celui de Spigelius. Nous verrons successivement uu lobe gauche er un lobe droit s'ajouter à gauche ct à droite du "lohe principal," puis un lobule droit et un lobule gauche,' xir. tom. rv. deuxióme partie, p. 432. The homologue of the 'Spigelien lobule' is shown by its relation to the lesser currature of the stomach. Fissures, rather than lobes are added to the liver of quadrupeds.
* Ib. p. 197.
}
marked by the gall-bladder, \(v\), and by the suspensory notch to its left; beyond this is the left lobe, and, on the oppositc side, are subdivisions of the rigbt-lobe. The liver of tbe Tupaia adheres to this type, showing four lobes, the gall-bladder presenting its fundus at the upper part of the cystic fissure, "as if in a hole." \({ }^{3}\) Tbe gall-bladder is for the most part of considerable size. In the Hedgechog its fundus appears beyond tbe free margin of the liver, and is supported by a process of falciform ligament. In the Tenrec, on the contrary, it is as it were incrusted by the substance of the right portion of the principal lobe.

The liver of Bats is very little divided: occasionally a small lobe is marked off to the left of the suspensory limit of the cystic lobe: still more rarely is there a right lobe. All Bats, with the Roussettes and Colugos, have the gall-bladder.

The liver of the two-toed Sloth is confined to the right lyypochondrium, and consists chiefly of a very large cystic lobe, receiving the suspensory ligament: sometimes a small left lobe is marked off, and tberc is always a smaller Spigelian lobe behind. In the Ai (Bradypus, 3 -dactylus) the left lobe is not present, and the posterior lobule is less defined; but there are one or two fissurcs at this part. This Sloth has no gall-bladder: the two-toed kind possesses one. Hunter describes its cystic duct as passing - down througb the substance of the liver and emerging at the aorta, like the ductus hepaticus;' it then joined that duct, and the common canal entered the duodenum about 4 inches from the pylorus. \({ }^{1}\)

The cystic lobe is the largest in the Armadillos: there are two small lobes to tbe right, as well as onc to the left: all the species have the gall-bladder. I found it more deeply imbedded in Dasypus sexcinctus tban in D. Peba. \({ }^{2}\)

The liver in Orycteropus differs in the non-division of the rigbt lobe. In the specimen dissected by Jaeger, \({ }^{3}\) the gall-bladder was double, the two being closely connccted by cellular tissue, and having a common covering of peritoneum : the two cystic ducts soon unite into one, which is joincd by tbree bepatic ducts: the common duct terminating about an inch from tbe pylorus. The liver of Myrmecophaga sbows, likewise, a cystic, a left, and a right lobe, and extends from the right to the left bypochondrium: the fundus of the gall-bladder protrudes through a subcircular notcb at the convex side of the gland in Myrm. jubata.

In the Rodentia the cystic lobc has the usual characters, is the largest, and is often so deeply cleft by its characteristic fissures as to present the appcarance of three distinct lobes, the left lobe
is sometimes divided, and the right more commonly so, the elefts affecting an oblique course. The most noteworthy modification in the Rodent order is that presented by the liver of Capromys. Five primary divisions or lobes are indieated by the usual charaeters; but eael of these undergoes a subdivision ' into almost innumerable angular lobules, varying in size from 3 to 5 lines: though elosely in eontaet they are quite detached from each other, being appended by their apices to the larger branehes of' the vena porta and hepatie arteries and veins. Each of the lobules is partially subdivided into still smaller ones, the whole structure approximating to a eomplete natural unravelling of this eonglomerate gland to its component acini.' \({ }^{1}\) The gallbladder was large; its contents limpid and of a greyish green eolour. The genera Mus, Cricetus, Lemmus, Echimys, Erethizon, Synetheres, as a rule, are without the gall-bladder. Cuvier did not find it in Sciurus maximus and in a speeies of Pteromys: but in that disseeted by Hunter (Pt. volucella) it was present, as also in Sciurus cinereus and the common Squirrel. The Porcupine ( 1 ! \(y\) strir) has a small gall-bladder, and the comrnon Jerboa (Dipus sugitta) has one of the usual size: the Cape Jerboa (Helamys) has it not. In all other Rodents the gall-bladder is present. In the Guinea-pig (Cavia porcellus) Hunter remarks, that the common duct, on reaching the duodenum, ' makes a turn and passes with the gut for more than one-third of an ineh, where it becomes larger, and then it enters the gut. This looks as if this duct must make a turn somewhere, as it did not do it at the gall-bladder. \({ }^{\prime 2}\) The bile in Rodents is thin and transparent, yellow or greenisb.

All Carnivora have a liver with a left, a eystic, and a right lobe, the latter usually subdivided into two or three lobules: in some the left and the eystie are of equal size; in others the left is the largest lobe. In the Lion the eystic lobe is decply cleft by the suspensory fissure and the part to the left of that has beeu counted as a smaller left lobe: there is a larger one to the left of this, and two small lobes to the right of the part of the cystic lodging the gall-bladder. In the Wralrus the liver is divided into seven lobes, each of which is more or less notched at the undersurface. Couparing this liver with the more siuple forms in Carnivora, we recognise the homologue of the riglt lobe, here

\footnotetext{
\({ }^{1} \mathrm{cxxx}^{\prime \prime}\). p. 70. Tho propamtion is No. 8108, in Nx. vol. i. (1833), p. 238. It appears to be a normal structure in the Ioutins, being described in sur tome is. (1835) p. 454 ; also by Say in tho Rodent called Isodon, wheh appears to be identical with Capromys. cev'.(1826).
\({ }^{2}\) cexixyt. vol. it. p. 209.
}
divided into two, the right division being the smallest. The part answering to the cystic lobe is dceply cleft into three subequal lobules, between the two right of which, at the base of the cleft, lies the long pyriform gall-bladder. The homologue of the left lobe is of a broad and rounded figure: it is attached by a band of hepatic substance, onc inch broad, to the base of the cystic lobe, this band bridging over the portal vessels. The lobulus Spigelii, so constant in its position behind the small omentum in Mammals, here forms the seventh portion of the liver. The gall-bladder is tbree and a half inches long, and one aud a half inch in diameter: a duplicature of peritoneum, one inch broad, extends from the cervix vesicæ and the cystic duct to the duodenum. The fundus of the bladder is attached by shorter folds of peritoneum to the two walls of the cystic fissure; it has an entire serous investment.

The liver of the Seal (Phoca vitulina) differs chiefly in the greater elongation and more pointed form of its divisions: viewed from below or behind, the left lobe, fig. 370, a, retains most of
 the normal shape; in the cystic lobe, \(l, b\), the suspensory fissurc is marked by the round ligament, \(c\), the cystic one, \(d\), by the gallbladder, \(e\); \(f\) is the larger, and \(g\) the smaller divisions of the right lobe, \(h\) being the Spigelian lobule or process; \(i\) is the portal vein entering the fissure so called; \(k\) is the post-caval, perforating the liver to combine with the hepatic veins in forming the capacious sinus, \(l\), \(l\), trom which the trunk, again contracted, \(m\), is continucd to perforate the diaphragm, before terminating in the heart. The hepatic veins in the Seal have an outer coat of circular fibres. \({ }^{1}\) Tbe accumulation of blood in the sinus of the hepatic veins during the act of diving indicates the need of a muscular power to propel the blood onward to the heart.

The under surface of most of the lobes shows small notches or

\footnotetext{
cr.vil" p. 738, pl. xxili, fig. 2.
}
fissures; and these are still more marked in Otaria. Two hepatocystic ducts cntered the gall-hladder in the seal I dissected. \({ }^{1}\) The cystic duct was joined hy a small hepatic duct ahout half an inch from the gall-bladder; and a little lower down was joined hy a larger hepatic duct, which was formed hy the junction of two other ducts, each of which was also formed hy the union of two ducts, coming distinctly from four lobes of the liver. The ductus communis was one and a half inch long; it was joined by the pancreatic duct, as it terminated in a dilated sacculus within the duodenal coats.

The inner surface of the gall-hladder is minutely rugons and villous, the rugre becoming longitudinal at the cervix, and subsiding in the duct. This character ohtains in other Carnivara, in all species of which the alterative reservoir of the bile is present. In the Felines the valvular or impeding twist of the cystic duct is well marked.

Domestic Carnivora, obtaining more food, and more regularly, than wild ones, have a corresponding increase of the digestive apparatus: not only is the intestinal canal longer, hut the liver is larger : there are more hydro-carhonates to be eliminated, more chyle to be made. \({ }^{2}\)
In the Aye-ayc neither left nor right lobe of the liver are suhdivided; but, as in other Lemurs, hoth are distinct from the cystic lohe, which shows the usual cystic and suspensory fissures, and the left lebe is the largest. All the clefts are more transverse, less ohlique than in the usually more suhdivided liver of Ronlents.' In many Platyrhines the right lobe, in some the left lobe also, are subdivided. In most Catarhines the same degree of hepatic division ohtains as in Strepsirhines; hut in some Doucs, in Gibbons, Orangs, and Chimpanzees, hoth right and left lobes have hlended with the cystic, and the suspensory notch hecomes, as in Man, the boundary hetwecn the two masses termed 'right' and 'left' lobes in Anthropotomy. The 'Spigelian ' lobule is a process of the left posterior angle of the right lobe: it is partly defined by the post-caval vein, tig. 369, 13: the part of the cystic lohe betwceu the cystic and suspensory fissures is the 'lohulus quadratus,' ib. 18, of Anthropotomy.

The lobes of the liver in its several grades of natural suhdivision in the Mammalian class are invested hy a delicate fibrous coat which is continuous with the similar looser investment of the

\footnotetext{
"clvit". p. 16".
- So Dabbenton :- Lo foio du chat domestiqno étoit plus gros, plis ferme, et d'une coulour rougedtre bemeoup plus fonede que le foie du chat saurage.' cxwif'. tome ri. p. 29.
}
vessels in the portal fissure called ' Glisson's capsule.' The serous accompanies and closely adberes to the fibrous coat, save at the portal fissure and along the suspensory and otber folds, called


A longltudinal section of a suth-houtar vela. CLV11". ' ligaments,' wherc the serous coat is reflected from the gland. The rcsolution of the lobes and lobules of the liver into the ultimate subdivisions or 'acini,' is naturally shown in Capromys: as a rule they require section or maceration.

As the anatomist \({ }^{1}\) to wbom we are indebted for a knowledge of tbeir structure bas applied to these 'acini' the term usually given to such secondary divisions as the ' lobulus Spigelii,' and bas founded his nomenclature thereon, it will be retained. Kiernan's ' lobules ' range in size from \(\frac{1}{\frac{1}{2} 0}\) th to \(\frac{1}{10}\) th incb in diameter, pre-


Brapebes of the portal veln, Huraan. cxtyrri". sent a foliated contour in longitudinal section, fig. 371, 1,3 , a polygonal one in transverse, fig. 378 : a venule issuing from their centre, fig. 371,5 and 7, connects them with the initial or ' sublobular' branches of the hepatic vein (laid open in fig. 371): the rest of their surface is attacbed by similar beginnings of bepatic ducts and absorbents, by terminal branches of the hepatic artery and portal vcin, and by nerves, to the thin stratum of areolar tissue connecting one lohule with others. Each is composed of ramifications of its suspensory 'intralohular' venule, of arterial capillaries, of a plexus of portal capillaries, a plexus of biliary passages, of nerves, lymphatics, and intermediate cell-substance-the essential part of the gland which tbe otber structurcs subserve. Tbe section mag-
nified of a sublobular venule,' fig. 371 , shows the commonly hexagonal outline of the flattened bases of the lobules 4 , the terminations of the 'intralobular' venules 7, the interlobular fissures 8 , and the 'interlobular spaces ' 9, at their angles: tbese are continued into the intervals between the more or less roundcd lateral surfaces of the closely packed lobulcs. The ramification of the intralobular venulc 5 is seen in the longitudinal section of the lobules, 1,3 . In the Seal the intralobular veins at their exit from the lobules enter hepatic.venous canals, where they unite into brancles, wbich are connected by a fine cellular tissue, forming a sheath round the bepatic veins. \({ }^{1}\)

The portal vein, in Mammals, fig. 372 , is formed by tbe


Longtudind bection of a smali purtal vein and cuมal. CL.vil". superior, \(b\), and inferior, \(c\), mesenteric veins, by the splenic vein, \(d\), by the gastro-epiploic, \(e\), and paucreatic, \(f\), reins: the trunk, \(a\), entering the portal fissure, divides into a right, \(h\), and left, \(g\), branch: these penetrate their respective divisions of the liver, ramify and subdivide thercin, along tracts termed *portal canals,' fig. 373, a, a; but wbich likewise lodge brauches of the hepatic artcry, \(g\), and duct, \(h\). As all these are connected togetlier by a prolongation of the areolar tissuc of 'Glisson's capsule,' brancbes continued from the portal vein, \(e\), and forming a plexus in that tissuc, are termed 'vaginal,' from which, as well as directly from the portal vein, as
 at \(f\), venules enter the interlobular spaces, are called 'interlobular venulcs,' fig. \(374, a, a\), penctrate the lobule, \(b\), and form a capillary plexus thercin, most richly at the periphery, but from which the 'intralobular vein,' \(c\), begins. The bepatic artery has a similar \({ }^{1}\) CLYM". p. 738.
distribution through the portal canal, fig. \(373, g\), where the minute hranches form " vaginal plexuses,' sending off interlohular hranches which terminate in the lohule by a capillary plexus communicating and localised with the portal one. The meshes of the radially arranged plexuses, fig. 375, are occupied by organites which subsist by endosmotic intussusception and assimilation of blood-elements, modify them by interchange of other elementary combinations, then perish hy rupture or solution of their walls. These bodies, called 'hepatic cells,' much exceed in size the monads of infusoria,'
 a hyaline granulated nucleus, which coutrasts hy its refractive hrightness with the tawny yellow of the minuter granules of the main contents of the cell, in which also float oil-glohules. These contents, exuded or set free, fill the intervals of the 'nucleated cells,' and form the 'hile,' or brief equivalent of 'bile vesicles without proper walls.' \({ }^{2}\) When an epithelium is discernihle, separating them from the capillaries, \({ }^{3}\) the bile-ducts may he said to commence. The inductive figure given hy Kiernan of the intralohular or initial bile-conduits, fig. 375, receives support from the recent careful researches of Hering in the liver of the rahbit:
 he descrihes them as forming a plexus with polygonal meshes from which the canals are continued to form the interlohular ducts, \(a, a\); from these are continued the ' vaginal branches,' fig. 373, \(h\), which progressively unite to form the hepatic ducts. These, in Man, emerge, two in number, at the portal fissurc: in more divided livers the liberated ducts are more numerous; but all unite, as a rule in Mammals, into one trunk, which, in those having a gall-bladder, joins the cystic duct to form the 'ductus communis choledochus.' This duct, fig. 376, a, penetrates the duodenum distinctly from the pancreatic duct, \(b\), hotb run ohliquely between the several

\footnotetext{
\({ }^{1}\) Such, e.g. as the Monas atomus, \(\frac{1}{2000}\) th line in diameter.
' Ein Gallencapillarystern obne eigene Wandung.' clis' \({ }^{\prime \prime}\). p. 241.
\({ }^{3}\) The 'when ' or 'where' such 'epithelial walls' are gained, forming a beginning of proper conduits for carrying off the bile from the interspaces of tbe formative cells, may long be debateable ground with Micrographers; as now between Beale, Budge, and Hering. cLix' . p. 241.
" 'Ein Netz mit polygonalen Maschen,' cerx", p. 241. Kiernan obtained a view. of anastomosing biliary ducts in part of a lateral ligament of the human liver; cx,vi". p. 769, pl. xxiv. fig. 4.
}
tunics, \(c\), \(d\), \(e\), of the gut, in Man, to the extent shown in fig. 376, hefore uniting to form the eommon reeeptacle within the terminal prominence.

The 'earrying arrangements' of the hile are, thus, on a more concentrated plan in the present than in lower elasses of Vertehrates. The human cystic duct shows a series of ercscentie folds of the lining memhrane, directed ohliquely round the eanal, and so arranged as to give the appearance of a spiral valve. Numerous minute follicles, either hranehed or elustered, open upon the mueous traet of the hile-ducts: in the smaller branehes their orifices are in two opposite longitudinal rows.

From the arrangement and loealisation in the 'lobule' of the capillaries of the two systems of veins, determincd, together with most that is of importance in hepatie structure, by the admirable research, skill, and patience of Kiernan, an explanation has been afforded of appearances otherwise unintelligihle or misleading. \({ }^{1}\) When the capillaries of the hepatie vein are gorged, as is usual in an early stage of congestion, the

376


Hepato pancreatle nmoulla humar: magn. flattened surfaees of the lohules on the superficies of the liver present the appearance in fig. 377 . When the portal eapillaries


Lohuler of Iser with rongested hepatio volns, OLYni'"


Lobules of liver with congested porta rolns. Clivit":
are congested, the peripheral parts of the lohules present the decper colour, as in fig. 378. So, in examining portions of the

As o.g. the supposed distiuction of 'cortical' and 'medullary' substances of some authors ; of "red 'and 'yellow' substances of others. See clvn'" p. 763.
liver of lower Mammals, as in that of the squirrel figured by J. Müller,' fig. 379, the uncongested pale peripheral portions of
 the lobules, nearest the interlobular fissures, \(e, e\), may suggest an arrangement of ultimate or initial biliary ducts, whicb is merely due to partial congestion. \({ }^{2}\) The struc. ture of the liver is the same throughout the class; the form of the gland varies, governed mainly by relations of package with adjoining abdominal viscera, and by the degree in which it may be affected by inflections of the trunk.
§ 339. Pancreas of Mammalia.-This conglomerate gland bere differs chiefly from that in birds by the progressive development of a part more or less distinct from that which is lodged within the loop or fold of the duodcnum: such added part may be represented by that freely projecting and of a fold of the bird's duodenal pancreas (vol. ii. p. 175, fig. 87, q), which stretcbes towards the spleen, but there is no transversc part of the gland extending at right angles from the duodenal portion, like that which forms the splenic or transverse pancreas in the Mammalian class, and which ultimately becomes the main part or body of the gland in them. In most Mammals the pancreas is of a pale flesh colour, but usually less pink or of less decided tint than in birds: it is firmer in texture, and shows more plainly its conglomerate structure.

The pancreas in the Ornithorhynchus is a thin, somewhat ramified gland bent upon itself; the left and larger portion descends by the side of the left lobe of the spleen. The pancreas is thicker in the Echidna, and enlarges considerably towards the duodenum. The principal difference occurs in the place of termination of the pancreatic duct, which, in the Ornithorbynchus, joins the ductus choledochus, but in the Echidna terminates separately in the duodenum and nearer the pylorus than does the ductus choledochus. The arrangement of the hepatic and pancreatic ducts is thus conformable to the Mammalian type, and the Orni-
thorlynnehus, in the plaee of the junction of these duets near the commencement of the duetus choledochus, manifests its affinity to the Marsupials. In these the pancreas extends as usual from the duodenum to the spleen, behind the stomach; it is charaeterised by a process sent off at right anglcs, or nearly so, to the main lobe at or near its left extremity. Small and thin processes branch out into the duodenal mesentery (in a Phalanger); and similar but still morc numerous processes, in the peritoneal attaching, or omental, fold to the left, give the organ a dendritic appearance in the Kangaroo; but the splenic process seems to be constant. The pancreatic duct usually opens into the glandular dilatation of the ductus cholerlochus, and the secretions enter the intestine further from the pylorus than usual.

The same low type of gland prevails in the Rodentia, and is well shown by 1Iyde Salter in the rat (Mus decumanus, fig. 380, the main part of the gland being that whieh extends from the end of the duodenal fold to the left into the gastrosplenie omentum, \(o\), where it ramifies: the clief part of the duodenal pancreas follows the curve of the gut, but ramifies in its wide messentery, d. In the Cavy, where the duodenal loop is longer and narrower than in the Rat, the included portion of pancreas reminds one of the disposition of that in the Bird. In the Capybara the resemblance is less because the duodenum is shorter, and the corresponding part of the panereas is small: the transverse and larger part of the gland is also more compact than in most Rodents. In the Porcupine the duct of the larger part of the pancreas enters the duodenum far from the pylorus. In the Beaver the panereas is of considerablc extent, measuring in length nearly 2 feet, and following the course of the duodenum down to the iliae region and up again as far as the umbilical, being attached to the intestine by a process of mesentery : it is thin and narrow, and has one small branch or process lying parallel with its body where it passes behind the liver, and a few others at the curvature of the duodenum. Its duct, somewhat larger than a crow-quill, enters the small intestine at the extremity of the gland, 1 foot and 9 inches from the pylorus, and 1 foot and 6 inches from the termination of the ductus eholedochus. \({ }^{3}\) This is the extreme of distance fiom the pylorus and bile-conduits of the entry of the panereatie secretion into the intestinal tract, which has been obscrved in Mammals: the character prevails in the Rodent order, and Physiologists have availed themselves of it in the Rabbit in

\footnotetext{
1 cevext. p. 98. \({ }^{2}\) clxi". p. 19.
}
experimental research on the action of the bile in the intestine before its admixture with the pancreatic secretion. Most Insectivora also show the flattened branched form of the pancreas in the broad membranes suspending contiguous organs: it is shown in a large snouted Shrew, in fig. 323, p. In the Hedgehog one of


Pancras of the Rat (oatural slze), shown by throwing up the duodewum and duodenal mesentery, ccixxi,
the duodenal branches hangs freely from the mesentery with an entire investment of peritoneum. \({ }^{1}\)
In the Sloth the left end of the splenic portion of the pancreas has an entire serous coat, and is somewhat loosely suspended from the back of the epiploön: the duodenal portion is narrower. In Myrmecophaga the transverse or splenic portion is long and
narrow, eonnccted with hoth epiploön and stomach : the duodenal part follows the curve of the gut.

In Cetacea the pancreas, like the liver, becomes more compact in form: it is unusually long, flat, rather narrow but thick, with its left end near the spleen, and attached to the first gastric cavity : it crosses the spine at the root of the mesentery, hehind the second and third stomachs, to the right, following, or expanding at, the curve of the duodenum, to which it adheres, and sending its duct to join the hepatic near the entry into the dilated part of the duodenum.

In a half-grown Dugong I fonnd the splenic part of the pancreas seven inches in length, thick and ohtuse at the left, and where its diametcr was two inches, and gradually diminishing toward the duodenal part: thic duct is wide, and terminates on the same prominence with the bile-duct, and at a greater distance from the pylorus than in Cetacca. The pancreas of the elephant shows more of the rodent than of the ungulate type of the gland. It consists of soveral masses not very closely connected with each other, from which separate ducts are given off, which unite into two conduits: one of these pours the sceretion into the upper eompartment of the biliary pouch, fig. 366 , where it is mixed up with the hilc therein contained preparatory to its introduction into the intestine, while the other opens into the duodenum ahout two inches lower down. In the Rhinoceros the transverse or splenic part of the pancreas is the largest, in length nearly two feet: the duodenal part, about half that length, extended at a right angle, chiefly backward (saerad) expanding within the process of the peritoneum, eonnccting the duodenum to the enormous cecum. The duet of the splenie portion entered the duodenal fossa common to it and the hepatic duct; the duct of the smaller portion terminated about two inches from the other, but at the same distance from the pylorus. The pancreas in the Hyæna and Tapir resembles that in the Rhinoceros; nor is there any material modification in the Horse: the descending duodenal portion is relatively broader, and lies over the right kidney. In the Hog the duodenal part is narrower, hut longer: the splenic part is broad and hifurcate, sending downward, or sacrad, a process as far as the left emulgent vein. In Ruminants the divisions of the hroad and flat pancreas are less defined: the descending process comes off rather from the duodenal side of the gland. In the Giraffe the duodenum reccives the comhined hiliary and pancreatic secretions ahout ten inches from the pylorus.

The pancreas in Carnivora is long and narrow, hut continues
of a more defuite and compact form than in Ly. or Liss-encephala: its duodenal and splenic divisions are, however, well marked and suhequal: the former usually describes a circle, as in fig. \(351, e\), following that of the comparatively long and loose duodenum; the latter, ih. \(f\), is straight and transverse in course: botlo portions are triedral, and have an entire, or nearly entire, scrous coat; and in some species this is continued from one of the angles as a narrow suspensory fold of the gland, from the posterior part of the great omentum in the splenic portion. \({ }^{1}\) In the Lion and most Felines, the duct of the annular part sometimes communicates with that of the splenic part'at two points, and the main duct communicates with the hile-duct, before entering the intestine. In the Dog the duodeual portion follows the descending course of that gut, and is longer than the splenic division, which it joins at a right angle: the ducts of each part unite hetween the duodenal coats, hefore joining the bile-duct, which is distinct external to the duodenum, and can be separately tied. Cuvier notes, as a rare structure or anomaly, a lateral reservoir for the pancreatic secretion in the Cat: its duct, ahout an inch and a half in length, communicated with the common duct formed by those of the two parts of the pancreas, which joins the hile-duct, as in the Lion. The dilatation or sac hetween the tunics of the duodenum in the Seal-trihe is common to the pancreatic and biliary secretions.

In the Aye-aye the pancreas is a broad thin gland, extending and expanding from near the spleen to the duodenum, and thence continued, as the "small paucreas,' a little way beyond the entry of the duct, which is close to that of the gall-duct: here the gland sends off some short narrow processes into the fold of the mesentery : it is, howe ver, more compact, less ramified and diffused, than in Rodents. The duodenum heing relatively shorter and less loosely suspended in hoth the Aye-aye and Lemurs, the part corresponding to the 'sinall pancreas' is less developed than in Lissencephala: hut it is more developed than in the true Quadrumana, in which the duodenum hecomes still more confined in position. The left end of the pancreas is rather loosely suspended in both Lemurs and Platyrhines: in Catarhines it has only a partial covering from the cpiploön, and the gland acquires its fixedness and compactness of form which characterise it in them. Here the duodenal or small pancreas, fig. 381, \(h\), is reduced to an enlargement called the 'head,' and which occasionally follows in a short curve the hend of the duodenum: it more rarely repeats
the detached condition which prevails in some lower mammals : the splenie portion, ib. pa, contracts near the spleen, sp. The thick upper border receives in a groove or canal the splenic artery and vein. The main duct traverses the substance of the gland nearer the lower than the upper border; it is commonly joined near its end by the duct from the lesser pancreas, or 'head,' \(h\) : but the homology of this with the duodenal pancreas of lower mammals and birds is sometimes instructively exemplified by the independent entry of its duct into the


Thascreaf, exposed by ralsing the stomach; Hurana. cxhvili", duodenum, as in fig. 382, в, \(r\). In the ordinary arrangement the duct of the larger, \(l\), unites with that of tbe lesser pancreas, and the common pancreatic duct penetrating the duodenal tunies joins the common bile-duct at the ampulla, before entering the intestine, as shown in fig. 376 . In the variety B , the duct of the larger pancreas, \(b\), alone has this relation with the gall-duet, \(a\) : in a rarer variety, c , the common duct of the pancreas, \(b\), opens distinetly from the common bile-duct, \(a\) : in a still rarer anomaly, \(D\), the duct of the lesser pancreas rcceives tributaries from the larger pancreas, becoming a tube of equal size, and the two, \(b, c\), unite, before the usual junction with the bileduct, \(a\). The proper coat of the pancreatic duct is a firm tissuc of interwoven, mainly longitudinal, fibres; with an outer loose areolar covering and an epithelial lining. This, in


Farleties In the termination of the pancreatic duct Man. Coxcri. the minute beginnings of the carrying system, consists of columnar cells so paeked that their ends next the duct-cavity present a penta- or hexa-gonal pavement, fig. 383. The initial ductlets arise from the interspaces of the follicular or cell-structure of the
gland, receiving the contents of the cells, which, as in the liver, are the agents operating upon the blood-coustituents so as to convert them into 'pancreatic juice,' Hyde Salter, who found


Portion of epithelizm linfag o small duct 2. 400 th of an inch in dinmeter. From a Rabbit, lifag, 300 díart, coxxxt.
illustrations of the ultimate structure of this gland. Fig. 384 shows a group of follicles from the pancreas of a Rat, viewed so as to bring their central cavity into focus. The average size of a pancreatic follicle is \(\frac{1}{50}\) of an inch: they are commonly arranged in groups of very various numbers.

In the follicles proteine matter is formified or developed as selective cells, of from \(\frac{1 \sigma^{2} 00}{}\) to \(\frac{1}{2000}\) of an inch


Pancreatle follicles; Rat. Magn. 150 dlam. cexxyr
in the thin ramified plates of the Rodents' pancreas the best condi-


Selectlve cells from the prucreatle follicles of the Rat, Magra 100 diam. \(00 \times x=x\).
tions for microscopic scrutiny, has given the following amongst other


Utimate lobule or acinus of the pancreas of a House. Mrga, 180 diam cexxxi.
in diameter subcompressed, rounded or polygonal in shape; which escape by rupture of the follicle. These cells slightly increase and become filled by opaque granules, fig. 385, resembling the granular contents of the free sccretion, which granules appear to be liberated by the solution and disappearance of the cell-wall.

The spaces containing both follicles and cells are circumscribed by productions of a basilemma defining the ultimate lobules or 'acini' of the pancreas: in one of these, fig. 386, may be secn a group of follicles containing two results of formifaction, called 'stages of sclective or epithelial cells.'

The following are among the later and more exact analyses of the paucreatic secretion from a carnivorous and a herbivorous species of mammal :-
\begin{tabular}{lr} 
Pancreatic juice of dog (Schmidt) \({ }^{2}\) \\
Wator & \\
Solid rcsidue & \(900 \cdot 76\) \\
Organic matter & 99.24 \\
-90.38 \\
Inorganic & 8.86
\end{tabular}
\begin{tabular}{lr} 
Pancreatic juice of ass (Frerichs). & \\
Water & 986.40 \\
Solid rebidue & 13.60 \\
Fat & 0.26 \\
Alcohol extract & 0.15 \\
Water extract & 3.09 \\
Soluble salts & 8.90 \\
Insoluble salts & 1.20
\end{tabular}

Frcrichs' 'water-extract' and Schmidt's 'organic matter' signify a substance resembling albumen and cascin, but not identical with ptyalin. The pancreatic sccretion differs from the salivary in containing more than double the amount of solid residuum, in which albumen and casein are abundant; while they exist in very small quantity in saliva. Saliva is neutral, or contains a little alkaline carbonate: the pancreatic secretion contains a littlc free acid. Saliva contains sulpho-cyanide of potassium; in the pancreatic fluid there is none.

This fluid completes the process of converting amylaceous
In using the terms 'cell' and 'nuclente cell' I would not be understood as implying that such are progeny of previons cells, owing their origin to a genetic process inberited from 'one primordial form into which life whs first breathed (ccxin'. p. 184).' Tho cell is one of the forms in which proteine matter in solution may be aggregated, with limitation of size and definition of shape; such forms difforing from crystals in being rounded instead of angular, as shown in the instructive experiments of Ruiney (ccix'. p. 0.) Accordiugly, to expriss this act, I use, instead of 'crysinllise,' the word 'formify,' for crystallisation ' formifaction,' for crystallising 'formifying': such terms imply, simply, the fact of the assumption of the forms called 'grinule,' 'corpuscle,' monad,' 'globule,' ' disc,' ' cell,' 'nucleus,' ' nucleate cell,' \&c. ' Formifed particles' cling, like crystals, to the fres surface of the carity containing the solution, and are than tormed 'opithelial cells': such surface seems favourable to the initiation of the formifying prucess: but a large proportion of the results of such process is manifested iu the free statc, like the fine crystals that follow concussion of water cooled gmadually and quietly below the freeaing point.

\footnotetext{
"Clumi".
\({ }^{3}\) cLxMIt".
}
matters into sugar, which was commeuced by the saliva. Bernard maintains that it also exercises the more important office of emulsifying or saponifying the neutral fatty matters contained in the food, by decomposing them into glycerine and their respective fatty acids, and so rendering them absorbable.' But the latest experimenters are agreed only in regard to the first result, and the chief office of the pancreatic secretion in digestion still awaits determination.
§ 340. Peritoneum and appendages in Mammalia.-The abdomen, as a definite and circumscribed visceral chamber, is peculiar to the present class: the heart and other thoracic viscera are shut out by the complete transverse septum or 'diaphragm ' from the major part of the trunk-cavity, to which the term 'abdomen' is now restricted. The serous membrane called 'peritoneum,' which lines this cavity, is reflected

387

Transverse section of abdomen throngh the first lumbar vertebra; Human. cox*xp.
 from the walls upon the principal abdominal viscera to some of which it gives a complete, to others a partial, investment. In the human subject the peritoneum, as in the section shown in fig. 387, passes over the fore part of the abdominal aorta, \(i\), the postcaval, \(h\), and the kidneys, \(k, k\); but is reflected so as to inclose the liver, stomach, spleen, and major part of the intestinal canal : it is continued from the transverse fissure of the liver upon the lesser curvature of the stomach to form the gastrohepatic omentum. At the level of the section figured, one part, \(f\), is seen passing forward from the left kidney to enclose the spleen, \(b\), and the stomach, \(a\) : the opposite border, \(e\), is the part of the lesser omentum inclosing the hepatic duct and vessels, \(c\). Another fold of peritoneum is reflected from the upper and fore part of the abdomen upon the umbilical vein of the fœtus, which afterwards degenerates into the 'round ligament,' \(d\); the supporting fold, \(g\), being continued into the suspensory fissure of the liver, and forming its 'falciform' ligament: other folds continued from the diaphragm upon the opposed convexity of the liver' are its "coronary" and 'triangular' ligaments. The lesser omentum, more properly the 'mesogastcr,' or peritoneal fold which mainly suspends the stomach and conveys thereto its vessels, also covers and suspends the splecu; and this part of the mesogaster is termed the "gastrosplenic omentum,' of which, in Man, only the left or outer layer forms
\[
\operatorname{cuxry}^{\prime \prime}:
\]
the splenic covering. Both layers recede to include the stomach, fig. \(388, b\), whence they are continued from the line of the greater curvature over the fore part of the abdomen, and are folded back to the colon, in the form of a large flap or apron, including vessels and more or less fat, forming the 'great omentum,' ib. \(o, o\) : it is pcculiar to the Mammalia, eoexists with the diaphragm, and may bave useful relations as insulating the peristaltically winding intestines from the constant respiratory movements of the abdominal walls. The posterior returning folds of the omentum meet the transverse arch of the colon, recede and embrace that intestine, as the anterior or descending folds had embraced the stomach; the colonic folds are continucd back as a suspensory 'mesocolon;' the upper layer of the fold passes over the fore part of the duodenum and pancreas to the posterior abdominal walls, the lower layer is continucd a short way down those walls, and is again reflected forward to the small intestines as the anterior or upper layer of their suspending fold called 'mescntery.' The relations of the peritoncum to the pelvic viscera show no class-specialities. Large omental processes with accumulated fat are never continued from the urinary bladder, and rarely from the pelvic or other regions of the abdominal walls, as they are in most Reptilia: \({ }^{1}\) small ones from the


Liver raleed to show the stomach and great onentum, Human. OXLVIL1" serous coat of the large intestine are developed in many Ungulates, and are called 'appendices epiploice' in the human subject. The scrous sac of the abdomen communicates with the mucous canal of the oviducts or ' fallopian tubes,' but is elsewhere closed in the female, and is a sbut sac in the male mammal. Productions of this sac, however, accompany the testes into the scrotum; but are insulated by oblitcration of the canal of the spermatic cord in Man.

The above leading features in the disposition of the peritoneum offer modifications in the present class. In the insectivorous

\footnotetext{
\({ }^{1} \times x\). vol. iii. pt. ii. p. 221.
}
species of the Ly- and Liss-encephala, with little or no cæcal distinction of the intestines, the suspensory fold of the abdominal alimentary canal may be almost as simple as in lizards; e. g., in the Shrews, fig. 389, m. The omentum is restricted to a very small duplicature from the spleen, \(s\), supporting some processes of the ramified pancreas. When the cracum and large intestines are more developed, then the peritoneum, reflected from the back of the abdomen, appears to make a half twist, fig. 380, \(c\), to form


Ablominal cavity, and mesentery. Fyarosorex Heymant, mat, size. cexyn".
the mesocolon, behind which the duodenum passes to become the loose jejunum, which, with the ileum, is suspended on the mesentery. The meso-duodenum, continued partly from the upper layer of the mesocolon, is here of a size characteristic of the peritoneum in many Mammals, but is reduced in Quadrumena, and is almost lost in Man. The great omentum or epiploön is larger in Rodents than in Shrews; but is transparent, and with little or no fat: it includes, in Rodents, pancreatic processes,
ih. o, with the spleeu. In the Kangaroo it is of moderate size, continued loosely from the stomach to the transverse colon, hut not cxtended heyond that part. The posterior layer lies hetween the stomach and the intestines, aud exemplifies one of the uses of the epiploon, as it prevents these parts from interfering with each other's motions. The anterior layer generally contains more or less fat. In the Petaurus the epiploön is continucd from the great curvature of the stomach and the commencement of the duodenum. In the Phalangers it is of considerahle extent and is usually loaded with fat. In the Opossums I have found it generally devoid of fat, when this substance has heen accumulated in other parts. In the Phascogales and Dasyures the epiploön is of moderate size, and contains little or no fat. The epiploon is attached to the lower arches of the scveral divisions of the stomach in Cetacea, is always devoid of fat, and is of limited extent: the suhdivided spleens, fig. \(355, h, i\), are scattered in it, as in a net : it is in parts reticulate. The epiploön is small and does not cover the intestines in Sirenia, Proboscidia, and Perissodactyla. It is, also, of limited extent in the Hog-trihc. In fatted Sheep it is larger and is reticulated with adipose matter. It is attached, in Ruminants, to the right side of the left division of the rumen, and along its anterior or ventral convexity, passing from the right of this to the ahomasus and the heginning of the duodenum: it does notcover the intestines, and is commonly found crumpled up heneath the paunch. The reticulate structure of the great omentum appcars to he natural and pretty constant in the Dog and some other Carnivora: in the Seal the omental fold is thin and devoid of fat.

The peritoneum lining the clastic ventral wall of the ahdomen in the Elephant and Rhinoceros is of unusual thickness and strength, the arcolar tissue connecting it to adjacent structures presents an aponeurotic firmness: the frec surface of the serous memhrane I found to he white and opaque: \({ }^{1}\) it is generally transparent and opaline or colourless. In some hibernating Rodents a fold of peritoneum extends forward from each lumbar region, covering the lateral convolutions of the iutestine as far as the umhilicus, and towards the beginning of winter hecoming the seat of an ahdominal deposit of fat: they may scrve with the ordinary omentum the double purpose of nonconductors of heat and a store of nutriment.
[Singe Hhents T-DD were printed off, the excellent Paper CExxaxi" has appeared, showing that the deciduons teeth of the mole, though too minute to seem of use, are not shed until after birth. In other respects Mr. Sponce Bate confirms the ealpine formula given at p. 304.1
\[
\mathrm{r}^{\prime \prime} . \mathrm{p} .37 .
\]

\section*{CHAPTER XXXI.}

\section*{ABSORBENT SYSTEM OF MAMMALIA.}
§ 341. Lacteals.-In Mammalia the intestinal villi constitute a modification of surface intimately related to the formation and more especially to the absorption, of chyle. Such villi, e.g. of a calf killed after being fed with milk, exhibit, when magnified as in fig. 390, a central canal, dilat-


Intestinal vili with lacteal canal, Cals, magn. clxxymi". ing towards its end, \(c\), white or opaque with chyle: it appears to be an excavation in the suhstance of the villus, and the only definite tunic is the limitary memhrane, \(\alpha\); from which the epithelium (shown in fig. 350, o) has heen removed. The columnar cells of which this epithelium is composed are the direct agents of ahsorption. Each cell hecomes gradually filled hy a clear globule of refractive fluid, like oil. The scattered cells which are first filled, cause parts of the surface of the villus to glisten, as in fig. 391, in contrast with the darker tracts of unfilled cells. The oil-like globule next undergoes changes, represented in the cell-series, fig. 392, which mainly consist in a subdivision or reductiou of the glohule, \(d\), to the granular state in \(a\), the nucleus of the columnar cell remaining unchanged. These granules, or molecules, escape hy rupture or solution of the cell-wall, penetrate the limitary membrane, hecome aggregated in the hasal tissue of the villus, and finally enter the lacteal canal. Dead animal memhrane does
not prevent the effects of the ever-present, ever-active force which manifests itself, e.g., in the combination of an alkaline solution with a less alkaline fatty emulsion previously separated by such membrane: and the cell-wall would offer much less physical resistance to the diffusive interchange than the membrane used, e.g., in Mattcucci's experiments. \({ }^{1}\) But, besides the act of physical imbibition, with which the intussusception of aliment by monads or nucleate cells is closely related if not identical, there are also assimilative changes effected by these organites. Viewed by the microscopic aids of the last century they were thought to be orifices by which the chyle was sucked up and then conveyed by beginnings of the lacteal absorbents to the central space or 'trunk,' of which Cruikshank saw 'bnt one in


Inteatinal villus, Dog, magn. 400 dian two hours after feeding. oxdwint each villus' of a female who had died suddenly a few hours after a full meal (clxxvini"): occasionally two have been seen with looped unions in one villus: in Mammals with broader villi the chylc-cavity is reticulate. These trunks are, however, the first definite absorbent channcl, and, acquiring proper walls, unite together at the roots of the villi to form a network at the areolar basis of the mucous membrane, whence branches proceed to perforate the muscular coat, and take a transverse course to the line of attach-


Epltictlal cells of a villus, during absarptlon of fat, magn . sso dlam, exlvin". ment of the mesenteric layers. There are, also, superficial absorbents of the serous coat, which affect a longitudinal course and unite with the lacteals in their passage to the areolar.interval of the layers of the mesentery: here they traverse the mesenteric glands, and progressively unite into a plexus surrounding the superior mesenteric artery. The lacteals and lymphatics from the cercum and colon, which also traverse absorbent ganglions or
glands, ultimately join the mesenteric lacteals, and the contents or the whole intestinal system of absorbents are carried by a few trunks to a 'cliyle-receptacle,' fig. 399, 11, at the root of the mescntery, whence are continued the beginnings of the 'thoracic duct.'
§342. Lymphatics.-These differ from the lacteals only in the nature of their contents, and even this is a temporary or contingent difference, for the lacteals convey a clear lymph, when the function of chylification is suspended. The gastric absorbents accompanying the right gastro-epiploic vessels communicate behind the beginning of the duodenum with 'lacteals' and absorbents from the liver: the gastric absorbents from the lesser curvature join those of the liver descending 'Glisson's eapsulc:' the absorbents accompanying the left gastro-epiploic vessels unite with those from the spleen. The pancreatic absorbents communicate partly with the splenic ones, partly with the duodenal lacteals. The deep-seated absorbents of the liver, continued from the initial plexuses already adverted to in the portal fissures, fig. 373 , emerge with the hepatic ducts, and are joined by those of the gall-bladder and by many of the superficial absorbents: they traverse glands in 'Glisson's capsule.' Some of the superficial absorbents ascend along the coronary and lateral "ligaments ' and enter the thorax, independently of the trunks of the deeper-seated ones. They combine with the absorbents of the heart and lungs and those accompanying tbe 'internal mammary' vessels to form three or four trunks communicating with the thoracic duct. The direct work of taking up waste tissues is done by indepen-

393


Inithal plexus of Lesmphatics. cuxvin". dent organites: the earliest recognition of absorbents is as intercellular spaces or areolæ (vol. i. p. 455), or serous cavities; the canals continued from which, when filled by injected fluid, resemble \({ }_{b}\) a 'plexus,' such as Breschet has delineated in figure 393: such plexiform beginnings are commonly superfieial, as beneath the skin and the serous surface of organs: in the substance of organs and tissues the origins are 'lacunar': in both forms the free surface shows nucleate scale-cells. When a distinct wall can be defined, the lymphatics of Mammals are seen to be more numerous, minute, and "highly finished' than in lower Vertebrates. And, though remarkable for their almost transparent delicacy, their walls are strong, and in them may be distinguished fibrous layers
and a lining membrane : the latter consists of flat and nucleate epithelial cells, adlerent to a reticulate subfibrous membraniform basis: it presents a smooth surfacc, like that of a serous membrane, to the naked eye. The fibres of the middle tunic affect a circular arrangement, are contractile like other fibres of the 'smooth systcm,' and are also elastic. An outer tunic may be defined by

the longitudinal course of the fibres of the condensed areolar tissue mainly forming it. In the thoracic duct longitudinal fihres of the 'smooth' kind are distinctly superadded to the outer coat, and a reticulate membrane has been detected hetween the inner and fibrous tunies. In the present class, the inner tunic is folded to form many and effieient valves, of the semilunar' form, and commonly in pairs, fig. 394, rarely single ; it is reflected from
 the fibrous coat half-way across the area of the vessel and then folds back upon itself to return to the wall, which it continues to linc until it forms the next valve. The two layers of the fold firmly adhere, and offer great resistance to any pressurc upon their concavity.
 In figure 395, a shows a sidc-view, \(b\) an oblique, and \(c\) an end-riew of the usual disposition of the valycs in pairs in distended lymphatics, when their free margins mect and close the area of thic vessel to prevent the lym,h flowing back. Mr. Lane has figured three varieties in the valves of lymphaties, fig. 396, near their entry into the conglobate bodies called 'glands.' lin \(A\). onc fold, \(b\), was less than the other \(b\), and the margins of the ontstretched folds did not meet or perfectly
close the vessel, the inner surface of which is shown at \(a\) : in B the folds were continuous forming a subcircular valve, and contained hoth fibrous and serous tissucs: in c, besides the ordinary pair of semiluuar valves, \(b, b\), there was a subcircular fold, \(c\).
§ 343. Absorbent ganglions.-These bodies, also called lymphatic or lacteal 'conglobate glands,' are much more numerous in Mammals than in other Vertebrates. In the limbs they are chiclly situated at the flexures of the joints; and, being connected by a looser tissue to surrounding parts, elude pressure by the freedom of motion so allowed. They occur in the neck and head external to the cranial cavity : in the thorax at the anterior and posterior 'mediastina,' and at the bronchial trunks where they are usually discoloured by black carhonaceous matter. In the abdomen they are found in the mesentery, near the spleen, and along the side of the aorta, post-caval, and iliac vessels. In the neighhourhood of the liver and gall-bladder post-mortem exudation tinges them yellow: as a rule, they are of a pinkish grey tint. The absorbents which enter the gland, fig. 397, \(\boldsymbol{B}, a, a\), are commonly smaller and more numerous than those that quit \(i t, i b\). \(e\) : the former, or 'vasa inferentia divide into small hranches previous to entering. They then finely ramify, lose their proper tunics, and hecome continuous with those lacunar channels or 'vacuoles which appear in the cell-mass of the developing glands. \({ }^{1}\) The preponderance of the fibrous tissue left, as it were, in the peripheral part of the gland gives ground for the distinction of a 'cortical' from a 'central' portion. But there is no definite boundary-line: septa extend from the 'cavernous' capsule, at first lamelliform in the cortical part and becoming cord-like or 'trahecular" in the central part. In the latter, the lymphchannels become larger, especially in the mesenteric glands, and have been termed 'loculi:' they are large in the mesenteric glands of the Cetacea, though not in the degree, or with the anatomical relations, described in clxxiv", p. 27. They are paved by the flat nucleate cells, and usually contain a whitish pulpy matter: minute plexiform vessels, surrounding the ' loculi,' form the beginnings of most of the 'vasa efferentia,' ib. \(e\); a few are direct contiuuations of the inferent vessels.
§ 344. Disposition of Lymphatics.-In the Mammalian class the anatomical disposition of the lymphatic system has been most complctely traced out in the human subject. Successfully injected, the superficial lymphatics of the lower limb present the general arrangement shown on the fore-part of

\footnotetext{
CLXXPI'. p. 152.
}
the leg', in Mascagni's magnifieent work (clxxi"), from whieh fig. 398 is redueed. On the inuer side they tend to converge


Lymplatut glamda Injeeted with mercury. ox \(x \times 1^{* *}\).
about the vena saphena, and, with the deeper-seated ones, mainly unite into trunks whieh again subdivide to enter the 'inguinal glands?' fig. 399, 1, 2. Their efferent trunks affeet the course of the iliac vcssels, eonverging toward and uniting by cross branches with those of the opposite side, and communicating with the laeteal system, at tbe 'receptaculum chyli,' 11 , whenee proceed the origins of the thoracic duct. This, in Man and most Mammals, enters the thorax between the aorta and vena azygos, and lies behind the


Supericinl lymphatice of the lower extremity, clasi". casophagus in the posterior mediastinum. It is frequently tortuous and rarely single thronghout. It often splits into two or more branches, whieh after a longer or shorter course rennite; this division and reunion may be two or three times repeated. The principal eanal, in Man, fig. 400, \(a, a\), mounts into the eervieal region in front of the vertebral artery and veiu to the level of the seventh cervical vertebra, opposite to which it begins to form a eurve, first forward and outward, then downward
and inward, over the subclavian artery to reach tbe angle of union between the left subclavian, \(s\), and internal jugular, \(j\), veins, at which point it empties itself into the venous system by one or more branches. The corresponding veins on the right side also


Absorbent trumk of ingelnal and lumbar regions, with receptaculum chyif; Humah, owxx ,
receive lymph, but usually by a short trunk, ib. c. There have been observed, in Man, varieties which are more constant in some lower Mammals, as, e. g., a double 'thoracic duct,' one terminating in the left, the other in the right subclavian vein; a bifurcation of the duct at a higher or lower level, one branch terminating in the angle of union of the subclavian and internal jugular veins of the left side, the other emptying itself either into the corresponding point on the right side or joining the rigbt lymphatic trunk,
close to ite termination; a single trunk terminating altogetler on the right side of the conflux of the internal jugular and subelavian veins, in which case a short lymphatic trurk is found on the left side similar to that which usually exists on the right, constituting a partial lateral inversion or transposition confined to the trunks of the lymphatic system. The right lymphatic trunk nearly equals the thoracic duct in diameter ; it is, however, not more than half an inch in length. Its situation is in the neck at the level of the lower edge of the seventh cervical vertebra, lying close to the inner cdge of the scalenus anticus,' and opposite to the union of the subclavian and internal jugular veins, at which point it terminates in the venous system. It receives the lymphatics of the right upper extremity and of the right side of the head and neck, those from the right lung and right side of the hcart, some few from the right lobe of the liver, and from


The thoracle diat and right ismilintic trank ; Euman Clax".
the exterior and interior of the right upper half of the body. Sometimes the trunk of the cervical lymphatics, fig. 400, \(c\), enters separately the jugular vein, \(j\).
§ 345. Mammalian modifications.-The lactcals in Dasyurus viverrinus converge to two subclongate, dark-coloured mesenteric ghands; onc of them situated near the pylorus, at the cnd of the pancreas. The cysterna chyli is plexiform in the Marsupials which I have examined; in the Kangaroo it lies upon the crura of the diaphragm, and extends upon the right side above the diaphragm into the thorax. Two thoracic ducts are continued from the cysterna, one along the left, the other along the right side of the bodies of the dorsal vertebre. The right duct crosses the seventh vertebra and joins the left, which again divides and reunites, forming a slight plexus, before fually terminating at the conflucnec of the left subclavian and jugular veins. The double
tboracic duct has been ohserved, with a similar arrangement, in the Dog and Sea-otter. In most Carnivora the mesenteric glands are aggregated in one mass, known to the old anatomists as the "pancreas Asellii: in the Weasel it is in two masses, and in the Cat, Ichneumon, and Seal has been found more subdivided. In these, however, there is one principal gland or "vasoganglion," the efferent vessels of which quickly unite into a trunk grooving its dorsal surface in the Seal, from which two main canals proceed to the thorax. In Ungulata and Quadrumana the mesenteric glands are numerous. I have noticed a large one in the mesocolon of the Echidna, near the rectum. The chyle-receptacle is large and cavernous, sometimes hilocular, in the Horse: the thoracic duct has shown varieties like those ahove described in Man, but it always terminates in the precaval vein at the union therewith of the two jugulars. In the Ox the lymphatic trunk perforates the diaphragm by an aperture distinct from that of the aorta: it usually hifurcates, sometimes hecomes plexiform, in the tborax: the two divisions diverging to the right and left innominate veins formed by the junction of the jugulars and axillaries. In the Hog the thoracic duct has been observed to terminate in the azygos vein. The orifice of communication with the venous system is usually defended by a pair of semilunar valves; hut varieties have heen noted, and, after death, hlood has heen observed in the thoracic duct of the Horse.

Independent movements of contraction and dilatation bave been witnessed in the chyle-receptacle and lacteals of the \(\mathrm{Ox} ;{ }^{1}\) but no rhythmically pulsating sacs have heen detected in the ahsorbent system of Mammalia, nor have other points of communication with the venous system been uncontrovertibly determined, save those ahove described.

\section*{CHAPTER XXXiI.}

\section*{circulating system of mammalia.}
§ 346. Blood of Mammals. The blood in this class is hot and red, with a proportion of organic matters to the water as great as in Birds, and more abounding in blood-discs, which, as a rulc, are of a circular form, and of smaller size than in Ovipara, consisting of viscous hematosine without a cell-wall (vol. i. fig. 8, a, b). Besides the ordinary red dises there occur pale or granulated vesicles, the appearances of which, in the blood of a Perameles examined by me in 1838, 'suggested the idea that such blooddise was undergoing a spontaneous subdivision into smaller vesicles. \({ }^{11}\)

The existence of a capsule, or rather a difference between the peripheral and central parts, in ordinary mammalian blood-dises, seems to be demonstrated by submitting them to a solution of magenta, when the contents become a faint rose colour, with a morc decply tinted outline, at least in part of their circumference: occasionally a definite part, like a uucleus, is recognisable.

In the highest class of Vertebrates the scveral tissues of the body are best defined and, so to speak, most highly finished: the condition of organic matter by and through which the acts of addition and subtraction are performed in relation to the growth, maintenance, and renovation of such tissucs is the formifice proteine substance, or organite. It would secm that mere fluid would not serve the purpose: the more solid particles,

\footnotetext{
cluxts" \({ }^{\prime \prime}\), 474. This ilea has received confirmation in various degrees; e.g., by Quekett (' Med. Gazrtte,' Jununry, 1840), by Martio Barry ('Phdos. Trans.' 1840, p. 606), by Wharton Jones (ib. 1846); and more recontly by Dr. Roberts, of Manchester, in his instructivo researches, aided by the effects of a solution of magenta on the blood. - The pele corpuscles wore more strongly tinted than the red ; and their nuclei were displayed with great clearnces, dyed of a mangificent carbuncle-red. A number of the nuclei wero soen in the process of division, more or less advanced, and in some cells' (my 'graminto vesicles') ' tho partition bad issued in the production of two, three, or four distinet secondary nuclei. Thero was evidence that these secondary nuclei were set frea in the blood, and, by subsequent enlargement and chango of form and chemical constitution, developed into rod blood-discs.'--Procecdings of the Lit, and Phil, Society of Murchestor, 1866.
vol. III.
L. \(\mathbf{L}\)
}
called blood-discs, added to the 'liquor sanguinis,' move in single file along the terminal capillaries of the circulating system and here come into the requisite contact with the tissues for the interchanges in question. One visible result of the giving and taking through attracting and repelling forces, usually defined as 'vital,' ' is the change of colour which here takes place, viz., from florid to modena, in the general system, and the reverse in the respiratory one. Agreeahly with this view of the function of the blood-discs we find them, in relation to the grade of histological development in the class, to he the most numerous and most minute relatively to the hulk of the body, in the present: in other words, the collective circulating surface effecting organic interchange is greatest in the hlood of Mammals.

The blood-dises are squeezed in the narrowest tract of the capillaries, and hy their elasticity resume their shape in the wider part: they are not constantly separated by plasma from the capillary wall, and the thickness of that wall is very inferior to that of the memhrane which experiments have shown to allow of endosmotic transit of matters. The mammalian hlood-corpuscle, as a general rule, is a circular disc; and, instead of heing swollen in the centre hy a nuclear part, is there thinner; the disc is cousequently slightly hiconcave : it consists of the alhuminoid coloured matter, insoluhle iu serum, called hematosinc, the particles of which have aggregated, according to their formifying forces, into the discoid shape. The colour of the individual hlood-dise is yellow; lighter in the middle where it is thinnest, deepening to a red tint only when light is reflected from a thickness resulting from an aggregate of many dises: the quantity of the discsubstance similarly affects transmitted light.

The average diametcr of the human hlood-disc is \(\frac{15}{3500}\) th of an inch (vol. i, fig. 8, a). I early availed myself of the menagerie of the London Zoological Society to test the characters of size in the Mammalian class, and communicated the two extremes, observed, e. g., in the Elephant and Pygmy Musk (ih. b), with some other instances from different orders, including Marsupials and Monotremes, so far as to determine the class-characteristic afforded

\footnotetext{
1 "Tous les faits les mieux constatés me semblent montrer que les globules durang ne sont pas de simples concrétions inertes de matière animale résultant d'une sorte de précipitation ou de coagulation sphéroidale; que ce sont au contraire des parties vivantes;' coxxmx. p. 80. Nevertheless if, as Acbarson thought be observed, (cixxximi) the white or granular globules should be a result of reaction of oil-like particles on proteine-matters in plasma, their manifestation of forces, though called 'vital,' wonld not be valid against an observed mode of 'spontaneous generation' or 'formifaction' of sucb globules.
}
by the size of the blood-discs. \({ }^{1}\) In every individual a certain range of size was presented, and the two extremes and the average were recorded: thus, in the Indian Elephant, the largest blood-dises were twice the size of the human, and the smallest was not less than \(\frac{3 \sigma^{2}}{360}\) th, the average being \(\overline{2 \sigma^{\prime \prime} 00}\) th of an inch. \({ }^{2}\) In the Chevrotain (Tragulus Kanchil) the average diameter of the blood-disc was \(\frac{\pi \frac{1}{18} 0}{}\) th inch. In the Giraffe the average size of the blooddises was \(\frac{1}{48^{2}-0}\) th inch, or nearly one-third smaller than those of Man; the two extremes were \(\frac{1}{7000}\) th (few in number), \(\frac{1}{4800}\) th of an inch (moré in number). 'The result of the examination of the blood of the largest of the ruminating tribe indicates that the size of the blood-dises relates to the condition of the whole organisation rather than to the bulk of the species. It would appear from the examination of the blood-dises in the goat, sheep, and ox, that an unusually small size of the blood-dises was associated with the peculiarities of the ruminant structure. \({ }^{13}\) This generalisation bas not been affected by later observations. Mandl \({ }^{4}\) had discovered in the Dromedary that the blood-discs were elliptic. I confirmed the fuct, giving the long diameter of the average-sized discs as \(\frac{1}{3800}\) th inch, the short diameter \(\frac{1}{6800}\) th incb; but I remarked that among the elliptical dises were a few of a circular form. Extending the obscrvation to the smaller South American species of the aberrant ruminant family, I found the elliptical form to prevail in the blood-dises of both Llama and Vicugna. \({ }^{5}\) In the latter the avcrage dimensions were, in long diameter \(\frac{{ }_{3} \frac{1}{3} \text {, }}{}\), short diameter \({ }_{00}{ }^{2}\) TT. Mr. Wharton Jones subsequently observed blood-discs of a circular form with the more numerous elliptic ones in the Llama. \({ }^{6}\) These exceptional instances to the Mammalian form of blood-dise are not associated with auy other approximation to the oviparous type: the oval kind are equally non-nucleate with the ordinary circular blood-dises, and adhere to the ruminant characteristic of minuteness of size. Within the limits of that natural group, it will be observed that there is a ratio between the size of tho blood-dise and that of the animal. But such ratio is quite inapplicable to the Mammalian class generally. If the Camelide repcat a reptilian shape of hood-disc, the Sloths have the largest blood-discs in proportion to the body: but neither one nor the other claracter occurs in the Monotremes and Marsupials which combinc the greatest proportion of oviparous characteristics in their Manmalian organisation. In the Echidna and Ornithorhyn-
\[
\begin{array}{lcc}
\text { ct.xxix'. } & \text { Ib. p. } 284 . & \text { Ib. p. 284. } \\
\text { cLxxxti", p. 1060. } & \text { (Ib. p. } 176 . & \text { cLI } \\
& \text { L. } 1.2 &
\end{array}
\]
ehus the hlood-dises are circular and average \(\frac{1}{3600}\) th inch in diam. : heing larger in proportion than in Man, though less than in the Sloths. The numerous and insignificant gradations of size of Mammalian hlood-discs between the two extremes noted in clxxix" have heen recorded, decimally, in ccxixix, vol. i. p. 84.
§ 347. Heart of Mammalia.-In Mammals, as in other Hzema tothermals, the venous and arterial parts of the vascular system have no communication, heyond the heart, save at the peripheral capillaries.

The right auricle is less definitely divided into 'sinus' and ' auricle' proper than in Birds, and the intervening valves, al ways less efficient against reflux from the auricle into the sinus, gradually disappear. The right auriculo-ventricular valve resembles in structure the left, as being membranous and attached by tendinous threads to muscle. Other differcnces hetween the circulating systems of the two hot-blooded classes are shown hy blood-vessels.

The heart, with its bag, or pericardium, is exclusively located in the thorax, and in many Mammals is more or less separated by a lohe of the lung, fig. \(308, n\), from the diaphragm, \(q\).
A. Heart of Lyencephala.-In the Ornithorhynchus, fig. 308, \(a\). \(b, c\), it presents a rounded ohlong, eearcely conical, form; it is situated in the middle of the fore part of the chest, parallel with the axis of the cavity, inclosed in a thin subtransparent hut strong pericardium. The right auricle, \(b\), is larger and longer than the left; its appendix is free and is slightly bifid. It receives the venous hlood hy three great veins; the left precaval, \(f\), descending hehind the left auricle, \(c\), to join the termination of the postcaval, \(h\); to the right of which the coronary vein also terminates in the auricle. The right precaval, \(e\), is joined to the left hy a transverse hranch, \(g\). There is a deep hat closed fossa ovalis near the upper extremity of the septum of the auricles; in dicating that the intra-uterine existence of the young was of longer duration than in the Marsupials. The right ventricle, \(a\), is capacious, with thin parietes. The tricuspid valve consists of two membranous and two fleshy portions: the smallest of the latter is situated nearest the origin of the pulmonary artery, and corresponds with the lesser fleshy valve in the heart of certain Birds (vol. ii. p. 188, fig. 92, \(m\) ) : it is attached to the whole of the side of the first or adjoining membranous portion. The second fleshy portion answers to the larger muscular valve (ib. fig. 92, \(l\) ). The two edges of the lower half of the second fleshy portion of the valve in the Ornithorlynchus are frec; but those of the
upper half are attached to the two membranous portions of the trieuspid valve; the margin of the membranous part of the valve is attached to the fixed wall of the ventriele by two small ehordm tendinex; and the strueture of the valve thus offers an interesting transitional state between that of the Mammal and that of the Bird. The origin of the pulmonary artery is provided with the three usual sigmoid valves, The left ventriele has very thiek parietes, which form the apex of the heart; the mitral valve is membranous; the larger flap is attached to two strong eolumne earner; the smaller flap also reeeives tendons from some smaller columnæ. The left auriele, \(c\), reeeives two pulmonary veins. In the Eehidna the free appendix of the right auricle is slightly indented. The terminal orifice of the right preeaval is proteeted by a membranous semilunar valve, extending from its left side. The museuli peetinati diverge from a strong faseieulus which extends from the appendix to the orifiee of the inferior eava; this faseieulus bounds the left side of a wide fossa ovalis, whieh is imperforate. The posteaval is proteeted by a large membranous Eustachian valve; the left preeaval terminates by a distinet aperture to the left of the preceding, and is also defended by a proeess of the Eustaehian valve. The inner surface of the right ventriele is more irregular than in the Ormithorhynchus; the free wall is attached to the fixed one by several columne earnea and short ehordx tendinex: the tricuspid valve is membranous, and eonsists of one prineipal portion attached to the exterior eircuinference, and a smaller portion elosing the outer angle; the free margin of the valve is attaehed to the extremity of a large fleshy column, arising by different roots from both the fixed and the fiee walls of the ventricle; a short fleshy columa is attaehed to the left exirmity of the valve; some ehorda tendineæ are fixed to its right angle.

The heart of Marsuphals offers \(n o\) peeuliarity in its general outward form. The apex is less obtuse in some speeies, as the Phalanger and Wmulat, than in others, as the Kangaroo. The serous layer of the perieardium is reflected upon the large vessels near to the heart. The fibrous layer of the perieardium adheres to the stemum. The appendix of the right auriele is always thivilod into two angular proeesses, \(a, a\), figs. 401 and 402 , one in front and the other behind the trunk of the aorta, o. The right auriele presents the following marsupial conditions:-There is no trace of a 'fossa ovalis' or an 'annulus ovalis,' 'and the absenee of these struetures, whieh are present in the heart of all xx. rol. ii, p. 62.
the placental Mammalia, relates to the very brief period during which the auricles intercommunicate in the Marsupials, and to the minute sizc, and in other respects incompletely developed state, at which the young marsupial animal respires air by the lungs, and has the mature condition of the pulmonary circulation established. The right and left auricles intercommunicate by an oblique fissure in the uterine embryo of the Kangaroo when two-tbirds of the period of gestation is past, but every trace of


Heart of the Kangaroo.


Heart of the Wombat.
this foetal structure is obliterated in the subsequent growth of the heart; so that in the mature animal the wide terminal orifice of the postcaval, ib. \(d\), is separated from that of the right precaval, ib. \(b\), by a simple crescentic ridge, ib. e, which forms a salient angle of the parietes of the auricle between these apertures. The orifice of the left precaval, ib. \(c\), is close to that of the postcaval, in a position analogous to that of the coronary vein in Man, which here opens into the left precaval. The right auriculo-ventricular valve is membranous, and its free margin is attached by fine 'chordæ tendineæ' to three mammillary 'columnæ carneæ;' these
in the Kangaroo, fig. 401, arise from the septum of the ventricles, but in the Wombat, fig. 402, the base of two of the 'columnz' is situated at the angle between the septum and the thin outer wall of the ventricle. The right ventrich extends ncarly to tbe apex of the heart in the Wombat, but falls short of tbat part in the Kangaroo. The ventricle is continued in a conical form, somewbat resembling a 'bulbus arteriosus,' to the origin of the pulmonary artery, \(f\), figs. 401 and 402, and projects beyond the general surface of the beart furtber than in ordinary Mammalia. The appendix of the left auricle is notched in the Kangaroo to rcceive the apex of this process, but not in the Wombat. Two pulmonary veins, \(i\), fig. 403 , terminate close together, or by a single trunk, at the upper and dextral angle of this auricle. The mitral valve is regulated by two short and thick mammillary columnæ, ib. \(k, k\), which send their tendinous chords to tbe margin and ventricular surface of the valve.

The ventricles and


Heart of the Wombat. auricles present the usual Mammalian proportions and relative thickness of the parietes. Three sigmoid valves are situated at the origin of the pulmonary artery, and the same number at that of the aorta.
B. Heart of Lissencephala.-In most species of this subclass \({ }^{1}\) the right auricle shows the modifications resulting from the return of the blood thereto, as in Lyencephala, by two distinct precavals, of which the left opens alongside the postcaval into the lower (sacral) part of the auricle, as in figs. 401, 402. In the Porcupinc a large 'Eustachian' fold is on the auricular side of the

\footnotetext{
Capromys is an exception, among the Rodents: at least in the specimen I dissected, the blood from the lead and fore-limbs entered the auricle by a single precaral veiu. cxxx". p. 72.
}
postcaval aperture, and a slight ridge indicates the remains of the upper fold, forming the boundary of the "sinus venosus." In the great Anteater I observed that the resemblance to the auricular valve in Reptiles was rather closer:-the entry of the postcaval was guarded as usual by the Eustachian valve, or homologue of the lower of the two semilunar valves between the sinus and the auricle in the Crocodile (vol. i. fig. 339): and here there was also a narrower valvular fold or ridge on the opposite side of the postcaval orifice, answering to the second valve (ib.): a ridge is continued from both valves toward the opening of the precaval. In the Elephant, also, which shows its rodent affinity in the two precavals, there is, besides the 'Eustachian' between the orifices of the postcaval and left precaval, a remnant of the upper valve extending from the posterior side of the orifiee of the right precaval.

The inner surface of the right ventricle is smooth and even, little broken by trabeculæ, in Rodents and other Lissencephala. Two or three slender ' mammillary columns' send tendinous chords to the tricuspid valve in the Porcupine and Hare. The apex of the heart is sub-bifid in the Hare and Aeonchi : it is simple and obtuse, with the ventricles broader and rather flattened from before backward, in the Beaver: it is relatively longer and less obtuse in the Water-vole: in neither of the aquatic Rodents are the foramen ovale or ductus arteriosus kept patent. In most Rodents the right ventricle reaches to the apex: in Helamys it even descends lower than the left ventricle. The heart is short and obtuse in the Sloths: the auricles almost cover the basal part of the ventricles: the pericardium adheres to the diaphragm by loose cellular tissue, and the thoracic part of the postcaval is short. The pericardium is not so attached in the Armadillos, and the heart is more oblong in shape, with the apex more sinistrad: the lower third forming the apex is due wholly to the left ventricle, from the basal part of which the right ventricle projects, like an appendage, in Dasypus Peba. Orycteropus has the Eustachian, but not the Thebesian, valve: the muscular walls of the left ventricle are four times thicker than those of the right; but are almost smooth internally. With an unusual thoracic convexity of the diaphragm, in the Mole, is associated a less symmetrical position of the heart than in other Lissencephalans. \({ }^{1}\) The tenuity of the pericardium is a charactcristic of many Insectivora: notably of the Hedgehog.
c. Heart of Cetacca. -In these marine and fish-like Mammals the beart, like the brain, shows higher characters than in the preceding subclasses. The pericardium extends down upon
the abdominal muscles to reach the diaphragm, which has a like low position anteriorly, to whieh it adheres broadly : and the precavals unite and terminate in the auricle hy one orifice: the thoracic part of the posteaval is very short. The musculi pectinati are well developed in the right auriele, and the appendix is distinet, but undivided. The fossa ovalis is feehly marked in the Cachalot, is deeper in some Delphinidæ, hut in all ('rfucco it is closed: there are neither Eustachian nor coronary valves. In the Caehalots and Whales the ventricular mass is suhdepressed and semicircular, the apex being rounded or rather flattencd, and sometimes indented : for the right ventricle is coextensive with and sometimes terminates, as in the Mammalian emhryo, distinctly from the. left. In Phocana and most Delphinida, the apex of the ventricle is simple and hetter marked. The movable wall of the right ventriele has ahout half the thickness of that of the left, showing the exercise of greater force in propelling the blood through the lung, than in land Mammals. The tendons of the trieuspid valve go to three short and thick columns in most Cetacea; but the rest of the inner surface is hroken by strong trabeeular bands. Hunter notes the soft yielding suhstance of the semilunar valves in the Hyperoödon he dissected, suggesting that they were naturally less strong than in land Mamınals. \({ }^{1}\) The left auricle is less than the right, with many well-defined muscular colunms on the inner surface, and a distinct appendix ; but is less fleshy than the right auricle. In the left ventricle both trabecular and manmillary forms of muscular processes of the inner surface are numerous.

The most striking fcature in the anatomy of Whales is the vast size of thoir several organs: the heart may be more than a yard in transverse diameter, and not much less in length.
1. Itpurt of Sirenia.-The ontward division of the ventri-
 eles indieated in some (crtarea is earried to an extent very characteristie of the present group: but in Rhytina and Muntus the cleft is not quite so deep as in the heart of Halicore, fig. 404.

\footnotetext{
1 coxmi. ii. p. 111.
}

In half-grown specimens of Dugong \({ }^{1}\) I found the foramen ovale completely closed, and the ductus arteriosus reduced to a thick ligamentous chord, permeahle only for a short distauce hy an eye-prohe from the aorta, where a crescentic slit still represonted the original communication. In the smoothness and evenness of their exterior, and their general form, the auricles of the Dugong, ib. \(a, d\), resemhle those of the Turtle (Chelone, vol. i. fig. 335) : the appendix can hardly be said to exist in either. The right auricle, \(a\), is hut little larger than the left, \(e\) : the musculi pectinati are well developed, especially in the left: they are irregularly branched, and with many of the small round fasciculi attached only hy their two extremitics to the auricular parietes. There is hut one precaval and one postcaval orifice in the right auricle, with a smaller coronary inlet. The pulmonary vcins terminate in the left auricle hy a common trunk one inch in length. The free wall of the right ventricle scarcely exceeds at any part a line in thickness, and is in many places even less. The tricuspid valve is attached to three fleshy columns hy chordæ tendineæ given off from the sides and not the extremities of those columns, both of which extremities are implanted, as trabeculx, in the walls of the ventricles. There are several other columna carnex passing freely from one part of the ventricle to another, like the muscnli pectinati of the auricles, and which have no conncetion with the tricuspid valve. The mitral valve is adjusted to its office hy attachments to two short and transversely extended mammillary columnæ. The thickness of the parietes of the left ventricle varies from half an inch to an inch. The valves at the origins of the great arteries, \(c, f\), present the usual structure
E. Heart of Ungulata. - In all hoofed heasts the ventricles are conical; the apex being longer and sharper in Ruminants than in most other Mammals. The auricles are relatively smaller to the ventricles than in the preceding groups. The three parts of the tricuspid valves are distinct from their confluent bases, and are pointed at the apex: the hasal union of the two parts of the mitral valve is of a greater extent, forming there an annular valve ahout the left auriculo-ventricular opening. The smooth inner surface of the ventricles is hut little interrupted hy fleshy columns. The Horse resembles the Ruminant in the general shape and structure of the heart: hut in the Tapix \({ }^{2}\) it is shorter and hroader, as it is in the Rhinoceros \({ }^{3}\) and Elephant. The right auriele in the Rhinoceros, as in most Ungulates, has hut one precaval orifice, and shows no valve at the termination of
\[
\mathrm{cxvir}^{\prime \prime} \text { p. } 35 . \quad \cdot \mathrm{cur}^{* *} . \quad=\mathrm{v}^{\prime \prime} \cdot \mathrm{p} .46 .
\]
either the postcaval or coronary veins: the contrast presented hy the Elephant, in this respect, is significant. The strong chorda tendinea of the tricuspid connect it, in most Ungulates, with three obtuse and transversely ohlong carnea columna: one rising from the movable wall, a sccond from the septum, and a third smaller one from the anterior interspace between the fixed and movable walls: the tendons diverge from eaeh column to the two contiguous moieties of the divisions of the tricuspid-a provision ensuring the simultaneous action and outstretching of the threc portions of the valve. Two smaller columns placed opposite to cach other, one on the frec, the other on the fixed wall, arc connected in the Rhinoceros and many other Ungulates, by a single strong tendon passing across the cavity from the apex of one to the other. \({ }^{1}\) In the Hog some of the tricuspid tendons pass to a thick short 'column' projecting from the free wall, others pass directly into the smooth eonvex fixed wall of the ventricle.

In most Ruminants, especially the larger kinds, there is a hent bone at the base of the lieart, on the septal side of the origin of the aorta, and imhedded in the tendinous circle which gives attachnsent to muscular fihres of the ventricle; in the Giraffe this bone was two-thirds of an inch in length. Two such ossifieations of the sclcrous tissue have here heen met with in Oxen and Hed-dcer: an ossified and an unossified piece of fihro-cartilage are more commonly ohserved: in the Horse these bodies at the septal side of the aortic ring are rarely ossificd until extreme agc.
r. Heart of Carnivora.--In the present group the heart is more obtuse at the apex, and the left ventriclc forms a greater share thereof, than in Ungulates. The Eustachian valve is wanting in most ('aruivora; where indicated, its remains have been found in the smaller kinds, as the Weasel, Polecat, Ichneumon, which hy their size resemhle the immature of the larger species. The inner surface of the ventricles, especially the right, is more fasciculated, and the numher of carnere columnre is greater than in Ruminants. A condensation of the sclcrous tissue of the aortic ring in the Lion and Tiger, at two points, indicates the homologues of the heart-bones in Ungulates. In these and other Fclines the manmillary columms are continued from the septal end of a strong trabecular tract hetween the 'fixed 'and 'free' walls of the right ventricle. The heart in Phocide is broad and somewhat flatteued,

\footnotetext{
I have not found, in Ruminants, so exelusive an origin of the mammillary columns from the 'free' or external wall, as described in cexxux. t. wr. p. 5u2, after cexxxy'.
}
with an obtuse apex: the appendix of the right auricle is bifid, one process eovering the origin of the pulmonary artery, the other lying upon the right ventricle. The aurieular scptum seems to be formed by an extension of the left part of the wall of the anterior cava, terminating in an arch to the right of the postcaval orifiee, which thus seems to open (as it did in the embryo) into the left auricle. In the younger of two Seals, (Phoca vitulina), which I dissected, \({ }^{1}\) the valve that cuts off this original communication between the auricles was incomplete, and left a large 'foramen ovale:' in the older Seal, not full grown, the 'valvula foraminis ovalis' was complete as to its extent, and the margins were adhercut, save at the upper part where an oblique aperture, admitting a goose-quill, remained. In a young Walrus, \({ }^{2}\) the entire margin of the valve was adherent, and there was no intercommunication betwcen the right and left sides of the heart, A broad crescentic fold, looking downward, divides the sinus, or fossa, receiving the precaval vein from the larger and deeper one recciving the postcaval one: this fold answers to the upper border of the 'fossa ovalis' in the human heart; there is no orifice in the 'fossa' eommunicating with the left auricle. There is a suall semilunar valve at the coronary orifice, but no Eustachian valve. The appendix of the auricle, in Trichechus, extends in front of the base of the aorta as far as the pulmonary artery, gradually contracting to an obtuse point: in Cystophora proboscidea the auricular appendix is short; broad, and bifid; in both it is occupied by a reticular arrangement of carnea eolumnæ. The ventricles are broader in proportion to their length, and the apex is not produced in Trichechus, as in Cystophora proboscidea: the tendinous cords of the anterior division of the tricuspid valve, and a few of those of the right or external division, are attached to a short and thick fleshy column from the free wall of the ventricle; this column is connected by a short and thick 'trabecula" with the septum: most of the other tendinous cords are attached to the septum, and a few to trabeeulæ connecting that fixed wall with the free wall of the ventricle. The pulmonary artery presents no peculiarity; it is connected by the ligamentous remnant of the "ductus arteriosus,' which is 10 lines long and 5 lines in diameter, to the under part of the aortic arch, just beyond the origin of the left subelavian; its eavity is obliterated, but a short, thick, semilunar fold of the lining membrane of the aorta, with its eoncavity turned toward the cnd of the arch, indicates the place of the former foetal eommunicating elannel.
\[
\text { clvi'f p. } 152 . \quad=\mathrm{cxcI}^{\prime \prime} . \mathrm{p} .104
\]
G. Heart of Quadrumana.-In the Aye-aye, as in other Lemuride, the heart is rounded, subdepressed, with a very obtnse apex; much resembling that of tbe four-months foetus in Man: the right auricle is much larger than the left: it receives the blood by a single preeaval, by the posteaval and coronary veins. There are both Eustaehian and Thebesian valves, and a wellmarked fossa and annulus ovalis. These also eharacterise the right auricle in higher Quadrumana. Tbe earneæ columne and ebordx tendinex are more numerous in the right ventriele of Monkeys and Baboons, relatively, tban in Man ; the divisions of the trieuspid terminate in a broad and rounded margin; that next the orifice of tbe pulmonary artery being, as usual, the largest. In the left ventricle the eolumna carnex are numerous and small, giving a strongly retieulate eharacter to the inner surface.

The perieardium, which has a limited adbesion to tbe diapbragm, opposite tbe apex of tbe beart, in Lemurs, progressively becomes less perpendieular in the thorax as the Quadrumana rise in the seale, with concomitant shortness of the thoracie post-cava, and increasing extent of adhesion of the pericardium to the diaphragm: but in none is the heart so broad at tbe base, so fiattened, or so extensively supported by the diaphragm, as in Man.
in. Ilcort of Bimana. - In the prone trunk of quadruperls the perieardium adheres to the sternum, rarely to the diaphragm; in ercet bipeds the connections are reversed: no Mammal has so large a proportion of the heart resting upon the diaphragm as Man, where the central aponeurosis is concomitantly expanded for the attachment of the intervening part of the pericardium. Herc the heart lies obliquely, not, as in most Mammals, parallel with the mesial planc: the apcx, lcss acute than in Ruminants, and less obtuse than in aquatie Mammals, is dirccted downward, forward, and to the left, notching tbe anterior margin of the left lung, and beating across the interval between the eartilages of the fifth and sixth left rihs. The appendix of the rigbt auriele has one undivided apex, cxtending over the origin of the aorta to that of the pulmonary artcry. The single precaval terminates at the upper part of the auricle on a plane anterior to that of the posteaval, which is at the lower part: from the anterior margin of this orifiec is continned the valvular fold called 'Eustachian,' which is often reduced in substance to a filmy network, or may be wanting : betwceu the postcaval orifice and that leading to the ventricle is the opening of the eoronary vein, with its valve: above the Eustachian valve is the depression, 'fossa ovalis,' indieative of the elosed oval intercommunicating vaenity in the
septum of the fæetal auricles; bounded above by the prominent crescentic border, or • annulus ovalis.' The opening into the ventricle is bordered by a sclerous oval ring, to which muscular fibres of both auricle and ventricle are attached; the ring being thicker for the latter.

In the Human right ventricle the portion of the tricuspid valve nearest the orifice of the pulmonary artery is the largest, and is divided by deeper notches from the two smaller portions than these are from each other: the chordæ tendincæ from cach columna carnea are inserted, generally into the contiguous borders of two portious of the valve: the muscular prominences of the inner surface of the rentricle have either their inner or central surfaces free, or are free in the circumference of their middle part but attached at both ends, like beams (trabeculx), or they project freely in a conical form, as 'columnæ mammillares:' they are least developed in the conical prolongation of the cavity, (infundibulum, conus arteriosus), from the apex of which the pulmonary artery ariscs. The arterial orifice of the ventricle is formed by


Anvules arteriosus, with atcached fibres of right vemtricie, olxxxpiI",


Sigmoid valves, right ventricle, claxxvil".
sclerous tissue, which a dissector may define as a ring, fig. 405, disposed in three crescentic curves, with the convexities, \(a, a\), toward the ventricle, and the blended horns, \(d, b\), projecting toward the artery: the ring is represented as cut through at one of these points of conflucnce, \(e, e\), in order to its being spread out. Muscular fibres of the right ventricle, \(f, f\), are attacbed to the convexities of the ring; the fibrous coat of the artery is attached to the outer margin, the sigmoid valves, fig. 406, \(a, a\), to the inner margin, of the upper or arterial surface of the concavities which owe their definition to the junction of the endocardium to such valvular attachments. The right ventricle continucs to show, in Man as in other Mammals, the same relation, as an appendage to the left, which is illustrated in the section of the Bird's heart, vol. ii., fig. 92, forming, as so seen, a concave parabolic section of a conc, applied to the more perfect cone of the left
ventricle: hut the walls are relatively thicker to thosc of the left ventricle than in Birds.

The left auricle, figs. 408 and 409, LA, lies to the left and back part of the base of the heart, is transversely ohlong and subquadrate behind; its aurieular appendage comes forward into view eurving to the right, upon the hase of the pulmonary artery. The walls of the 'sinus venosus' are thicker than those in the right auriele: the terminal orifices of the pulmonary veins, usually one on each side, sometimes two on the right and one on the left, are undefended by valves: on the scptum, the foctal foramen is fechly indicated by a crescentic dcpression. The opening into the left ventricle is smaller than the right auriculoventrieular one: it is defended by the pair of triangular folds of endocardium, ealled the ' hieuspid' or 'mitral' valve. Of these the largest, fig. 407, a, langs between the auricular and aortic orifices, and is in part reflected from the sclerous ring of the latter : a small fold commonly also projects at each angle of junction of the larger folds. The chief conical columne' are two in number, and larger than those of the right ventricle; their apices are shown at fig. 407,


Gemllunar Yalves nad partion of matal valve, defe ventilele, olxxafir". \(p, p\), cach contributing tendinous cords to the portion of the mitral valve, \(a\). The distribution of the chordæ tendineæ, from each column to contiguous borders of the two parts of the mitral, obviously illustrates the adaptation to hring those margins together in the contraction of the ventricle. The semilunar valves at the aortic orifiee, ih. \(d\), are thicker than those of the pulmonary artery, the 'Valsalval sinuses,' \(c\), are deeper, and the 'corpora arantii' larger: the muscular walls of the left ventricle are ahout three times thicker than those of the right: some of the inner longitudinal fihres, ih. 8 , are attached to that part of the aortic ring, not prooccupied hy the larger mitral fold, \(a\). The left ventricle is longer and narrower than the right and alone forms the apcx: the two large mammillary columns occupy the lower three-fourths of the cavity, rising in its axis: the fibres radiate from their basc and wind round the axis, being progressively
sent off, so that few reach the apex of the column: but the moulding of the ventriele about these is not the cause of the eonical figure of the heart; sinee this obtains where no such mammillary columns are present. (Vol. i. figs. 334-340.)

The heart is lined by a membrane, 'endocardium,' rather thicker and more opaque in the left than in the right eavities, espeeially in the auricle: thinnest on the muscular projections, both peetinate and columnate. The chief layer consists of a elose network of elastie fibres, lincd by a stratum of polygonal epithelial seales, constituting the free surface; and attached by an areolar tissue to the muscular coat. This is covered by the reflected serous layer of the heart-bag, ealled 'eetocardium.'

The disposition of the intervening muscular fibres has been best illustrated in relation to the human heart. Those of the auricles


Muscular coat of aurícles. cuxxxrmi". form a superfieial layer, fig. 408, common to both cavities, and also a deep layer, fig. 409, proper to each.

The superficial layer includes the transverse band of fibres, fig. 408, D, expanding as it passes to the right, Ra, and left, LA, aurieles. Thedeeperfibres appear at the parts not covered by the superficial ones. Some, \(H\), arising from the ' annulus aortieus,' \(K, \ldots\), arch over the auricle, beneath D , contributing some fibres to the septum, at s : other arehed or 'looped' fibres, F, eurve over the auricles and are attached by both extremities to the auriculo-ventricular rings AV and AA: a third series, \(C\), surround the aurieular appendages, AA, and encircle the terminations of the superior, CS, and inferior, CI, venæ eavæ.

The winding or convolute disposition of these so-ealled 'annular fihres is exemplified in fig. 409. The superficial and deep-seated fibres are, however, continuous, at parts of their course: those marked E, fig. 408, of the former series, wind round the left auriele LiA, and are eontinuous, with some intervening attachment to the aortic root K , with the ascending band F: a posterior band is shown at \(G\), fig. 409, passing over the left auriele LA, and along the posterior border of the appendix A: some of the fibres, on reaehing the anterior border, quit the band \(G\), to join the fibres \(d\) forming the apex: other detachments from the band \(g\), encompass the terminations of the pulmonary
veins, \(P, p\). Like the muscular fibres of the tongue, those of the heart are not visibly conneeted together by areolar tissue; such conncctive medium, in the degree in which it may exist, can only be inferred through the help to unravelling gained by boiling tbe heart. The more obvious mode of connection is, as in the tongue, by reciprocal decussation or interlocking. In the ventricles the longer extcrnal fibres, e. g., wind upward round the apex and bend downward from the auricular and arterial rings at the


Superfolal aurlcular fibres, clexxxpinit. basc, to become internal, and so inclose, and, at the same time contribute to form, the shorter, interposed loops; these, likewise, having similar rclations to the layers of fibres which tbey successively inclose. Evidence of a stratificd disposition is, however, progressively narrowed, or shown by smaller tracts of conformable course of fibres, as thesc are removed in dissection from withont inward.

In the superficial ventricular layer they have a subspiral course, dcseending, in the fore part of the pentrirles, fig. 410, to the left, and on the buck


Superdelal ventricular illores; front vew. ULxxxvis". part to the right, being partially interrupted at the interventricular arooves, of which the anterior is shown at \(d\). Those which cross the groove bridge over the coronary vessels; those which penetrate it curve upward and contribute to the right layer of the septum, and so help to encompass the right ventricle. The super-

\footnotetext{
vot. IIt.
}
ficial layer gains in thickness as it approaches the apex, \(a\), where the course of the fibres to the inner surface of the ventricles is well expressed by the term 'whorl' or 'vortex,' fig. 411.

Those from the fore-part of the heart, \(d, e, f\), enter the apex


Apical or vortical flbres, Human heart. CLxaxivir'. posteriorly: those from the back part of the heart, \(b\), enter it anteriorly, at \(a\). The curved margin of the entering anterior fibres, \(c\), is left entirc in successive sections of the apex of the left ventricle, until that of the right ventricle is reached, when a more complex arrangement appears. Most of the entering fasciculi form the innermost layer of almost longitudinal fibres of the ventricular cavities; others are continued into the trabecular and mammillary procosses.
By reflecting the superficial layer to its attachments or points of inflection at the apex, \(a\), and at the base, \(b\), fig. 412, the second layer is exposed; which is partly formed by fibres

412


Mid layers of beart fllues; back vfew, ctxaxpilit. ascending from the interior of the right ventricle, CaCc , emerging at the posterior coronary tract, pct, and receiving accessions from the, aortic and auricular rings. The fibres of this layer, \(d\), take an opposite course from those of the first, \(b, c\). A tbird layer repeats the general disposition of the superficial one; but a larger proportion of the fibres serve a single ventricle, especially at the apex, crc. Many fibres of this layer are derived from, or are continucd into, the middle layer of the septum, from whicb, as at fig. 413, \(b\), the layer lias been cut, and reflected, at \(\alpha 2\), crc, exposing the distribution of the internal layers, about each ventricle exclusively, as at \(r v\) and \(l\), fig. 413.

The interruption of such deep layers is frequent, both by change of direction, as at 4 ; and by the decussation of fibres to form the great mammillary columns, as shown in the section of such at cc, fg. 413. The right layer of septal fibres, though continuous mainly with the parietal fibres of the right ventricle, curve with their concavity toward the left ventricle, and aid in its compression. \({ }^{1}\)

A conception of the plan of arrangement of the muscular fibres of the ventrieles may be helped by the diagram, fig. 414.


Toner lagers of heart-abren, cxtaxswifi*.

The course of the superficial fibres, round both ventricles, is indicated by the band, Cpcana, from the arterial rings over the fore part of the ventricles, and hy the band Cacc, over the back part: both combine to form the whorl CRC and r , and gain the interior of the ventrieles forming the septum, s, and the carnce columnax, CC: the deeper layers surrounding the left ventriele, \(r v\), are indicated at RR, (PC'sisis(1, and Crea. Traced from within outward, the fibres from the funicular fasciculus or "rope,' n, eombine with others continued from the two great earncre eolumne, \((\mathbb{C}\), of the left ventricle, \(u v\), to form the inner serics, cre, which, twining round the apex, chase the ventricular eavity,


Idenl type of armagement of ventricular ghres; Human herto excaxymi". and becone superficial : then sweeping spirally from left to right divide into two bands: the longer one first encircles the left ven-

\footnotetext{
'The fibres of the heart have attachments to fixed points in parts of their course, rather than at dofinte begianings or ondings: and rarintions of description may be
}
tricle, as CpCa; then descrihes a second circle round hoth ventricles, Cpcaa. The hand Cagc passing down from the aorta, an, winds over the lower half of the right ventricle, Rv, comhines with the apical spirals, whence it can be traced ohliquely round the left ventricle to terminate at the aortic circle near the anterior coronary tract. The septum ventriculorum consists of three strata, the left. and middle helonging to the left ventricle, the right layer exclusively to the right.

The contraction of the heart-fihres is called 'systole,' their relaxation - diastole." The parts of the muscular walls of the heart have different degrees of motion: the inner wall or 'septum' loses length and hreadth, but gains in thickness, during the systole: the outer wall changes these dimensions in a greater degree, with changing relative position to the heart's centre: hence it has been termed the 'movahle' wall, and the septum the 'fixed' one. The mammillary processes become shorter and thicker cones, and in the degree in which the hlood in the ventricles is compressed during 'systole,' the valves are held by the tendinous cords attached to their free horders and expanding upon their ventricular surface more firmly against eversion, with reflux of hlood, into the auricles. The position of the semilnnar valves, on the contrary, invites the flow of the hlood into the arteries, and forbids return. The 'traheculx' passing from the 'fixed' to the 'movable ' walls have an analogous function as adding to the resistance of the latter against internal pressure, whence they have heen termed ' moderator hands.' 1
§ 348. Arteries of Mammalia.-The walls of the arterial tube are so strong as to maintain that form when cut across; and so elastic as, then, to retract some way within the areolar or connective tissue, which surrounds the vessel like a sheath. On the inner surface of the tuhe amyline formifies \({ }^{2}\) as elliptical or irregularly polygonal scales, more or less of which show a further stage of condensation, expressed hy the term ' nucleate epithelial cell,' fig. 424. The tissue so lined consists of a thin continuous

\footnotetext{
proffered indefinitely as the observers arbitrarily select such attachments under the names of 'origins' and 'insertions.' The general conformity of muscular arrangement in the heart of the sheep is shown in craxxix \({ }^{\prime \prime}\), with that previously demonstrated in the human heart, by the author of clxxkvir" and corxxvin"; especially in regard to the continuity of certain external with internal fibzes.
\({ }^{1}\) clexxxy \({ }^{\prime \prime}\), p. 123.
I use this term as the correlative of 'crystallises,' signifying thereby the tendency in dissolved proteine, amyline, or other albuminoid atoms to assume dofined size and shape, under given conditions, both in and out of the living body; Rainey has shown how such tendency or property effects the superinduction of organic form upon erystal in the formation of shell ( \(\mathrm{cccix}^{\prime \prime}\) ); and its effects are demonstrated more ut large in ccx".
}
sheet of pellucid membrane, to which are adherent fine reticulate fibres, mostly affecting a longitudinal direction. It is also frequently parforated with small holes, fig. 415, \(a, a\), from wbich circumstance it is called 'fenestrate.' This homogeneous memhrane has the property of rolling itself up in the form of a scroll, somewhat like the elastic laminæ of the cornca. It is strengthened in many larts hy longitudinal anastomosing fibres of elastic tissue; and together with the epithelial deposit forms the 'inner coat' of the artery. The 'middle coat' consists of a fibrous tissue, circularly disposed, in layers more numerous as may be the size of the artery and thickness of the coat, fenestrate tissue intervening; of a reddish-yellow, clearer when fresh than yellow elastic tissue: it consists of bundles of slender fusiform filaments, commonly nucleate, with fine elastic fibres traversing them in a reticulate manner. Acctic acid dissolves the chief suhstance of the fila-
 ment, and demonstrates the long staff-shaped nucleus, fig. 416, \(a\), and the 'cell-wall.' This 'muscular tissue' predominates in the smaller arteries; of which, when treated hy soluhle reagents,

the coats present the appearance shown in the portion of a splenic arteriole, fig. 417, where \(c\) is the outer coat with the sheath of arcolar tissue, \(e\) the elastic inner coat, and \(d\) the dissolved middle
or muscular coat. The external coat consists of an inner stratum of elastic fibres, and an outer one of the same, blended with a large proportion of closely-fitted bundles of white fibres, identical with those of the areolar tissue of the arterial sheath. By virtue of the above-described structures arteries possess not only elasticity, but an allied power of slow and long-enduring contraction, excitable by stimulus of touch, cold, and electricity during life; and lost after death.

In the Mammalian class the aorta, fig. 418, a, bends over the


Central organs of circulatlon in man, colxyin, left, not over the right bronchial tube. The chief primary branches of the arch are given off, not immediately after, but at a little distance from, its origin; and there is less constancy in the order of their origin than in birds: the phrenic arteries, the cœliac axis, and the superior mesenteric artery are branches of the abdominal aorta, which terminates, save in Mutilata, hy dividing beyond the kidneys into the iliac arteries, from which usually spring both the femoral, \(a\), and ischiadic branches: the caudal or sacromedian artery, which, in Mutilata and long-tailed quadrupeds, assumes the character of the continued trunk of the aorta, never distributes arteries to the kidneys, rarely to the legs, as it does in birds. After the arteries to the heart ('coronaries') the aortic arch sends off those to the head ('carotids') and to the pectoral limbs ('brachials'). I use, with Barclay, the latter term in preference to those by which Anthropotomy designates for surgical purposes parts of the same artery, as where it passes beneath a clavicle (as 'suhclavian'), or sinks into the arm-pit (as 'axillary') before reaching the arm. The principal varieties in the origins of the large primary branches of the aortic arch, characteristic of Mammalian genera or families, are given in the order of their complexity in fig. 419.

In Tapirine, Equine, Bovine, and most ruminant Ungulates,
the aorta sends off a large common trunk, \(A, b\) (the anterior aorta' of Veterinarians), which divides into two brachiocarotids, eacb suhdividing after a longer or shorter course into the bracbial \(d\) or \(d^{\prime}\), and the carotid \(c\) or \(c^{\prime}\) of its respective side : the vertehral artery, \(v\), is given off by the brachial. The arch of the aorta, diminished after dismissing \(l\), is the ' posterior aorta' of Hippotomy; and, indeed, in tbis variety the trunk of the arterial system appears to bifurcate shortly after its origin. In the Rhinoceros the 'anterior aorta' sends off the two internal thoracics, the two hrachials, and a common trunk subdividing in to the two carotids. \({ }^{1}\) In Auchenia, fig. 419, , the left hracbial, \(d^{\prime \prime}\),


Origina of artorles from sortio arch in Mammala.
A, Ox. M, Lama. w, Girafon D, Lion. \(N\), Otter. F, Gibbon. G, Gedgedog. H, Man. I. Dugong.
comes off close to, but distinct from, the innominate trunk, \(b\); which, after dismissing the right brachial, \(d\), scnds onward a long common bi-carotid trunk, dividing into \(c, c^{\prime}\). A similar arrangement obtains in tbe Giraffe, \({ }^{2}\) ih. c; but the bi-carotid is still longer before its division, and the left internal thoracic, \(v^{\prime}\), bas a distinct origin from the aorta, \(a\), bey ond that of the left hrachial, \(d^{\prime}\). In Suida a longish innominata gives off the right bracbial and hoth carotids, almost at the same terminal point: the left bracbial riscs close to the innominata. In the Elepbant I found a sbort innominata giving off the right brachial and both carotids, the
\[
v^{\prime \prime} . \text { p. } 47
\]
left brachial having a distinct origin, but more remote than in the Hog and Giraffe. \({ }^{1}\) A like condition prevails in the order Carnivora, ib. D. In the Otter a longer interval divides the origin of the left brachial, \(a^{\prime}\), from the innominata, \(b\); which, after sending off the left carotid, \(c^{\prime}\), is continued as a brachio-carotid trunk a short way before dividing into the right carotid, \(c\), and right brachial, \(d^{2}\) In the Quadrumana, from the Aye-aye up to and including Hylobates \({ }^{3}\) and Pithecus, \({ }^{4}\) the innominata, ib. \(\mathrm{F}, \bar{b}\), gives off, first the right brachial, \(d\), and then a short bi-carotid trunk. In the Hedgchogs, Moles, and Bats, there are usually two symmetrical brachio-cephalics, \(a, b, b^{\prime}\). Cuvier ascribes a like coudition to Delphinus; but in Phoccena the otter-type, e, is repeated, only with relatively smaller brachials and larger carotids. Hyperoödon and Whales, the Seals, Beavers, Rats and most claviculate Rodents, the Ornithorhynchus and Chimpanzees partake, with Man, of the mode of origin shown in \(H\) : the innominata \(b\) being the common trunk of the right carotid \(c\) and brachial \(d\). The same pattern obtains essentially in Sircria, but with wider intervals between \(b, c^{\prime}\), and \(d^{\prime}\), and with a distinct origin of the left internal thoracic artery, \(v^{\prime}\).

These varieties, pretty constant in the groups they characterise, are to be distinguished from the anomalics which are exceptional in specics. Both, and especially the latter, are explicahle by reference to modified or arrested stages of development; and an embryonal phase, exemplified in fig. 420, affords a ground-plan on which most Mammalian arrangements of the aortic arch and branches can be laid down, or from which they can be picked out.

In the rare mammalian anomaly of a double aorta bending, one over the right, the other over the left bronchus, before uniting to form the descending trunk, the second of the three pairs of similar vessels by which the blood passes from the heart to the dorsal vessel in the cmbryo is retained, and such persistent aorta answer to the vessels \(A, A^{\prime}, D\), fig. 420 (in Saurians). When a single aorta is found bending over the right bronchus, the primitive vascular arch \(\mathrm{A}^{\prime}\) is retained, and \(\mathrm{A} D\) is obliterated, as in Birds : this arrangement is a rare anomaly, the rulc in mammals being to retain the left of the mid-pair of primitive vascular arches, \(\mathrm{A}, \mathrm{D}\), with complete obliteration of the right arch \(\mathrm{A}^{\prime} .^{5}\) In the variety A , fig. 419,

\footnotetext{
oxcy. p. 61. Cuvier seems to have found the right as well as left brachial rising separately, and hetween them the carotids by a common trunk, xiI, tom. yi. p. 112.
\({ }^{2}\) cxev. p. 16. \(\quad\) Ib. p. \(15 . \quad\) cxcir \(^{\prime \prime}\). p. 5.
5 I have failed to find in any emhryo of bird or mammal more than three pairs of primitive vascular arches, conreying the hlood, in that form, from the heart to the dorsal aorta. In the exceptional minority of Vertebrates, in which branchia are deve-
}
characteristic of the Horse and Ox , the common trunk of the foremost pair of vascular arches, fig. 420, \(a\), is retained and lengthened, the arches heing modified into brachials, fig. 419, \(d d^{2}\), and carotids, \(c c^{\prime}\), and the communications with the succeeding arches obliterated: in most of the other varieties the comınuication of the left of the second pair with that of the first pair of primitive arches, as at fig. 420, D , persists and becomes the distinct origin of the left brachial, \(a^{*}\), the intermediate part of the first left arch being obliterated as far as the artery to the head, or the trunk transmitting such. But this way of explanation has its limits. Most of the varietics in fig. 419 bear relation to the hreadth of the chest, with which that of the heart and aortic arch, in a measure, coincides. Thus, in the non-claviculate narrow-chested Ungulates the varietics A, B, C, are met with, that


Primitive vascular arches, as retalaed io Baurlana. of a prevailing: in non-claviculate, but broader-chested Unguiculates, with flexile and rotatory fore linbs, the separate origin of the left brachial is more constant and remote from the innominata: the same is better marked in the broader-chested Swimmers (Lutra, Phoccena, E), and in the elaviculate Quadrumana, \(\mathrm{F}^{\text {: }}\) : in many Insectivora G, an analogous but other arrangement prevails. In the broad-chested species illustrating the variety n , the head and pectoral limbs are supplied by three primary truuks: in the still broader and flatterchested Sirenia, 1 , the heart itself is able to expand laterally, even to a partial severance of the ventricles, the aortic arch shows its widest span, the intervals between the innominata, \(b\), the left carotid, \(c^{\prime}\), and the left brachial, \(d^{\prime}\), arclonger, and the left internal thoracic artery has likewisc an independent origin.

I have noi net with an instance of a double aorta, or of a single mes arching over the right bronchus, or of the origin of the right hrachial from the termination of the arel, in any mammal below Nan: but such rare anomalies may, perhaps, be found when as many individuals of the hrute have becn anatomised as those of the human kind.
loped from the primitive arches, four or moro of these may exist. But the notion of the human embryo having gills and fill-lit, tickles the fancy; and so the term -branchinl' may long continue to be mi-apytial to the hemal rascular arches and blastemal folds of the feetal mammal, limi mul peptile.

Proceeding with the mammalian modifications of other parts of the arterial system, I find that in all \(L_{\text {yencephala }}\) the carotids are relatively smaller than in the better-brained groups: and that the vertebral arteries give the main supply of arterial hlood to the brain. In the Monotremes the bracbial artery emerges from the thorax ahove the first rib, and passes hetween it and the coracoid: the trunk is speedily reduced hy tbe number of small hranches given off, and, with some of these, perforates the distal end of the

humerus nearly midway between the condyles. The pbrenie, coeliae, and mesenteric arteries are given off from the abdominal aorta; the renal artery is short, wide, and single; there is no inferior mesenterie artery, but the abdominal aorta, fig. 421, \(a\), terminates by dividing into the two common iliac, \(\mathrm{ib} . b\), and the caudal, ib. \(h\), arteries. The iliac trunks are unusually short: they give off a 'circumflex,' \(c\), whieh soon is resolved into a plexus bending over the ilium to supply the museles on the back of the pelvis: on the opposite side of the origin of the iliac is sent off
the marsupial artery, \(d\), which is similarly resolved: most of the branches coursing to the back part of the marsupial bones and bending upward or forward upon the abdominal muscles attached thereto, in a course analogous to that of the so-called ' epigastric' artery in Man. Tbe iliac trunk, \(b\), is then continucd a sbort way, and resolyes itself into the sbort trunks of three plexuses: the outermost, e, take a course obliquely to the outer side of the thigh, analogous to that of the 'external circumflex. branch of the femoral in Man, the middle division representing tbe femoral trunk has a course of three lines before its resolution into the 'femoral plexus,' \(f\), whicb continues the usual course to the ham: the third short trunk, representing the 'internal iliac,' \(g\), resolves itself into a plexus distributed to the parts supplied, in Man, by the sciatic, gluteal, and pudic arteries; but one brancb is continued superficially down the back part of the hind leg, \(i\), to the tarsal bone supporting, in tbe male, the spur: it accompanies the duct of the spur-gland in the lower balf of its course. Tbe arterial system in Echidna is similarly cbaracterised by the subdivided plexiform disposition of many of the arteries. The caudal artery, ib. \(h\), pursues a wavy course beneath tbe broad caudal vertebra, in Ornithorhynchus. In Marsupialia, after the coronary arteries, the primary branches from the arch of the aorta rise in some species by three, in others by two trunks. Tbe broadchested Marsupials, the Koala and Wombat, for instance, are those in which the left carotid, \(g^{\prime}\), fig. 402 , and subclavian, \(h^{\prime}\), arise separately from the arch; the arteria innominata dividing into the right subclavian and carotid, ib, \(g, 7\), as in Man. In most Marsupials the innominata gives off both carotids, \(g, g\), fig. 401, as well as the right subclaviau, \(/\). The common carotid in the Kangaroo gives off the tbyroid artery, and divides opposite the transverse process of the atlas into the ceto- and ento-carotids. The latter describes a sharp curve at its origin, passes along the groove between the occipital condyle and the paroccipital to the basisphenoid which it picres. The vertebral arteries are given off by tbe subclavians, and pass to the skull, as usual, through the cervical vertebrarterial formina. They unite beneath the medulla oblongata to form the basilar artery, which sends off at right angles to the cerebellum two branches as large as itself: it divides opposite the anterior margin of the pons Varohi, and the diverging branches are connected hy two straight transverse canals, before they anastomose with the smaller entocarotids to form the circle of Willis. The brachial artery divides early into ulnar and radial branches: in the Soala, Wombat,

Kangaroos, Potoroos, most Phalangers (Phal. Cookii is an exception), most Petaurists (Pet. Sciureus is an exception), the Opossums, Bandicoots, and Phascogales, the ulnar and larger division of the brachial perforates the internal condyle of the humerus; it


Branches of the abdominal aorta, Kangaroo.
passes over that condyle, impressing it with a more or less deep groove in the Dasyures and Thylacine.

In the abdomen, the primary branches of the aorta are sent off
in the same order as in cost Mammalia, with the exeeption of the eonstant absence of an inferior mesenterie artery. This modification probably relates to the simplicity of the mesenterie attachment of the intestines above deseribed. A more marked repetition of an oviparous arterial eharaeter oeeurs in the mode of origin of the great arteries of the posterior extremities. In most Mammalia tbese are derived from a single trunk on eacb side - the common iliae artery; in Birds from two primary branches of the aorta, one eorresponding with the external iliae and femoral, the other with the internal iliae and isehiadie arteries. In the Kangaroo aud vulpine Phalanger the aorta gives off, opposite the interspace of the two last lumbar vertebrex, the iliae arterics, fig. 422, \(f\); but these are afterwards resolved into the ordinary branches of the external iliac of the placental Mammals, with the addition of the ilio-lumbar artery. Tbe trunk of the aorta, mueh diminished in size, maintains its usual eourse for a very short distance, and tben gives off the two internal iliacs, \(i b\). \(h\), and is continucd as the 'arteria sacra media,' \(i\), to the tail. The transitional eharaeter of this part of tbe marsupial sanguiferous system between the oviparous and plaeental types, is manifested in the large size of the external iliacs as compared with the internal iliacs, their greater share in the supply of blood to the hinder extremities, and the brevity of the aortic trunk between their origins. In most Birds the femorals or external iliacs (vol. ii. p. 190, fig. 98, 23) are smaller than the isehiadic or interual iliae (ib. 26) arteries subsequently given off. At the upper part of the thigh the femoral artery divides, in the Kangaroo, into two equal branches; the one which corresponds with the radial artery in the fore leg, \(m\), fig. 419, principally supplies the foot; it passes along the baek of the tibia, between the gastrocnemius interms and tibialis postieus, and divides a little above the internal mallcolus. The smaller division, ib. \(l\), whieh follows the ordinary course of the femoral along the popliteal space, is lost upon the inner and posterior part of the tarsus; the larger branch winds over the malleolus to the front of the tarsus, sends of the anterior tarsal artery, and is then continued along the inner and afterwards the under part of the metatarsal bone of the long and strong toe.

In fig. 422, \(a\) is the trunk of the ecoline artery; \(b\) that of the supcrior and inferior mesenteric arteries; \(c\) is the adrenal artcry of the left side; \(d, d\), the renal arteries; \(e\) the spermatic artery, of which the left branel is shown continned to the left ovarium, \(\eta\), whieh, with the uterus, \(r\), vagina, \(s\), and bladder, \(t\), is drawn to
the rigbt side; the spermatic artexies arise close together but separately in the male vulpine Phalanger: \(h\) is the femoral artery; \(l\) the external, \(m\) the internal branch; \(i\) is the eaudal artery, which here eorresponds in size with the development and functional importance of the tail, and is very small in the tail-less or nearly tailless Marsupials, sucb as the Cboeropus, Koala, and Wombat.

The proportions in which the vertebral and entocarotid arteries supply the brain continues to characterise the Lissencephala, and relates rather to the restricted development of the cerebrum tban to any special proneness to hybernation or torpidity. The artery, moreover, which, entering the basis cranii, represents the entocarotid, supplies parts usually served by the ectocarotid, in Gyrencephala. Thus, in the Hedgehog, a brancb of the carotid, after sending off twigs to the occipital muscles, penetrates the petrosal bulla, and there divides: one branch, traversing the stapes, gives off the middle meningeal artery, and is continued forward by the orbitosphenoid fissure into the orbit: the otber branch, truly representing the entocarotid, passes into the cranial cavity, and joins the 'circle of Willis,' whicb is mainly formed by the vertcbral arterics. Evidence of this condition of cephalic arteries in other Insectivora and in Rodentio is given in fig. 173, \(C\) and \(E\), as regards the passage of the petro-tympauic braucb through the arch of the stapes. In the Hare tbe division of the carotid which sends off the entocarotid pierces the petro-tympanic bulla, as in the Hedgehog: in the Capybara it grooves the basispbenoid. In the IIedgebog eacb carotid gives off, near its origin, the inferior thyroid : in the Anteater, the inferior thyroids have a common origin from the innominate trunk. In most Rodents wbich have the entocondyloid perforation of the humerus (vol. ii. pp, 382-384) the bracbial or ulnar artery accompanies the median nerve through that hole: iu Myrmecophaga the nerve only so passes. In Bats the brachial bifurcates about the middle of the bumerns: the deeper-seated division supplies the extensors of the fore-arm.

The most remarkable modification of the brachial artery is that which was discovered by Carlisc,' in the Sloths and Slowlemur, and which is repcated in the femoral of the same animals. The divers intcrpretations, leading to controversy, on thesc peculiarities of the arterial system in cxiv", cxv \(^{\prime \prime}\), cxyl \({ }^{\prime \prime}\), ealled for special care and attention to the subjects afforded to me by the London Zoological. Society, in respect to the arterial system.

In the Ai (Bradypus tridactylus) the arch of the aorta, opposite
the fifth pair of ribs, gives off a very short trunk, which divides into the right brachio-carotid and the left earotid; the aorta then sends off the left brachial artery which has a long course in the chest before it attains and bends over the first left rib. The brachio-earotid has a course of an inch before dividing. The carotids do not divide until they have passed the atlas, and the ectocarotid is larger than the entoearotid: small plexuses are formed in the orbits and temporal fosse. The braehial, after bending over the first rib and traversing the axilla, suddenly sends off and seems to break up into a fasciculus of minute longitudinal branehes, whieh surround and eoneeal the main-trunk. This, however, exists in the middle of the plexus, contraeted at first, but gradually resuming its more normal dimension as the braehial artery, and that not by the reeeption of any of the previous ramuseules. It begins to diminish again at the elbow, and thenee gradually eontraets until it forms the radial side of the palmar arch and the chief origin of the two digital arteries that go, one to each interspace between the middle and the two lateral fingers: the ulnar side of the palmar arch is formed by a continuation of one of the branehes sent off from the axillary, and the rest of that plexus is distributed progressively to the museles and other parts of the limb, eight or ten of the branches quitting the main trunk at the bend of the elbow to perforate the interosscous spaec or to supply the deep-seated museles of the fore-arm.

Thus, the arterial stream is propelled direetly by the main trunk to the digits; the force being broken by the sudden dispersion of the current in the score of branches sent off from nearly the same part of the eireumference of the axillary artery.

The vertebral artery is sent off at the brim of the thorax on both sides. The phrenic pierees the diaphragm with the aortic trunk, winds round the right of the eesophageal aperturc, and soon divides. The gastric artery is as large as the superior miesenterie. The renal artery gives off the spermatie. The abdominal norta bifureates opposite the last lumbar vertebre. The left iliac, in my subjeet, sent off, at its origin, the arteria sacra media and the two epigastrie artories: the former soon resolvos into a plexis. The right iliac also sends a few branches to the sacral plexus; but this is formed chicfly by branches sent off around the origin of the saeromedian trunk. The intornal iliac is represented by a plexus coming off by three or four quiekly-dividing branehes from the cominon iliae before it passes over the brim of the pelvis: at this part, also, the femoral plexus begins to be given off by one or two branches which sub-
divide; not, as in axilla, by many ramuscules from one point. Other branches are sent off from the commencement of the femoral artery, which rapidly subdivide and conceal the whole eourse of the femoral trunk as far as the ham. Some branches from the internal iliac plexus pass over the brim of the pelvis and anastomose with arteries of the femoral plexus; but there is no re-entering of any of the members of the plexus into the main trunk. They are distributed, successively quitting the plexus, to the femoral muscles: a numerous fasciculus perforates the proximal part of the iuterosseous space, hctween the heads of the gastrocnemius; the remaining branches accompany the main trunk down the back of the leg, some as far as behind the inner malleolus, wbence the main trunk passes to the scapho-calcaneal joint and divides into the two digital arteries for the interspaces of the three toes. The continuation of the trunk may be thus explained:-The foot and haud being the first segments developed in their respective limb, the artery supplying them is first established; the subsequently formed segments are supplied by branches sent off from this.

In the Unau (Bradypus didactylus) the aorta sends off the right brachial and both carotids by a common trunk, half an inch long: the left brachial has a course of more than an inch in tbe thorax. Each brachial sends off, after winding over the first rib, many arteries: the main trunk perforatcs the entocondyloid hole of the humerus, as does likewise part of the brachial plexus. The continued trunk forms no palmar arch, but terminates by bifurcating at the interspace of the two digits. The abdominal aorta gives off the common iliacs opposite the last lumbar vertebre; and then scnds off the last pair of lumbar arteries and the 'sacra media:' this distributes a pair at each sacral vertebre until it is resolved into a pencil of arterioles at the fourth vertebra. The iliacs send off, first, the cpigastrics; then the internal iliac plexus; after which the external iliae trunk, bending over the brim of the pelvis, sends off the arterioles of the plexus, which conceals the continuation of the femoral trunk; this plexus supplies the femoral muscles, and also a large proportion to the interosseous space of the leg. The main trunk passes down the back of the leg, and divides at the middle of the sole in to two branches for tbe interspaces of the three toes of the hind foot.

A closely similar disposition of the arteries, but with less numerous artcrioles, obtains in the Anteaters \({ }^{1}\) and Armadillos \({ }^{2}\) : and the analogy of this with the arterial system of the Monotremes is worthy of note.
\[
\operatorname{cxcv}^{\prime \prime}
\]

A eloser resemblanee to the plexiform limb－arteries of the Sloths is shown by the Slow Lemurs，as exem－ plified in the arm of Stenops tardigradus in fig．423，c．

Cuvier first indicated the analogous division into nu－ merous branches of the brachial artery of the Por－ poise；\({ }^{2}\) the plexuses after－ wards receiving a more detailed account，with a figure，from V．Baer，\({ }^{3}\) who also found a similar ar－ rangement in the peetoral fin of the Manatee，\({ }^{6}\) and， with a minor degree of subdivision，in that of the Walrus．\({ }^{5}\) V．Bacr associ－ ates the speedy subdivision of the main artery with the restricted degree of move－ ment of fin－shaped forc－ limbs：but the extent and frecdom of motion of the long prehensile limbs of the Sloths and Lemurs point to other conditions．

The extreme degree of plexiform multiplication of the arterial system in the intercostal and other ver－ tebral branches，in the co－ t／rect，more plainly relates

\footnotetext{
－Vrolik rommrks of theso plex－ nees，＇thay consiat not only of new tirinu，but also of veins；and that，by diriding in brunches，these ramifi－ cations becomo smaller nad smaller， nud composed of \(\pi\) less number of venmels．＂1．xix．p． 210.
＊xit．（1805，tom．4）．
＂excyi＂．fig．I．
－Ib．tim．In．
－Ib．lip．II．
}


Plexiform branches of urachat arters：i Stenopatardiorades，
InNE：
to the provision of a reservoir of arterial blood, especially in behoof of the brain.

In the Porpoise the aorta, after giving off the two coronary arteries, forms the usual arch from the convexity of which are sent off three primary trunks: the first is the largest, and gives off, first, the 'posterior thoracic', then the right earotid, and afterwards divides into the right brachial and internal nammary arteries. The second trunk sends off the left carotid, left brachial, and internal mammary arteries. The third primary branch is the left posterior thoracic artery. \({ }^{1}\) The common carotid sends off an inferior thyroid before dividing into external and internal carotids: the subordinate branches of both these vessels form the plexuses in various parts of the head, especially at the basis cranii and around the optic nerve. The posterior thoracic, on eaelr side, bends down and gives off branches to the five anterior intercostal spaces: the succeeding ones derive their arteries directly from the thoracic aorta, and some of them by a short common trunk, which bifurcates. The intercostals send off the dorsal branch, and that which accompanies the rib: but they also, and chiefly, divide into a vast number of branches, forming by their close tortuous interlacement a thick substance, compared by Tyson to a gland, \({ }^{2}\) and, more truly, by Hunter, to the plexiform mass of the spermatic artery in the bull. \({ }^{3}\) This arterial structure lines the sides of the thorax from the ninth or tenth pair of ribs, forwards, penetrating between the ribs near their joints and behind the costal ligaments, and there anastomosing with corresponding productions from contiguous intercostal spaces: branches pass therefrom into the ncural canal, surrounding the myelon with a similar plexus, increasing in thickness near the skull and about the macromyelon, and anastomosing freely with the myelonal meningcal arteries. Thus the neural axis can receive its appropriate stimulus of oxygenated blood during the periods of long submersion and consequent interruption of respiration, to whieh the Cetacea are subject. Any convoluted intercostal artery, contrihuting to this reservoir, can be unravelled and traced to a great length, without sending off branches or changing its calibre. In the Piked Whale (Balcenoptcra), the external thoracics and internal mammaries combine with the intercostals in supplying this huge and singular plexiform reservoir. The brachial trunk gives off an external thoracic to the pectoral muscles, a subscapular artery, one to the supraspinal fossa and a circumflex branch: these supply the muscles of the fin. The trunk then divides iuto two, each of which subdivides, and forms
```

xory. P. 365, note (1837). See also cxcvin'. (1841), p. }383
2 xclv, p. 365. s xciv. p. 365.

```
plexuses upon the humerus, mainly expended in nourishing the hones, their ligaments, and the enveloping integument.' The caudal prolongation of the aorta is surrounded hy layers of plexiform arterioles, as by a sheath, in its course along the wide hæmal canal. \({ }^{2}\)

The littoral and herbivorous Sirenia, which never go so deep or stay so long submerged as the Whales, seem not to possess the intcrcostal and myelonal artcrial plexuses: at least I found them not in the Dugong. \({ }^{3}\)

Amongst the ininor degrees of plexiform multiplication of arterial canals is that oldest recorded instance \({ }^{4}\) of the intracranial 'rete mirabile' at the base of the skull in Ruminants: it is large in grazers, is less in browsers, and least in the Giraffe which habitually feeds with the head raised. In Bovide, where the 'rete' is most extensive, it is situated at the sides and back of the sella turcica, in the sclerous venous receptacle called ' eavernous sinus.' There is no definite bifurcation of the cephalic arterial trunk into an ecto- and ento-carotid, in Ruminants: a small branch of the carotid, perforating the cranium at, or hehind, the foramen ovale, represents the ' middle meningcal artery,' and joins the 'retc mirabile'; hut this is mainly formed, in advance, hy hranches of the internal maxillary, which enter the fissura lacera anterior, subdivide and anastomose reticularly, and are continued backward, on each side of the 'sella,' as a 'rete mirabile': three or four transverse portions bring the main lateral 'retia into union with each other; while, posteriorly, are sent off a median and two lateral narrow plexiform extensions: the latter diverge to nnastomose with the precondyloid arteries; then the middle portion is continued to join the converging cerebral branches of the vertebral arterics. These, in the Ox, enter the ncural canal hetween the axis and third cervical, are united together by ohlique cross-branches, as they advance; each bifurcates in the neural eanal of the atlas, sending onc branch out through the anterior perforation of the neurapophysis, while the other converges towards its fcllow, to terminate by anastomosing with the median production of the 'rete' from the - cirele of Willis,' and also with a division of each precondyloid artery.

In the \(1 \log\) (Sus serofa), a larger proportion of the comparatively small 'rete mirahile' is formed by the vessel entering the cranium through the posterior 'fissura lacera,' representing an ' cntocarotid.' A common efferent vessel, piercing the inner
xcre. p. 366 (note).
xcre. p. 366 (note). \({ }^{2}\) cxcynt".
cxvir'. p. 35 . The trace observed by Stannius in the Manatee does not support n functional inferonce, as in the true whales.
layer of the dura mater, carries the blood from the "rete" to the brain, supplying principally the prosencephalon. Another instance of plexiforn disposition in the arteries of Artiodaetyles has been ohserved in the gastric branch of the colliac axis of the Hog, prior to its ramification in the dorsal parietes of the stomach. \({ }^{1}\)

The Perissodactyles have a recognisable entoearotid which, however, has no proper bony canal, but enters the cranium by the posterior fissura laeera: it forms strong bends as it converges towards its fellow, with which it is united, behind the 'sella,' by an external flexuous 'ramus communicans'; then, piercing the dura matcr, the entocarotids are again united by the internal ' ramus communicans,' which completes the circle of Willis behind and also receives the 'arteria basilaris.' A rudiment of the 'rete mirabile' of Artiodactyles is represented by small plexiform vessels given off from the hinder part of ' Willis's circle.'

The entocarotid deeply grooves the apex of the petrosal in the Elephant. Branches of the ectocarotid form a remarkable plexus internal to the cheek-gland which opens between the cye and ear in this animal.

In most Carnivora the entocarotid traverses a curved canal in the petrosal and makes a bend on emerging, which protrudes at the foramen lacerum before entering the cranial cavity : the bend, so exposed externally, receives in Canidee and Viverride (Herpestes) a branch of the cetoearotid; and, as it advanccs alongside the 'sella,' also anastomoses with branches of the internal maxillary and ophthalmie arteries. In Ursidee a smaller portion of the loop projects into the cartilage occupying the 'foramen lacerum.' The entocarotid and its bony canal are smallest in Fclincs and the Hyæna. In these a maxillary plexus is formed which supplies the internal maxillary, ciliary, ethmoidal, ophthalmic, and anterior meningeal arteries.

The eondition of the mesenteric arteries in Man renders them, in a degree, reservoirs as well as conveyers of blood: it facilitates a more continuous or less interrupted supply to the intestinal membrane. The fewer anastomotie arches in the Carnivora favour a more rapid and direct supply of hlood when the presence of chyme in the intestines gives stimulus to such supply. The human condition relates to the more regular and frequently repeated supplies of food; to the more constant and continuous presence of chyme upon the villous surface of the gut. In the Dog, and more especially in wild Carnivora, the gorging of prey
\[
\operatorname{ccl}^{\prime \prime} \cdot \mathrm{p} .614, \text { pl. } 28, \text { fig. } 4
\]
is followed by fasting, by long intermission of the supply of chyme; consequently the provision for the arterial supply is simplificd, and at the same time adapted to the more rapid assimilation which the hungry or famished frame requires.

Modifications of the arterial supply of the mammary glands, exemplified by large epigastric and subcutaneous abdominal branches, anastomosing with the internal and thoracic-mammary arteries, accompany the position and extension of the mammary glands from the thoracic to the inguinal regions in many quadrupeds.

The ultimate capillarics of the arterial ramifications cither open directly into venous capillarics, or into sinuscs, as in erectile and utcrine structures, whence the venous capillaries begin. In exceptional cases, as in the Bat's wing, arterics of the second and third order of


Epilthellum from veras caps of Sheep. aciri". branches have been observed to pass into veins of corresponding size, without the intermedium of capillaries. \({ }^{1}\)
§349. Veins of Mamma-lin.-The delicate structureless coat of the capillaries present, as the venules enlarge, an epithelial lining of flat, usually rhomboid, nuclente scales, fig. 424. The middle tissuc of the veiu includes sparing delicate unstriped fibres in an abundant bed of connective or areolar tissuc, in which may be distinguished an internal stratun of wavy longitudinal fibres, fig. \(42 \bar{a} a, a\) middle stratum of intermixed circular and longitudiual fibres of elastic tissue, imbedded in a nidus


Longthudinat verticat section of wall of subclevian vein of an Ox: mugin, 200 dinm, ocint". of whitc or contractile fibres, \(b\), and these degenerating into an - excruit. p. 968.
outer mass of areolar tissue, in which such fibres as can be traced run lengthwisc, \(c\). This forms the greatest proportion of the venous coat, and the transition to the mid-stratum, \(b\), is closcr than that hetwcen \(b\) and the thinnest layer, \(a\), which is lined by the epithelial tissue.

The elastic tissue is never so developed as to give the yellow colour which characterises the middle coat of arteries, or to maintain the tuhular form in the empty vein. The valves are not confined to the place of union of the vcnous trunks with the heart, as is the case with arteries, but occur, usually in pairs, fig. 426, in


Venous valvee, \(a\), temnrat vein: \(b\), saphens interna, the major part of the venous system after the vessels have gained, in returuing from the capillary area, a conspicuous size. They 'consist,' as Harvey described, " of raiscd or loose portions of the inner membranc of these vessels, of extreme delicacy, and a sigmoid or semilunar shape. They are situate at different distances from one another, and diversely in different individuals; they are connate at the sides of the veins; they are directed upward or toward the trunks of the veins; the twofor there are, for the most part, two together-regard each other, mutually touch, and are so ready to come into contact by their edges, that if anything attempt to pass from the trunks into the branches of the veins, or from the greater veins into less, they completely prevent it; they are further so arranged, that the horns of those that succeed arc opposite the middle of the convexity of those that precede, and so on alternately.' He further writes, 'In many places two valves are so placed and fitted, that, when raised, they come exactly together in the middle of the vein, and are there united hy the contact of their margins ; and so accurate is the adaptation, that neither by the eye, nor by any other means, can the slightest chink along the line of contact be perceived. But if
the prohe be now introduced from the extreme towards the more central parts, the valves, like the floodgates of a river, give way, and are most readily pushed aside.'

The most conspicuous tissue in these valves is of the white fibrous kind, having a general direction parallel with the free border of the valve and remarkahle for their minute and equal undulations in this course. The epithelial lining is feebly indicatcd by scattered nuclei, espeeially at the extreme margin of the valve. As a general rulc the cerebral and myelonal veins, those of the heart, lungs, kidneys, uterus, and liver, hoth portal and hepatic, have no valves: therc are few valves in the external jugular; none in the internal jugular: valves ahound in the veins of the pectoral limb, including tbe axillary, but are not present in the subclavian or precavals. The postcaval and iliac veins have no valves, but they abound in those of the pelvie limh. The spermatic veins have valves, hut not the ovarian veins; they are few and incomplete where they have been found in the azygos veins.

The varieties in the disposition of the vems exemplify, in mammals, a greater degree of repetition of primary or emhryonal steps than do those of the arterics. The cardinal veins, which persist in great proportion in Lizards, fig. 420, unite at \(v^{\times}\)with the hrachio-jugulars to form a short 'precaval' trunk \({ }^{2}\) on each side. That of the left receives the blood from the coronary vein before terminating in the right auricle \(h\). A smaller proportion of hlood is returned by the persistent venæ eardinales, \(z, z\), in mammals; hut with this exception, the disposition of the great trunks returning the blood from the head, trunk, and pectoral limhs, is essentially such in Lyencephala and most Lissencephala as is exemplifed in Saurians. The hlood from the left side of the trunk (intercostal or intervertchral spaces) is carried, in the ascending series of Mammals, by progressively increasing anastomosing channels from the left into the right eardinal vcin: and, to such an cxtent in Manl, that the right cardinal vein was noted for its want of symmetry as the 'vena azygos,' while the remnant of the left cardinal was called 'hemi-azygos." With this clange goes on an enlargement of an anastomosing vein between the right and left precavals at the upper and fore part of the chest, ultimately diverting the blood from the left precaval into the right, as the blood of the left cardinal had heen attracted to the right cardinal vein. This is accompanied hy ohliteration of the left precaval trunk, of whieh a

\footnotetext{
\({ }^{1} \operatorname{ccrv}^{\prime \prime}\).
\({ }^{3}\) Called by some "ductus Curieri,'
}
remnant, recognisable by the developmental anatomist, becomes the "coronary sinus' of Anthropotomy, or the dilated portion of the heart-vein, with well-marked fibrous tunic, receiving the 'oblique auricular vein representing the left 'ductus Cuvieri,' and terminating by the wide valvular opening in the right auricle. \({ }^{1}\)

In the Monotremes each precaval, fig. 308, e, \(f\), receives the azygos vein of its respective side: they are united by the characteristically mammalian transverse canal, \(g\), which becomes the 'vena innominata' in Man. The postcaval has a long course in the thorax; bcfore entering which it is greatly dilated, within the liver, in the Ornithorhynchus, as it is in the placental divers. The vena porte is constituted as in other Mammalia. The veins of the kidney are continued from the renal artery, and communicate solely with the postcaval. In the Marsupials, also, the iliac veins combine to form the postcaval trunk, as in the rest of theMammalia, without conveying any part of their blood to the kidneys: in the Kangaroo they both pass on the central aspect of the iliac arteries. The renal veins, in like manner, directly communicate with the abdominal cava, and do not contribute any share in the formation of the portal vein. This great secerning trunk of the hepatic organ presents the strictly maxmalian condition, being formed by the reunion of the gastric, intestinal, pancreatic, and splenic veins. 'The primitive veins of the animal system of organs, commonly called "azygos," retain their original separation and symmetry; the left "azygos" bends over the left bronclus to communicate with the left precaval, and the right azygos over the right bronchus to join the right precaval.' \({ }^{2}\) This vein, \(b\), returns the blood from the right side of the head and the right anterior extremity; the corresponding vein on the left side, \(c\), passes down in all the Marsupials, in front of the root of the left lung, as in Birds and Reptiles, behind the left auricle, and, after receiving the coronary vein, joins the postcaval, \(d\), immediately before its expansion into the auricle. The anterior anastomosing vein between the two precavals exists.

Where the pelvic extremities are less or not larger than the pectoral ones, as in the Ursine Dasyure and Wombat, the postcaval is somewhat less than the left precaval, figs. 402 and 403, and they appear to terminate by separate apertures in the auricle; but in the Kangaroo, fig. 401, the proportions of the two veins are reversed, and the posteaval more obviously receives the left pre-
eaval hefore it terminates: these two veins mcet at a very acute hngle, and are separated by a ereseentie ridge similar to, hut thinner than, that which divides their common orifice from the orifiee of the right precaval. In most Lissencephala the left precaval descends behind the auriele to terminate with or near to the postcaval: the left vena azygos communicates with the left precaval in the Hedgeliog and many others, and is larger than the right: opposite proportions prevail in Leporide and some other lrodents, as in Squirrels, the left azygos being small or wanting. In the Bats the venules of the wing-membrane, owing to their eomparatively wide communieations with the arterioles, manifest the impulse of the heart's aetion.

In Cetacea the left cardinal and precaval veins are redueed to the condition of a coronary sinus which is large; the hlood from the head and fins is returned hy the right preeaval trunk to the auriele. The definition of any distinet right or left azygos trunks is obscured hy the charaeteristic expansion and plexiform multiplieation of the veins at the baek of the thoracic-abdominal cavity, fig. 427; and indeed the precaval system is chiefly brought into communieation with the posteaval one by the eontinuity of the vast venous sinuses surrounding the neural axis and reeeiving the intercostal and lumbar veins, ultimately opening into the precaval hy a short trunk which penetrates the pusterior and right part of the chest. In fig. 427, the posteaval vein is eut aeross at \(p\), where it lies in the interspaee of the two masses of depressor muscles of the tail. Veins, \(m, m\), which scem to answer to the iliacs of quadrupeds, return from the side-museles of the tail; the caudal vein is represented by a plexus, \(f\), and occupies much of the hæmapophysial eanal. A plexus from the intestinc, \(G\), terminates in the right iliac vein, and thus estahlishes a communieation hetween it and thas portal system. A hypogastrie plexus terminates at \(i\). The peritoneal plexus is shown at \(l\); it hecomes more considerable at the season of sexual excitement: but the ehief ahdominal reservoir of venous blood is formed by the vast psoadie plexus, \(k\), whieh extends from behind the hinder end of the kidney, \(E\), to the hinder end of the abdomen. In the Porpoise it forms a mass of reticulate veins upwards of an inch in thickness: it is fed hy the eaudal veins, \(a, b, c, d\), behind, and laterally hy from five or seven veins which, returning blood from the dorsal and lateral parietes of the abdomen, pierec the lateral abdominal muscles to join the plexus atr, \(e\). At the mesial margin the psoadie plexus communicatos hy many and wide apertures with the iliae vein; and anteriorly with veins of the diapliragm or 'phrenie plexuses' which eon-
verge to terminate at \(0, o\), in the postcaval trunk. The nonvalvular structure of the veins in Cetacea, and the pressure on


Abdominal venous plesus nal lidaes of the Pornoife.
these rescrvoirs of blood at the depths to which they retreat when harpooned, explain the profuse "and lethal hæmorrbage which follows a wound that, in other Mammalia, would not be fatal.

111 the Ungulates a left azygos co-exists witb a single (right) precaval. In the Hog the azygos trunk passes forward, left of the aorta, crossing tbat vessel below the arcb and curving over the left auricle, and enters the right. Hunter notices its attachment to the left auricle and its analogy, in hoth the Hog and Fallowdeer, to the left precaval in Birds. \({ }^{1}\) In the Corinne Antelope ( \(A\). Dorcas) Hunter observed 'two azygos veins, the left being the larger' \({ }^{2}\) a right azygos exists in the Ox , and is larger in the Horse, receiving blood from several of the left intercostal spaces. The oblique vein at the back of the left auricle is large in the Dromedary and Tapir, and represents the remnant of a left azygos. The portal vein shows valves in some Ruminants. In the Rhinoceros the right precaval receives the right or common azygos close to its tcrmination at the upper part of the right auricle: two inches above this it receives the right vertehral vein which is about half an inch in diameter; two inches ahove this it is formed hy the junction of the left hrachiocephalic. At the concavity of the great vein formed by this junction, the hronchial veins and some small pericardial veins enter. The upper part of the precaval receives the two large jugular veins close togetber, so that a proper ' vena innominata, can scarccly be said to be formed. The left vena azygros, which is formed by the union of a few intercostal veins of the same side, terminates in the left subclavian vein, which receives separately the left vertebral vein from the neek. The right or principal azygos receives the intercostal veins of both sides as far forwards as its entry into the precaval vein: the Rhinoceros in this structure agrees with the Horse. The coronary vein receives a sinall pericardial vein, which descends along the hack of tbe left auricle, bcfore it terminates with the inferior cava, at the base of the right auricle.

With the relatively long and narrow thorax of the hoofed and most other Mamınals the pre- and post-caval trunks are correspondingly longer than in Man; the length of the thoracic part of the post-caval hcing as is the distance of the right auricle from the diaphargu, aud also from the dorsal region: the hase of the heart being further from the back as well as from the midriff than in Man.

In C'urrivora, Quadrumana, and Bimana the blood from the
head and pectoral limbs, and intercostal spaces is poured by a single precaval into the auricle." The lower intercostal veins of the left side unite to form a hemi-azygos which joins the right or main azygos vein. The plexiform disposition of the veins continues in those surrounding the myelon up to and including Man. The diploic plexuses are the networks of veins which cxist in and araong the cancellated tissuc of the bones. In those of the cranium they form large irrcgular meshes of ampullated veins. These vessels are very unequal in size, are subject to dilatations, and frequently end in culs-de-sac.


My clonal and diplole venous plexus and sinus : \#uman - lumbar vertebra. In the looser texture of the vertebral centrums a vertical section, as in fig. 428, exposes the anterior, \(a\), and posterior, \(b\), portions of the myelonal plexus; the transverse channel of anastomosis, \(c\), with the 'sinus centri,' \(d\), which bifurcates to unite with the 'vena superficialis centri,' e. Many veins within the cranium are included in spaces formed by the separation of the laminæ of the dura mater, and do not admit of being dilated beyond a certain size: these 'sinuses' empty themselves, in Marsupials and Ruminants and some other quadrupeds, into temporal veins, as well as into the internal jugulars; but in Carnivora, Quadrumana, and Man, almost wholly into the internal jugular vein.

In all Mammals may be found the 'superior longitudinal sinus,' fig. 429, \(s\), uniting at \(t\), the 'torcular Hcrophili' with the lateral sinuses, \(e\). Besides these are the smaller 'petrosal sinuses,' superior and inferior, and the 'cavernous sinuses' which are reservoirs of venous blood on each side of the sella turcica, crossed by interlacing sclerous fibres. The cavernous sinuses communicate with each other hy the 'circular sinus,' and also with the petrosal ones by the "transverse sinus.' All the sinuses are devoid of valvcs, aud, by their frcedom of intercommunication,
and hindrance to dilatation, prevent any local congestion of hlood pressing upon the hrain.
§ 350. Sploen of Mammalia.-As with the ahsorbents, so with the hloodvessels, some change
their tuhular for a lacunar or cellular form in eertain parts, where the hlood undergoes, or receives elements of, change; sueh parts, resemhling ' glands,' are so ealled, with the qualifying epithets of 'vascular' or 'duetlcss.' Of these 'vasoganglions' the chicf is the spleen.

In Mammals this organ is relatively larger than in lower Vertebrates: it is mainly appended to the artery that supplies the pancreas, with the lcft end of which gland it is in elose connection, and consequently lies to the left or helind the stomach, to which it is
 attached by the fold of peritoneum noted at p. 500. This membrane eovers the whole spleen, except the 'hilus,' where its two folds support the splenic vessels and form the 'grastro-splenie' ligament. The scrous tunic is less intimately adherent to the fibrous or proper capsule in most lower Mammals (Ruminants, e.g.) than in Nlan ; whore the scparation only takes place at the hilus. The proper coat consists mainly, and in Man wholly, of white and yellow fibres, the former arranged in bands, the latter in an irregular network. With these are blended, in some lower Mammals (Dog, Pig, e.g.), filanentary fusiform bodies with a nucleus, fig. 430, a, ealled fibre-cells of unstriped muscle' in coviri" The fibrous tunic is reflected into the interior at the hilus, in the form of slieaths aceompanying the vesscls, most complete in the human spleen: fiom the exterior of which shcaths, and more abundantly from the inner surfuce of the proper capsule, are sent off white elastic 'trabecular' bauds, whieh form a reticular bed for


Nurtemedlament or ' nutuselerelt, from emulca propera of the sulecn of \(n\) dog : magutherl 350 dam. covif".
the proper tissue, througbout the whole organ. This tissue consists of the ' lienine' or spleen-substance and of 'splenic corpuscles.' If a portion of the trabecular tissue be treated with acetic

431


Trabecula from lise eplecn of a Pig; magn. 300 aiam. ccvili"
acid, muscular fibre-cells may be seen, as at \(a^{\prime}\), with their nuclei \(b\), intermixed with the yellow elastic fibres \(c\), fig. 431. The demonstration is easiest in


Splenic or 'Malplghinn' corpuscles, on hranches of an arteriole: from the spleen of the Pig, maginio diam. covirir \({ }^{\prime \prime}\)
the most delicate plates of the trabecular tissue, espccially in quadrupeds. The splenic corpuscles, fig. 432, \(c, c\), are wbitish spherical bodies imbedded in the 'lienine;' most constant and conspicuous in ruminant, equine, and some other quadrupeds; less conspicuous, or wanting, in adult human spleens, especially after lethal disease. They are elliptical, averaging one-sixth of a line in diameter, and are attached by short peduncles to splenic arterioles \(a, b\), the peduncles being continuous with the sheaths accompanying tbosc vessels. Treated with a little dilute alkali, the proper wall of the corpuscle, fig. 417, \(a\),
 substance in splenic
corpuscle, \(0 x\), maga. 350 disk. ceriri". the same, \(b\), may be seen, in connection with the brancb of the arteriole \(c\), to which it is appended. The corpuscular capsule is filled by a semi-fluid greyish mass, including nucleated corpuscles, fig. 433. They have suggested
many hypothescs, their comparison, by Kölliker, to the cells in the sinuses of lymphatic ganglions, appearing to be most acceptable. The 'lienine' is a soft mass, in colour passing from reddisbbrown to bright red on exposure to air, filling up all the interstices between the larger partitions and vessels. It consists of finc bloodvessels, lienine cells, delicate fibres or bands, and blood in various states. The licnine cells, fig. 434, vary in size from \(\frac{3}{100}\) th to \(\frac{5}{1000}\) th of a line, are pale in colour, with a dark nucleus: with them are cells with smaller corpuscles, caudate corpuscles, and frec nuclei; all exemplifying the size-limiting or shape-inducing property of the viscid matcrials, proteine and mycline, under the reaction of albumino-serous solution: fallaciously suggesting the continuous process of cell-growth by which new cells are formed around nuclei, and old ones disappear;' as also the • development of blood-dises within cells.' \({ }^{2}\) The figures 433 and 434 merely excmplify some among the manifold forms under which colloid elements aggregate in definite spaces, under such influences as the spongy rescrvoir of the spleen affords.

The splenic artcry, especially when the 'pancreatica magna and other branches to the pancreas are not called upon to supply matcrials for the cnergetic and fitful action of that gland, must pour more blood into the splenic reservoir than is needed for the mere nutrition of the organ, and consequently the blood must there undergo changc. But the splecn receives too small a proportion of the circulating mass to have any definite influcnce on the manufacture or general condition of blood. Such changes as arc effected in the splenic locality more probably relatc to the functions of the gland to which the altered blood is exclusively carried: and it is to be noted that the splenic vein is the largest of the constituent channels of the portal onc. \({ }^{3}\) The most significant fact in the Comparative Anatomy of the spleen is its correlative development with the pancreas and its reception of blood from the termination of the artery mainly supplying the pancreas in its course to the spleen.

\footnotetext{
ccrimi'. p. 781.
\({ }^{2}\) Ib. p. 782, fige. 531, 532. These, and the figures 529,530 , represent nothing apecifically distinct from the results of formifaction under similar conditions in other localities both in and out of the living body.
a The supply of the colouring matter of the bile from hrematin set free in tho spleen has beun suggestod. Extirpation of the sploon chiefly affects the biliary secretinn. The condition of the spleen in Hematocrya negatives its being the seat of the manufacture of blood-corpuscles.
}

In the Ornithorhynchus, tbe spleen, fig. 308, \(u, u\), is relatively large, and consists of two lohes bent upon each other at an acute angle: the auterior and rigbt lobe is four inches long, the postcrior and left lohe two inches and a half; the right lobe is bent upon itself. The artery of the pancreas is continued from tbe left end of that gland into the base of the spleen before its bifurcation. In the Echidna, besides tbe two lobes whicb are continued forwards from the left side, there is a tbird shorter descending appendage. The lobes are thin and moderately hroad in both Monotremes. The Marsupialia repeat the bent or bilobed character of the spleen as sbown in tbat appended to the left end of the stomach of the Phascogale, fig. 309. In the great Kangaroo (Macropus major) I found the main body of the spleen ten inches long, and the rectangular process six inches; both parts were narrow and thin.

In Lissencephala the spleen presents a more simple form, oblong, flattened, fig. 323, \(l\) (Rhynchocyon), with one end in contact, and having the usual vascular relation with the pancreas, ib. \(p\). The spleen is relatively longer and narrower in the Mole and Hedgehog : it is a thin elongate hody, loosely suspended, in the Squirrel, wbere it lies to the left of the epiploön, as in the Marmot: it follows, similarly suspended, the great curve of the stomach in the Molc-rat (Bathyergus), being thickest at the left and upper end : in the common Rat the spleen has an oblong triangular form: in the Vole it is hroader at the lower than at the upper end: in Capromys it has an elongate trihodral form, hroadest at the lower end: in Lagostomus the spleen is triangular, with the upper and anterior angle most produced. \({ }^{1}\) It varies from the round to the oblong sbape in the Porcupines and Agoutis, and occasionally a small detached spleen is added, in the epiploic suspending duplicature. Hunter notes, in the Capybara, the close resemblance of the spleen in shape to that of Man; \({ }^{2}\) and it is less elongate than usual in the Guinea-pig. In Leporide it resumes its narrow elongated figure. In Dasypus Peba the spleen is elongate and three-sided; I found it \(2 \frac{1}{2}\) inches iu length; in contact with the pancreas: in Das. 6-cinctus the spleen is broader and flatter, and there was a small supplemental splcen in my subject. \({ }^{3}\) In the three-toed Sloth the spleen is an iuch in lengtl, oblong, thickest at the lower end, suspended in the cpiploön: in the two-toed Sloth it is almost round, flat, and thin, and closely attached to the second compartment of the stomach,
but in contact with the pancreas. In some Cetacea the spleen is remarkahle for its suhdivisions:; the largest in the Porpoise, fig. 354, equals a walnut, \(h\); the others, to the number of four, five, or six, ih. \(i\), \(i\), are of mueb smaller size: in the Wbales (Balconoptera) the spleen is, usually, single, but smaller relatively. In Sirenia it appears to be always undivided; presenting an oval form in the Dugong, and measuring \(4 \frac{1}{2}\) inches in length and \(1 \frac{1}{2}\) inch in hreadth.

In the Elepbant the spleen is long and flat; it measured in a balf-grown Indian kind 3 feet 10 inches, its extreme breadth being 8 inches.

In the Hyrax the spleen is broad, flattened, semilunar, with oceasionally a narrow process from its middle, like a handle: its length is 2 inches, its breadth 1 incb. In the Rhinoceros the spleen is elongate, suhtrihedral: in my male subject it measured in length 3 feet 6 inebes, and 1 foot 4 inches in greatest hreadth. \({ }^{1}\) The spleen is elongate, and flattened in the Horse, broadest at the upper end. In the Wart-hog (Phatocharus) the spleen is a long flattened ellipsoid body, 11 inches in length, and \(2 \frac{1}{2}\) inches across its broadest part, whieh is at the middle. \({ }^{2}\) The spleen has a similar form in the Bahyroussa (Sus Babyrussa): in the common Hog it is elongate and trihedral. The spleen is elongate and flattened in all Ruminants; the inner edge is sometimes attacbed to the crura of the diaphragm: it is broader, at one end, in the Cow, Reindeer, and Giraffc, than in other Ruminants. In one Giraffe the spleen was 10 inches long, and \(7 \frac{1}{2}\) inches broad: in another of the same stature it was 9 inches long, and 5 inches hroad: in both of an oval form, and not more tban \(1 \frac{8}{3}\) ineles at the thickest part. \({ }^{3}\)

If a spleen be injected with alcohol and hardened therein previous to section, the intertrabccular spaces are seen to he larger in Ungulata than in C'aruienra. In the IIorse such spaces are then seen to intercommuuicate by circular apertures.

In a Seal (Phoca vitulina) I found the spleen a flattened hody with an irregular notched margin, measured \(5 \frac{1}{2}\) inches in length. It was attached to the cpiploön in such a manner that it could he drawn away for some distance from the stomach, and in the intervening membrane were situated a number of small dark glandular bodics from the size of a horse-bean to that of a pea, rescmbling the omental splenules in the Porpoise: these were not found in a sceond specimen.

In a setter-dog the spleen was oblong, 10 incbes long by 3 inches

\footnotetext{
\(\mathrm{v}^{*}\). p. 44.
\({ }^{3}\) cexin". p. 68.
" \(\mathrm{xCVII}^{\prime \prime}\). p. 228.
00
}

Vol., 11 I .
at the broadest part: its serous coat, as in most quadrupeds, is derived from both layers of the epiploön, which are reflected from one margin to the stomach, and hy the opposite to the dorsal ahdominal walls. In the Felines the spleen commonly presents an elongate tribedral form, attached to the stomach by the duplicature extended from the angle formed by the meeting of the two lesser sides.

In the Ayc-aye the spleen is an clongate, trikedral hody, bent at nearly a right angle upon itself, the lower portion being nearly half the length of the upper onc; it is suspended in the epiploön at the left and lower curve of the stomacli. The spleen presents a like shape and position in the Lemurs: but is less bent in Lemur Mongoz. The spleen is elongate and straight in Platyrhine Monkeys; it hecomes broader and thicker in Catarhines: it shows a subtriangular form in the Bahoon (Papio porcarius), where one angle is attached to the stomach, another to the kidney, and a third projects freely into the epiploön : in tailless A pes the splcen more resembles in shape, attachments, and in the source of its serous investment, that of Man.

The loose nature of the suspension of the spleen somewhat affects the value of the remarks on its various positions in Mammalia, given in X.I. tom. iv. pl. ii. p. 617, where it is said to he near the pyloric end of the stomach in a Nyctinome and a Noctilio, a Phyllostome and a Megadcrm among Bats, while in other species of these genera it was found nearer the cardia: in a Vespertitio and Rhinolophus it was observed to be bent round the great curvature of the stomach. In Pteropus and Galeopithecus the spleeu retains its common position applied to the cardia: it is relatively smaller in frugivorous than in insectivorous and sanguivorous Bats, but is generally long and narrow: it is triangular in Galeopithecus. In Insectivora the spleen is loosely suspended in the epiploön from the cardiac cul-de-sac; it is relatively largest in the more carnivorous of the order, e.g., the Tenrecs.

The spleen is larger in the omnivorous and quasi-carnivorous Rodeuts, e.g., the Rats, than in the vegetarian majority of the order: it is relatively larger in Carnivora than in Ungulata. The amount of hydro-carhonates to be eliminated by the liver would seem to influence the capacity of the alterative receptacle of the great proportion of the blood which is supplicd to the bile-making organ. With reference to the hypotlesis of sanguifaction it may be remarked that in no Mammalian order is the mass of blood so great, or so full of blood-dises, as in the Cetacea; yet in them the spleen has its least relative size.
§351. Thyroid of Mommmlin, - The representative beginnings of the vasoganglion commonly known as the 'thyroid gland' are notieed in vol. i. p. 564 (Fishes, Reptiles), and in vol. ii. p. 230 (Birds) : but this organ is recognisable, without ambiguity, only in the present elass. Here it is locally related to the windpipe, and has reccived its name from its proximity to the shield-shaped cartilage of the larynx in tbe buman subject. It consists of a pair of oblong, rounded masses; in some, especially higher gyrencephalous Mammals, united as in Man by a transverse band of like substance crossing the sternal aspect of the air-tube.

The proper tunic of the thyroid is a thin layer of condensed areolar tissue, from the inner surface of which proceed septal or trabecular processes, partitioning its substance into lobules, and ultimately into minute bags of vesicles. The analogy to the structure of the spleen is close, but the frame-work is mueh less dense and fibrous: and the vesicular structure, instead of receiving the blood dircctly, is filled with a solution of fibro-albuminoid, proteine, or myeline substance derived therefrom. The quantity of blood sent to the thyroid is much more than would be needed for mere nutrition: it is derived from arteries, not constantly rising just beyond the points where the arteries to the brain are given off from the large trunks, but varying according as the length of the neck in Mammals may affect the relative position of the thyroid to those trunks: thus in the Giraffe and most Ungulates the arteries supplying the thyroids come off from the contignous part of the carotids. There may be two or three branches from the common carotid (Lutra) ; and the distinction between ' lower thyroid arterics' from the subclavian, and 'upper" thyroid arteries' from the ectocarotid, hardly begins to be established before the Quadrumanous order is reached. The ultimate ramifications of these arteries form closc-meshed plexuses upon the limitary membrane or capsule of the vesietes ; such capillaries present a diameter of from \(\frac{1}{0.01}\) th to \(\frac{1}{3800}\) th of an inch. The blood is returned by veins joining in most Mammals the external jngular; and in Quadrumuna and Man the internal jugular: but with varieties in this respect.

The effect of" formifaction, or assumption of shape aud definable size, by the "colloid,' 'proteine,' or' 'myeline' elements of the solution filling the thyroid vesicles, is shown in the sections of snch from the Hedgelog, fig, \(43 \overline{5}\), and the Bullock, fig. 437, and in portions of such lining, or adberent formed matter, from the thyroid vesicles of a Rablit, fig. 436. In thesc instances
the forms have been deseribed as 'an epithelial stratum, consisting usually of nuclei set closely together in a scanty basis substance, fig. 435, whieh is either feebly granular or of a sonewhat oily aspect:' ' their nucleoli are not always visible, and vary in number from one to four or five. The nuclei are always vesicular, bounded by a strongly marked envelope, and have a mean diameter of \(\frac{1}{3000}\) th ineh. \({ }^{11}\) But the formed lining

substance often presents, as in figs. 435 and 437 , the condition of delicate vesicles, without nucleus, with eontents mostly pellueid, sometimes faintly granular. Dr. Jones observes :-'I am inelined to believe that they originate in the nuclei, wbich undergo a kind of expansion, at the same time losing their nucleoli.' Emancipating himself for a moment from the 'generative" theory in reference to the "progress of the nueleus from its primitive eondition to a furtber stage of cell-development,' he candidly admits it to be ' worth remarking tbat it' (the stage) 'may be artificially produced by adding to the specimen some coagulating reagent, which speedily solidifies a film of albuminous plasma around the nuclei, and thus produces very good imitations of cells.' \({ }^{2}\)

Analyses of the contents of the thyroid bave shown or rendered it very probable that they are albuminoid, yet not in the state of ordinary fluid albumen, and that gelatine is sometimes an ingredient: among the salts are chloride of sodium and a trace of alkaliue sulphate: crystals of triple pbosphate and of oxalate of lime occur in the cavitics. \({ }^{3}\)

In tbe Ornithorhynchus two bodies, extending between the

\footnotetext{
cclimix. p. 1104.
\({ }^{2}\) Ib. p. 1105 . For the conditions and degree in which this and most other phenonomena of so-called 'cell-development' may be artificially manifested, see ccix' and \(\mathrm{ccx}^{\prime \prime}\), especially the latter important contribution to the philosophy of physiology.
\({ }^{3}\) colxix. p. 1106.
}
scapula and humerus, covered hy the panniculus earnosus and the trapezius, present a reddish eolour, a lobulated structure, and pretty firm texture, and seem to represent the thyroids. These are in more constant relation to the windpipe, in Marsupials: they are two disunited bodies in the Dasyures; each presenting the size of a horse-bean in the Das. macrurus. They were of the same size in a Phalangista fuliginosa, hut were united hy a filamentary strip passing between their lower extremity, across the first traeheal ring. In the Wombat I found two elongated thyroid hodies of a dark colour reaching from the thyroid cartilage to the seventh tracheal ring on each side. In the Koala they were situated lower down, cxtending from the fourth to the ninth or tenth tracheal ring.

The thyroid is relatively small in the Kangaroo. It presents more normal proportions in Rodents, hut is connected by very lax arcolar tissue to the trachea. Each hody is elongate and almost cylindrical, hut expanding at the lower end, where they are joined hy a thill hand, in the Hare and Rahbit. The uniting band is thicker and rounded in Rats and Marmots ; hut appears to be wanting in Geomys and Bathyergus. The thyroid bodies are commonly ununited in Cheiroptera. They lie, similarly dctached, hut low down, opposite the sixth and seventh tracheal rings, in the Elephant. They arc also separate and more remote from the larynx in Delphinida. Cuvier notes them as rounded and separate in the Hyrax. \({ }^{1}\) In the Rhinoceros I found them joined together by a very thin and narrow strip continued hetween their hinder ends, obliqucly across the trachea. Each body was elongate, subtriangular, extending from the sides of the larynx to the fourth tracheal ring, and diminishing as they descended: a small compact yellow body was attached to the thyroid at the point of emergence of the vein. In the Horse, also, I find the thyroids connected by a slender hand crossing the second tracheal ring: \({ }^{2}\) each hody is egg-shaped and united ahout one-1hird from the lower end. The thyroids are relatively smaller in the \(\Lambda s s\), but are similarly united to each other.

In the Llamas (. Aurheniu) the thyroids are oval, with the great ond downward, cxtending from the side of the thyroid cartilage to the third trachcal ring, where they are connected together hy a filamentary band: this band is relatively broader in the true Ruminants, in most of which the thyroids have a more

\footnotetext{
I regret that I omitted to note the condition of the thyroid in cluns
\({ }^{2}\) Curier describes them as 'entièrement séparés, et situés bien au-dessous du laryax.' sur, tom, viii. p. 677.
}
elongate form. In Bears the thyroids are joined by a long slender band at their lower ends. In Felines the uniting band appears to become longer and more slender by age, and sometimes disappears. Cuvier notes three distinct conneeting bands in a Civetcat, \({ }^{1}\) and two such bands in a Marmoset monkey. In the Ayeaye the thyroid bodies, elongate, triangular, and flattened, lic upon the sides of the second to the seventh traeheal rings inclusive, and are devoid of connecting transverse strip. \({ }^{2}\) In most Quadrumana the thyroids are united, but by a longer and narrower band or 'isthmus' than in Man. In bim the thyroid bodies are not only relatively large, but are united by an 'isthmus' so broad
 as to usually extend across two or more upper rings of the trachea; moreover, a process extends from the upper part of the isthmus, as the 'pyramid' or 'mesial eolumn,' whicb in some subjects reaches to the hyoid bone. Many varieties bave been noted in the human tbyroid. Sometimes the istbmus is absent, as normally in certain lower Mammalia; and sometimes there is more than one pyramidal or ascending process.
§ 352. Thymus.-This body is distinguisbed from the thyroid by its wide eentral cavity, and by its diminution of volume or disappearanee after early age. In the Human subject, e.g., at birtb the thymus, fig. 438, a, a, may weigh 240 grains, and inerease to 270 grains in tbe infant of one year; but, with the developrant and exercise of the museular system, it wastes away, and may be reduced at twenty-one years of age to a remnant weighing only forty grains. After twenty-five it is rare, or difficult, to discover any of its structure left in the areolar

\footnotetext{
xir. tom. viii, p. 675.
* cu'. p. 44. Peters confirms this, in ccxirí. p. 95, Taf. 台, fig. ह, gl.
}
tissue of the mediastinum. At hirth the bulk of the gland lies hehind the manubrium, deseending to near the middle of the sternum, and aseending upon the fore and lateral parts of the trachea to the thyroid. By dissection the thymus can he separated into two lateral portions, which are naturally distinct at an earlier phase of developinent; each lateral part being a narrow elongated hody, folded upon itself, and further resolvahle into lohules and acini, like those ot a true conglomerate gland: hut all the aeinal cavities communicate with a central reservoir, fig. 439, occupied by a milk-like solution ot alluminoid or proteine principles. Formifaction here produces 'corpuscles, very closely resembling (in fact identical with) the nuclei of glandular cells; ' hut presenting more numerous nucleoli: their form heing for the most part spherical. 'Mingled with these I have found in the thymus of a Calf, as well as in that of a young Guinea-pig, a few larger corpuscles, ahout douhle the size of the former, of spherical form, filled cither with a granular matter alone, or containing also a nucleus, or larger vesicular hody.' \({ }^{2}\)

The thymus in Monotremes lies hetween the episternum and the beginnings of the vessels from the aortic areh. In a Kangaroo from the pouch Simon found the thymus on the pericardium with a medial lohe hesides the two lateral ones. \({ }^{3}\) In Rodeuts the thymus consists of two long lobes extending from the hase of the heart, parallel with each other, forward, to the root of the neck. Bodies extending from this position to the posterior mediastinum and forward along the eervical vessels to near the mandible, but consisting, according to Nimon, of aggregates of fat-vesicles, undergo periodical increase, in the Marmots, prior to hihernation. In a Bat dissected in Mareh, Dr. H. Jones eould not detect any certain lomologue of a thymus; hut found on each side of the root of the neek a yellowish lohulated mass consisting of conical lobes defined by limitary membrane: the lobes were hollow and • filled hy aggregations of celloid particles, which were not manifcstly nucleated, nor provided with an envelope, \({ }^{4}\) but consisted of aggregations of oil-drops and molecules. In the subjoined view, fig. 440 , of a portion of this body, magni-
fied, only the peripheral row was visible, the rest of the mass being opaque. In terrestrial Insectivora the thymus is lass ambiguous, and consists of two nearly equal lobes lying on the


Converity of lole of cervical tbymus-like bods, Bat. xexiv". base of the heart and beginnings of the great vesscls. In the Hedgehog were found 'two roundish masses almost precisely similar to those in the same situation in the Bat, and two broader and thinner ones lying in the axilla." 'The celloid particles were more loaded with oil than in the Bat, and in some parts they were more or less broken up and the oily matter diffused in the cavity.' \({ }^{2}\) In both cases these lobulated masses may be wellmarked modifications of the adipose tissue. In Cetacea a thymus has been recognised in Balena mysticetus, the right lobe extending over the aortic arch to the trachea, where it terminates in two small cornua, the left lobe beiug of smaller size. 'In the foetal Dolphin these are two large median portions, pericardiac and tracheal, with deep-scated lateral cornua. \({ }^{33}\) In a foetal Elephant the thymus is a flat mass beneath the anterior part of the pericardium, with a short forward prolongation of the right lobe. In the Rhinoceros the thymus holds a like position, and encroaches but a little way upon the neck. In the Artiodactyles, whether ruminant (Ox, Deer) or non-ruminant (Peccari), the cervical portions of the thymus are more developed, often extending to the mandibular angles. The thymus of the Calf is very large and affords a good subject for investigating the structure of this body. In Carnivora the thymus has the usual position in the thorax, to which it is limited; it soon shrinks, and in Felines disappears. At its fullest phase of development in the Cat, the thymus is thick from before backward, and its right and left lobes closely interdigitate. In a young Seal, Simon found it in two symmetrical, broad, thickish lobes, extending to the root of the neck, and 'abruptly terminated by clubbed extremities, which are deeply grooved in front by the left vena innominata.' \({ }^{\prime}\) In most Quadrumana, especially the Catarhine group, the thymus presents the same general shape and relations as in the human subject.
§ 253. Adrenals.-Thesc bodies are best developed in Mam-

\footnotetext{

}
malia; and, in the Bimanous order, they repeat, though in a minor rlcgree, the relation of largest relative size to the immature period. They are subtriangular, flattened, with their base excavated and resting, in Man, upon the upper end of the kidney, whence they have been termed 'supra-renal capsulcs:' in lower Mammals they are more commonly mesiad of the upper end of the kidney, and not always in contact therewith: at the base of the part is a fissure giving issue to the large adrenal vein. The substance of the body is distinguished by, usually conspieuous, differences of colour into ' cortical' and 'medullary; 'tbe former, in Man, being yellowish-brown, the latter reddish-brown: the eortical substanee is also firmer than the medullary, which receives more blood, and appear* soon to dissolve after death, occasioning the cavity there usually found. The proper arcolar eapsule sends incurved processes, localising the tissue into lobes and lobules: the ultimate texture of the cortical substance bcing minutely vesicular, the vesicles varying in size, but affecting an arrange ment in rows. The vesicles are smallest at the limits of the medullary substance, and here inclose spaces in which the usual results of formifaction more especially are met with; such as fine granulcs, globules, nuclei, and nuclear structures, affording ample ground for misinterpretation as 'transitious to cell-development' and 'mctamorphosis to the cell-form,' \&c.

Ecker has delineated some of the evidences of size-limiting, form-giving forces, analogous to those of crystallisation, in fig. 441, where \(a\) is a 'nucleus,' \(b\) 'nucleus enwrapped in a fine granular mass,' \(c^{6}\) cell,' \(d\) 'nuclear vesicle of an embryo,' \(c\) two gland-vesicles with their contents.' With these are mixed oil-globules; in greater abundance in the adrenals of Lissencephala and Carnivora than in those of Nan, and more or less ob-


Forms assamed by proteluc matters, in solation withln the echlular epnces of the ndrenal; Man Cot, Xxxyt. seuring the ' nuclei' and 'gland-vesiclcs.' These, in the Horse, are smaller and more spherical at the periphery, larger and more oval toward the centre, of the cortical substance, there offering the linear arrangement. Gland-vesicles also occur in the medullary substance of the Horse's adrenals. In the Oxthe trabecular tissue of the cortical substance defining the lobules is firm and well-marked: the fatty globnles are fewer than in Man. The gland-vesicles are distinct in the adrenals of the Hedgebog. In
the Mole the adrenals have the form of a three-sided pyramid. In the Coypu they are long and rounded, of a greyish-yellow externally; their medullary structure like soft liver. Their length was one inch : their situation mesiad of the upper extremity of each kidney. They have a similar cylindrical figure, and large relative size in the Porcupine and many other Rodents: they are shorter in the Muride; are roundish and somewhat flattened in Leporide. In a young Sloth I found the adrenal surpassing the kidney in size, and slowing distinctly the cortical and medullary substances. In the Cetacea there is an interesting analogy between the adrenal, in regard to its lobulated exterior, and the multilobate kidney. In the Elephant the adrenal is a deprossed cone, with the base bilobed. In the Rhinoceros the adrenal bodies, like the kidneys, differed from each other in form; they were clongated and nearly cylindrical. The right had one extremity hent at a right angle: its length in a female Rhinoceros was three and a half inches; its breadth across the bent extremity two inches: the left was simply elongated, three and a half inches long, one and a half broad, and one inch thick. In section they presented an external greyish-yellow fibrous cortex, from one-fourth to onethird of an inch thiek, enclosing a fleshy-coloured substance, in the middle of which there was a semilunar portion of the grey fibrous matter: there was no trace of a central cavity. Both suprarenal bodies adhered closely to the contiguous large veins. \({ }^{1}\) In the Horse the adrenals are flattened and triangular. In the Ox they somewhat resemble the kidney itself in shape: in the Reindeer they are a full oval: in the Sheep they


Urogenita orgaus. frum Human em. bryo, eight IInes long. cocxyil". are more elongate. In the Seal, as in the Whale, they resemble the kidney in their finely lobulate exterior: in the Dog they are longish and cylindrical: in the Cat roundish and somewhat flattened. In the Aye-aye the adrenals are subtriangular, elongate, depressed, and relatively larger than in the higher Quadrumana, in which the adrenals progressively approach the shape and proportions presented in the human subject.

In the foetus the adrenal, like the kidney, shows a lobulated exterior: at an early period of the development of these bodies the adrenal, fig. 442, \(a\), exceeds the kidney, \(b\), in size: both are preceded by the deciduous or Wolffian kidneys, \(d, d\). In the embryo of the twelfth week the kidneys and adrenals
\[
\text { cır }^{\prime \prime} \cdot \mathrm{p} .45, \text { pl. xir, fig. } 1, n, n .
\]
are of equal size: in the sixth month the kidneys have gained in weight so as to be as five to two: and at birth they are as three to one: after this time the adrenals diminish so as in the adult to be only \(\frac{1}{2}\) th the size of the kidney. Occasionally they entirely waste away.

The large proportional supply of nerves to the mammalian adrenals from the contiguous plexuses (coeliac and renal) of the sympathetic system is worthy of note.

\section*{CHAPTER XXXIII.}

\section*{RESPIRATORY SYSTEM OF MAMMALIA.}
§354. Lungs of Mammalia.-The class-characteristic afforded hy these organs is defined in vol. ii. p. 266, and exemplified in fig. 139, ih. In all Mammals each lung, ih. \(l g\), is conical, with the hase resting upon the diaphragm, ib. \(d\), and the apex reaching to the root of the neck: the shape, and especially the degree of subdivision, of the pulmouary cone offer many varieties in the class. The most common quadrupedal difference from the himanal type is the lobe, called 'azygos' or 'impar,' detached from the right lung to occupy the space between the heart and diaphragm, as at \(n\), fig. 308 (Ornithorhynchus). The outer surface of the lung is smooth, heing covered hy a serous memhrane, reflected from the great blood- and air-vessels forming its 'root' upon the walls, of the thorax; thus constituting a shut sac, called 'pleural,' distinct from that of the opposite lung. The portions of the pleuræ passing respectively from the pulmonary roots to the back and fore parts of the thoracic cavity, are callcd 'mediastinal,' and intercept the pericardium, great vessels, thymus, gullet, and other parts intervening hetween the two lungs: the regions of such thoracic septum beiug defined, in Anthropotomy, as "anterior,' ' posterior,' and ' middle mediastina.' The pleural serous sacs are peculiar to Mammalia: they facilitate the movements of the lung upon the thoracic walls during respiration.

The wind-pipe bifurcates to supply each lung, fig. 418, \(\mathbf{P}, \mathbf{P}\) ', with air, as does the pulmonary artery conveying the hlood to he affected thereby; the pulmonary veins, ih. \(p\), return the blood so changed to the heart. Besides these three main constituents of the 'root' of the lung, it includes the 'bronchial' or nutritive arteries and veins, ahsorbents and nerves, with their connective tissue, and the enveloping pleural sheath. Beneath the serous covering of the lung is a layer of comhined areolar and elastic tissues, the latter predominating in the denser "suh-serous" coat of the lungs of the larger carnivorous and ungulate mammals: in Cetacea the smooth coutractile fibre is therewith intermixcd.

The trachea is kept patent by cartilaginous hoops, the ends
of which, in most mammals, do not coalesce, but either overlap, uncet, or, more commonly, fail to meet by about one-fourtb, or less, of their circumference, fig. \(453, b\). The slit or interval, whicb is usually at the back, or gular surfacc, of the windpipe, is completed by a musculo-membranous sheet. The hoops themselves are connected together by a strong elastic membrane occupying their intervals and also extended over both their outer and inner surfaces. The entire tube is invested by loose areolar tissue, and is lined by a mucous membranc with a ciliated free surface.

The tracheal cartilage, fig. 443, e, consists of a fibrous basis, charged with nucleate cells. Unstriped muscular fibres extend between the ends of the hoop, having their attachment to


Transversogection of trachea through a cartllaginous bvop, es cCLXYIII. the inner surface, some short way from the end itself, as at \(k\), fig. 443, others pass obliquely between contiguous hoops. On the inner surface of the tracheal cartilages and muscles is a stratum of elastic, chicfly longitudinal, fibres, ib. \(i\) : their fasciculi are most conspicuous, extending in a serpentinc course along the back part of the tube. The mucous membrane consists of a basilemma, fig. 444, \(a\), and of fincr areolar tissuc, \(b\), forming a bed of numerous nueleate cells, \(c, d\), the innermost, \(e\), or those next the inner surface of the airtube, being clavate, and supporting on their base, cach


Sccton of tracheal chlite mucous inembrane, magn colxyili. from about twenty to fifty vibratile cilia, so acting as to direct throat-ward the matters with which they are in contact. The mucus lubricating the ciliate surface and entangling any forcign particles admitted with the air, is the sceretion of small, for the
most part racemose, glands, most conspicuous at the gular part of the wall, fig. \(443, l\), with longish ducts opening upon the ciliate surface. The trachea bifurcates into the 'bronchi,' which, before they penetrate their respective lung, resemble their trunktube in structure: after penetration, or when 'intra-pulmonary,' the incomplete hooped form of cartilage is exchanged for a series of irregular curved pieces, expanded so as to encase the whole circumference of the several bronchial ramifications to near the terminal ones, where the cartilages bccome thinner, smaller, more remote from one another, and ultimately cease; when the fibromembranous walls owe their patency to the expansive force of the contained air. The muscular fibres affect, for the most part, a circular disposition, but some run along the bronchial ramifications, thus serving both to contract the arca and diminish the

length of the tube. With the longitudinal muscle are blended elastic fibres, and in large proportion in the terminal branches, fig. 447, \(a, a\) : the transverse muscles, ib. \(b, c\), have no terminal tendons as in the trachea,

The ultimate portions of lung to which the bronchi are distributed are called 'lobules,' on entering which, as in fig. 445 , the air-tube divides and subdivides, its branches diverging at less and
lcss acute angles; and, after the fourth or further division, according to the size of the lobule, they maintain an ultimate diameter of about \(\frac{\pi}{4}\) th of an inch: then the cylindrical form is lost, and the air-tube becomes an intercellular passage, beset with dilatations, or 'air-cells,' aggregated at the periphery of the lobule into groups. The ciliate mucous mombrane terminates abruptly, wbere the bronchial tube becomes, as at \(a\) and \(b\), fig. 446, an intercellular passage; but formifaction shows its results, as 'nuclei' and 'pavement cells \({ }^{3}\) upon the frec surface of the air-cells. The intercellular passages intercommunicate, as in fig. 445, \(a\), the bronehial ramifications, ib. \(b, c\), do not: in fig. 446 is shown the abrupt transition from the terminal bronchial tube, \(a\), to the intercellular passage, with its appended air-cells, \(b, r\).

The openings of the air-


Pulnomary cella, shuniug erabecular 'ibres, mud equthella preelpitato: magn, colxixiri". cells are strengthened or dcfined by fibres of yellow elastic tissue, fig. 447, minute filaments of which have been traeed over the wall of the cell. The branches of the pulmonary artcry accompany those of the bronchi to the intercellular passages, as at fig. 448, a, and are there resolved into the arterioles, \(\langle, b\), encompassing the orifices of the air-cells, where they pass into the capillary network, \(d\), \(e\); whenee the aerated or arterialised blood is reccived into the beginning of the pulmonary vein \(c\).

On a feberal eomparison of the lung-strueture in the two warmhooded chases, it may be affirmed, of mammals, that the seeondary and tertiary bronchi, instead of a 'central' hold a 'peripheral' course; have arborescent, not pinnatifid divisions; and more gradually deercase in size: moreover they terminate in cells on the parictes of which the pulmonary capillaries offer only one side to the respiratory inclium, instead of being wholly impersed itt the extrabronchial air, as in birds.

In the Ornithorlhynchus the trachenl tube, fig. 30s. m, is ofide;
the cartilaginous rings, fiftecn in number, arc broad, entire, and slightly overlap each other: the bronchial annuli are bony, and are continued ot tbat texture through a great part of the lungs. The right lung is divided into three lobes, of which the smallest,


Capsilarles of the als celle; leng of Cow; magn. celxvin, ib. \(n\), fills the interspace between the heart and diaphragm: the left lung, \(o\), is undivided.

In the Eichidna the trachea is narrower: there are twenty-two tracheal hoops, which are disunited behind ; very firm cartilaginous annuli are continued along the larger branches of the bronchus for some way into the lung.

In the condition and structure of the respiratory organs all the marsupial species adhere to the mammalian type; the only tendency to the Ovipara is in the entireness of the tracheal rings in certain species. In the Phalangista fuliginosa, where I counted twenty-nine rings, the first four-and-twenty were entire; below thesc they were divided posteriorly, the interspace growing wider to the twentyninth ring. In the \(D a\) syurus macrurus the rings of the trachea are twenty-three in number, and are incomplete orrather ununited behind. In the Perameles the tracheal rings are divided posteriorly by a fissure. The lungs in the Wombat consist of a single lobe on both the right and left sides, with a small lobulus 'impar' extending from the right lung to the interspace betwcen the heart and diaphragm. In Macropus mojor the right lung has two notches on the anterior margin, the left lung is undivided. In Macropus Parryi both lungs had
one or two notches. In another Kangaroo I found the right lung divided into four lobes, the left into two. The azygos lohe is large in consequence of the length of the chest in the Kangaroos, and the distanee of the heart from the diapbragm: it is threesided, one side convex, the second coneave and applied to the perieardium, the third side concave, and in contact with the diaphragm. In the Potoroo the left lung is unilobate with a fissure on tbe anterior or upper cdge; the right lung has two or three deep fissures; the azygos lohe is elongated, pointed, and trihedral, as in the Kangaroo. In the Petaurists and Phalangers the right lung is trilohate, the left bilobate; there is also a lohulus azygos. The Konla has the lungs similarly divided, and not simple as in the Wombat. In the Opossums, Dasyures, and Peramelcs the right lung is usually trilobate (bilohate in Didelphys brachyura), and with the usual azygous appendage: the left lung is commonly divided into two, but is sometimes entire, as in the Perameles and Didelph. brachyura. In all the marsupials the right lung is the largest, owing to the oblique inelination of the licart to the left side.

In the order Rodentia a tracheal structure, reealling the early division of the tube in Reptiles, is present in the Cape Jerboa (IIelamys): the windpipe is divided a little beyond the larynx into two canals by a median septum, as if the bronehi there began, and were continued, adhering, some way beforc diverging to the lungs. In the Coipu (Myopotamus) the extrapulmonary hronchi are each one-third the length of the undivided trachea. The right lung has four lohes, the left three : the same division obtains in Dasyprocta: in Cologenys the lungs have been seen to he still more divided. In Orycterus capensis the left lung is undivided, the right has four lobes. In the Water Vole (Arvicola) the left lung ha two lobes, the right four. In the Porcupine the rirht lung has four lobes hesides the azygous lobule. In the Hare the right lung has four lohes, the left two.

The thoraeic envity and the lungs are comparatively large in the Mole: in this Inseetivore, as in the Hedgehog and Shrews, the right lung has four lobes, the left one lohe: in the Chrysodhlore the left lung has two lohes. In true Bats the lungs are large, and with one or two ghallow fissures: in Pteropus the right lung has three lobes, the lower one extending to the place of the azygous lobule: the left lung is hilobate: in this genus, as in calcopitheress, a few uppcr rings of the traehea are entire, fig. 460: the ends of the slit oncs meet behind.

Iu Dasypus Peba the right lung has three lobes, the left two: vol. 111.
in Dasypus 6-cinctus both lungs have three lobes: the azygous lobule is represented in all Armadillos by a small process of the right lowest lobe. A repetition of a reptilian character of trachea is again manifested in the Lissencephalous group by the Ai, the windpipe being convoluted, as in the Crocodiles (vol. i. p. 530). The trachea, fig. 449, a, goes along the right of the descending aorta to the diaphragm;

449


Lungs, from belind, with convolution of trachea, Bradypua tridactylus. cxxin'. then abruptly bends upon itself, \(b\), and returns anterior to the first part to \(e\), and again bends downward and forward, a short way before dividing into tbe broncbi, of which the right is shown at \(h\). The right lung, \(d\), gives off a small azygous lobe, \(f\); the left lung, \(g\), is undivided. In the Unau (Bradypus didactylus) the azygous lobule is almost obsolete, and both lungs are undivided.
The chest and abdomen are more nearly coextensive longthwise in Cetacea than in any other Mammals, and the lungs extend far back : they are flattened, broad, and pointed anteriorly; not divided into lobes: their tissue is highly elastic, 'so as to squeeze out any air that may be thrown into them, and to become almost at once a solid mass.' \({ }^{1}\) The cartilaginous rings of the trachea, at least near the termination of the tube, are entire; where not so the deficiency is at their fore part, and this is considerable in the upper tracheal rings, in Balcanida: the windpipe is very short in all Cetacea; its width is great in proportion to its length, but not to the bulk of the lungs or of the body. The rings of the bronchi are more rounded than flattened, and are continued to their extreme ramifications. The pulmonary cells are relativcly smaller than in quadrupeds, and the extent and degree of intercommunication of the non-ciliate intercellular passages are such as that, 'by blowing into one branch of the trachca, not only the part to which it immediately goes, but the whole lungs are filled.' \({ }^{2}\) Great force being required to expand the chest in the dense medium of sea-water, especially when it is to be filled with the rarer atmosphere, the inspiratory muscles, and especially the diaphragm, are very strong. The yellow
fibres of the elastic tissue are abundant and conspicuous on the walls of the pulmonary air-eells in the Whales, as shown by V. der K.olk, in Balanoptera, fig. 450, \(a, b\); in which figure a portion of the injeeted eapillary wh is represented at \(c\). The elasticity of the lungs with the pressure on the surface of the body, makes expiration very easy, and the current strong when force is cxerted, as e. g., to clear the naso-palatine breathing passages, fig. \(297, f, d\) : the pulmonary


Elautle thoue of afr-celli, magn. Balenoptera. ccbxvitr. vapour so expelled mainly forms the 'spout' of the Whale.

In Sirenia the lungs resemble in shape and position those of (Tirlone, but are loosely suspended at the back part of an elongated thorax, defined by an oblique diaphragm from the abdomen. This resemblance is further exemplified in the shortness of the trachea, the completeness of its cartilaginous rings, the length of the bronchi, and tbe extent to which their eartilages are continued into the substance of the lungs. These are convex on the dorsal aspect, finttened on tbe opposite surface along which the principal branches of the bronchi ean be scen through the pleura pulmonalis. The forc end of each lung is thick and obtuse but narrow: they soon become flattencd as they reccle and broaden. In the Manatee their anterior or onter margin is erenately notched.

There are but three rings in the traehe of the Drgong, the first being the largest. The tule is somewhat flattened


Brouchial cartilnges of the Dugong. from before baekward: I found it, in a specimen 8 feet long, 5 inches in circumference and 1 inch in antero-postérior diameter. In older specimens the rings have been found bony. The carti-
lages of the bronchial tubes are continued spirally into one another, fig. 451 : the pulmonary artery lies to the outer side of the bronchus and is decper seated, the pulmonary vein to the inner side and superficially. The principal branch of the bronchus, \(l\), fig. 452, runs down near the inner margin of the lung, and eontinues distinet to within four inches of the end; it then divides into smaller branches; the larger ramifications are given off from its onter sidc, \(c, c\). In all the branches the cartilaginous rings eontinue distinct and strong till their diancter is contraeted to one

section of terminal part of lung, Dagoug.
or two lincs; the rings passing irregularly into each other as in the main trunks. The lining membrane of the air-tubes is thrown into longitudinal rugr, indicating their dilatability. The superficial air-cells, ib. \(a\), are six times larger than in the Porpoise. The 'pleura costalis' is dense in both Cetacea and Sirenia, as is the subserous tissue of the 'pleura pulmonalis.'

In the Elephant the right lung sends a lobular process, behind the thoracic postcava, into the space between the heart and diaphragm, but both this and the left ling are undivided. The trachea has thirty rings, many of which are partially cleft.

In the Rhinoceros ( \(R h\). indicus) the trachea has thirty-one rings : they arc close-set, cleft behind, the ends mecting: the lining membrane is longitudinally rugous, as is that of the bronclinal ramifications for some way into the lung. Each lung is divided into a small upper and a large lower lobe; the right lung also gives off' a transversely elongated narrow azygous lobule: the upper lobe has numcrous decp marginal notches. In the Horse the trachea has fifty-two posteriorly incomplete cartilaginous rings, the ends of which are flattened, expanded, and over-
lap each other: the tracheal muscles are attached to their inner surface at the angle where the free ends are bent inwards. The lungs are, as in Rhinoceros, each somewhat notehed where they enhrace the perieardium. The left lung, in the Tapir, has, hesides the fissure opposite the base of the heart, a second nearer the apex. The right lung is more definitely three-lobed, the lower one forming the azygous process. The traeheal rings are thick and broad, as in the Rlinoceros.

In Suide and Camelide the left lung is rarely eleft so as to show two lobes: the right is more commonly so, with the 'lohulus impar ' as a process of the lower lobe. In the Wart-Hog (Phacochorrus) aud Hippopotamus an upper lohe, is distinguishable from a lower one, in the left lung, and the right shows three lobes, besides the lobulus impar. In the Ruminants it is morc common to find three lobes on the left side and four, including the azygos one, on the right. The ehief peculiarity of the respiratory system in the Ruminant group relates to the length of the neck, with which the windpipe is made to agree hy the number not the length of its rings: thus the Camel may have upwards of 100 rings, the Giraffe upwards of 90 , the Llama 80, while the shorter-neeked Musks have not more than 50 tracheal rings. In some Ruminants the right hronchus hifurcates at its origin, and the left seems a third tuhe. The tracheal rings are cleft posteriorly, with the ends touching or overlapping.

In eertain pinnigrade Carnivora the tracheal rings are entire for some way down the tuhe, and in the cleft rings the ends overlap. Phoca vitulina has upwards of 70 rings. I found the left lung in this Seal rather larger than the right, and both divided into two lohes: Huntcr noted three lobes on the laft side " united hy a loose cellular texture.' \({ }^{1}\) In the Ursine Plantigrades the left lung has two lohes, the right three and the lohulus impar. The tracheal rings are thickest anteriorly, thinning off to their edges at the posterior cleft: there is a slight alternate overlapping, or intcrlocking, both in suceessive rings, and at the fore and baek parts of the same ring.

The Ratel, Wolverine, and Carcajou, agree with the Bears in the pulmonary divisions: the Mydaus has three lobes to the lung; and the lohulus impar of the right lung is large and notehed. In the ()tter the left lung has two lohes and the right four lohes including the lobulus impar: the ends of the eleft tracheal rings are thinned off and overlap more elosely than in terrestrial Curuiroru. The traeheal tube is wide in most of the order, the number of rings ranges from 40 to 60. In Digitigrades as a rule

\footnotetext{
' cexxxyl. vol. ii. p. 96.
}
the right lung has four lobes : in some (Lion, Tiger, e. g.) the left has two lobes; in others (Dog, Hyæna) three lobes.

In Chiromys, as in most Quadrumana, the lobulus impar is superadded to the three ordinary lobes of the right lung: the left lung is bilobed: all the lobes are distinct from each otber throughout. The tracheal rings, 26 in number in Chiromys, are cleft behind, with the ends in contact, but not overlapping. The


Cartilages of the Latrax, and of the enper part of the pindmipe; Man, nat. slue. coxvid". broncli have shown dilatations in some Lemurida. In a Lemur Macaco and a Tarsius the left lung was trilobed: as also in a Ba boon, in which, as in other Catarhines, the lobulus impar is small: it is represented as a process of the right lower lobe in Hylobates. In a Simia Satyrus I found botb right and left lung undivided. \({ }^{1}\) In Troglodytes the rigbt lungs has three lobes, the left two lobes, as is the rule in the Bimanous order.
§355. Larynx of Manmalia. - The vocal organ appended to the respiratory system in Mammals is a larynx answering to the upper one in Birds. It consists of cartilages, sometimes ossified, joined by ligaments, forming the framework of a tube or case (pixis cava, Anthropotomy), lined by mucous membrane, which may be produced into 'folds ' and 'sacs' and reflected over elastic, sclerous, and muscular fibres. The larynx communicates
below (or behind) with the trachea, fig. \(453, t\), and above with the pharynx. The chief or constant cartilages are the 'cricoid,'
ib. \(d\), the thyroid, ib. \(h, i\), the 'arytenoid,' ib. \(a\), \(a\), and the epiglottis, ib, \(f\).

The more immediate impressors of 'sonorous vibrations ' upon the air transversing the larynx are the elastic fibres stretched bctween tbe arytenoid and the thyroid cartilages, tbence termed 'chordæ vocales,' and 'thyro-arytenoid ligaments;' of which one is distinguisbed as the ' upper,' fig. 454, \(l\), the other as the 'lower vocal cord,' ib. \(k\). They intercept a space \(n\), where the lining membrane bulges outward, and in Man backward, forming the 'laryngeal sac' or 'ventriclc.' In this section are shown the hyoepiglottic ligament \(b\), the thyrohyoid ligaments \(c\), the glossoepiglottic ligament \(e\), the cricothyroid ligament \(f\), and its junction with the lateral cricothyroid ligament at \(g, i\), and with the base of the arytenoid cartilage at \(n^{\prime}\).

With this brief indication of the chief parts of the larynx in Man, its comparative anatomy


A longitudinal section of the larynx; Man, ecxyiI", may be better followed.

In the Monotremes the supcrior larynx presents some remarkable modifications in the Ornithorhynchus. The thyroid cartilage, fig, \(455, c\), in this animal is very broad; its middle part is prominent and acuminate: the lateral alx are bony, and each of them divides, and sends one of the processes to the posterior part of the pharynx, ib., where it becomes cartilaginous, and is confluent with the corresponding process of the opposite side. The cricoid cartilage, ib. \(d\), is ossified at its middle anterior part. Thc arytenoid cartilages, ib. e, e, present the usual triangular form, and are of large size. The epiglottis, ib. \(a\), is broad, with an acuminate and notched apex.


Largax of Orulchorbsuchtus. Lexxi'.

On slitting up the larynx posteriorly, and divaricating the
thyroid process, \(f, f\), fig. 456 , the superior vocal cords are shown at \(b, b\), the inferior ones at \(c, c\) : they arc short, feehle, with a shallow linear interspace: a sulcus, \(d\), lies between the upper cord and the cricoid cartilage. Both sexes emit a feeble squeak.


Larynx opened from behind, Ornitiothymchus, magn. cooxx.

The epiglottis, in Marsupials, is remarkable for its large size, and generally for its emarginate apex There is no muscle passing from the epiglottis to the tongue; its base is connected in the Kangaroo by a triangular fascia to the body of the os hyoides and the greater cornua; and a small muscle passes from the middle part of the body of the os byoides to tbe dorsum linguæ. In Didelphis Opossum the epiglottis, fig. 456, \(f\), is entire, the thyroid, ib. \(\alpha\), short, anteroposteriorly produced, and bifurcating into upper and lower cornua behind: the cricoid, \(b, c\), is broad bebind and notched below. In tbe Pbalangers the epiglottis is broad and sbort, and witb a bifid apex. In Perameles and Phascogale the sides of the broad and short epiglottis are attached to the apices of the arytenoid cartilages, retaining

457


Laryinx of the opossum. ccoxx. cock. thus mucb of its early condition, wbich will be adverted to in the account of tbe peculiarities of the mammary foetus. In the Perameles lagotis I found on the basc of the tongue in front of the epiglottis a small sacculus of mucous membrane, which communicated by a regular svmmetrical crescentic aperture situated between the body of the os hyoides and the thyroid cartilage, and was continued down in front of the thyroid cartilage: the surface of the cavity was smootb and lubricated, and it seemed to be for the purpose of facilitating a hinge-like motion between the thyroid cartilage and the body of tbe os byoides. The thyroid cartilage is consex externally and protuberant in the Phalangers and Koala. The base of the arytenoid cartilages is broad in the antero-posterior direction. The chordæ vocales are represented by short and slight folds of the membrane, wanting the ' ligaments,' and not susceptible of being stretched, in
the Kangaroos and Phalangers. The Opossums have the lower ligament, above which is a small 'ventricle?': they can squeak and also 'purr.' As a rule the Marsupials have little or no voice: the Wombat emits a guttural hissing sound: the Dasyurus Ursinus a snarling growl or whine: the Thylacine is deseribed as uthering a short guttural ery. I have never heard a vocal note of any kind from the Kangaroos, Potoroos, Petaurists, Phalangers, or Peramcles. Bennett \({ }^{1}\) states that the Kangaroo utters a moan when wounded and in pain.

The voiee of Rodents is shrill and monotonous: the cry of the wounded IIare is loud and piteous. The alæ of the thyroid, fig. \(458, b\), are quadrate, convex, and united at an obtuse angle; the posterior margins are oblique and parallel. The cricoid, ib. \(d\), is short or narrow anteriorly, leaving a wide space for the cricothyroid ligament, ib. c. The arytenoids, ib. \(n, n\), are relatively large, with everted apices. The epiglottis, ib. \(a\), is broad, with a bifid apex: at


Larsnc of the Rabbit, lald oper frows heblud, nat, slze. ccexx.


Larsinx and opper part of trachert, Rabbit, nat.slye. its base are small eartilaginous styliform bodies, separated by a triangular space: a vertieal groove divides tbe insertions of the 'ehorda vocales' from \(l\) to \(c\), fig. 458 . The inferior tubercles, \(r, c\), give attaehment to the upper vocal cords; which they help to stretch, while they expand the ventricles, and afford freer motion to the lower vocal cords, \(d, d\). In the Bcaver the epiglottis is triangular, with a vertieal raphé on its posterior surface, terminating in a sac bordered by the vocal ligaments. There is a blind sac at the base of the epiglottis in Coelogenys Paca: in both Rodents the vocal cords are short and little salient, and the 'ventricles' are shallow: the voice is acute. In the Porcupines both the vocal cords and ventricles are wanting: they are mute, save at the rut, when the male emits a low grunt.

The Insectivora agree with otber Lyencephala in the low development of the voeal organ and power. In the Hedgehog, fig. 459, hesides the thyroid, cricoid, \(c\), arytenoid, \(d\), and epiglottal \(\alpha\), eartilages, there is a triangular eartilage, \(f\), between the bases of the arytenoids and tbe cricoid, called 'interarticular' in
exen".
coxvini", p 34. At the apex of the arytenoids are the confluent ' cartilages of Santorini,' ih. \(b\). The cricoid, \(c\), has a median longitudinal ridge hehind. The vocal cords are short, and attached interiorly to the lobes of the base of the epiglotis, the lower chord is the strongest; the "ventricle" is
 produced into a sac hetween the epiglottis and hyoid. The Hedgehog's squeak is seldom heard.

The larynx of Shrews and Bats agrees in the. main with that of the Hedgehog. In a large frugivorous bat (Pteropus) \({ }^{1}\) the wings of the thyroid coalesce anteriorly for a short extent: the cricoid, fig. 460, \(c\), has the posterior longitudinal ridge: the epiglottis is hroad with an acute apex: hesides the arytenoids and their apically confluent 'Santorinian cartilages,' \(d\), there are the 'sesamoid cartilages,' \(b\), and an 'intercellular cartilage,' \(f\), narrower than in the hedgehog, and of an ohlong form. The infcrior vocal cord is sharply produced, but is short and narrow: the ventricle is not dilated into a sac.

In the Sloths the upper vocal cord is ohsolete; the lower one is well defined but short; the ventricle is shallow. The voice of the Ai (Bradypus tridactylus) is feeble and plaintive; that of the Choloppus didactylus, captive at the London Zoological Gardens, has never heen heard there. The Armadillos, also, appear to be hahitually mute: only the lower vocal cord is manifest: the ventricle is obsolete : the epiglottis is deeply notched at the apex. \({ }^{2}\) In the great Anteater (Myrmecophaga jubata) the thyroid cartilage is ossified. The cricoid is cartilaginous. The arytenoids are low ohtuse cartilages. The lower 'chordæ vocales' extend from the arytenoids forward, the fold containing them expanding as they advance. There is a shallow fossa heneath this fold and a deeper one representing the ventricle ahove it. A small 'interarticular' fihro-cartilage supports an ohtuse prominence ncar the hinder ends of the epiglottidean folds, which are continued back to the arytenoids.

The larynx includes, in Cetacea, the usual Mammalian cartilages, much modified in shape and proportions. The thyroid in

\footnotetext{
\({ }^{1}\) Referred by Brandt to Pteropus Vampimes, in ccxymi'; and by Bishop, who copies the figure, to Phyllostoma Spectrum, cccxx, fig. 898.
" cxxvii". p. 144.
}

Balcenoptera is but little convex transversely; the wings unite at an open angle; the breadth much exceeds the length, but the lower angles are produced and continued down outside the cricoid: this is a thick cartilage, broad and flat posteriorly, witb a thick upper margin and an irregular thinner lower one: it is incompletc at the fore-part, from which the lining membrane of the larynx protrudes and expands into a large sacculus. In Phocena the thyroid, from the great extension of the inferior cornua, seems to consist of two semilunar cartilages united at their anterior extremities. The cricoid is incomplete at the fore part, but does not give passage to a laryngeal sac. The arytenoids, articulated to the cricoid by a broad base, are of unusual size and length, rising, in contact along their mesial borders, and becoming inclosed with the long epiglottis by a sheath of the pharyngeal mucous membrane, fig. 461, \(b\), so as to form therewith a long pyramidal projection, with a slightly expanded apex, which is encircled, as it were grasped, by a sphincteric disposition of the muscles of the soft palate, ib. e. The opening of the glottis (through which passes the bristle, in fig. 461) is transversely semilunar in Delphinitle: it is


Section of the Tungue, Pbaryax aud Largnx of the Purpolse. ccoxx. triradiate with the posterior cleft extending backward between the arytenoid apices in Balanidce. The epiglottis seems almost continuous, through its fibro-cartilaginous union, with the upper margin of the thyroid: it is elongated, and curved toward the arytenoids to which its lateral margins are attached, completing the apical third of the laryngeal tube in Defphinide: in Balcenidee the epiglottis and arytenoids are relatively shorter, and are connected together by the membrane at their base, the apices being free and not expanded, as in Delphinida. The bases of the arytenoids exteud from the cricoid forward to the thyroid, and
there are no 'vocal cords,' hut betwcen them and the hase of the epiglottis are two lateral glandular fossw, representing the - ventricles ': there are numerous orifices of mucous follicles along the fore part of the base of the larynx.

The cxterual respiratory aperture, fig. 297, \(f\), answering to the nostrils of other Mammals, is single in all Cetacea, save the Whales (Balcnidæ), and is ealled the 'spout-' or 'hlow-hole.' Where it is single it is a transverse slit; it is symmetrically situated, crescentic with the horns turned forward, in Delphinidec ; it is creseentic hut ohlique and to the left of the medial line in the small Cachalot (Euphysetes); it is similarly unsymmetrical, hut of sigmoid shape in the great Cachalot (Physeter). The two nostrils in the Whale-trihe are longitudinal. In all Cetacea the 'spout-hole' is at the upper surface of the head, readily emerging for inspiration without unnecessary exposure of the animal. In the broad truncate muzzle of the great Cachalot it is advanced to near the anterior margin of that part: in other Cetacea it is mostly on the same transverse parallel as the eyes. The direction of the nasal passage is accordingly vertical: and as the lining or defining membranes descend through the mass of adipose tissue to the hony canal, the passage is dilated or produced into large irregularly plicated sinuses or sacculi, ih. \(e, e\). The first, toward the fore part of the passage, is connected with the formation of the anterior valvular prominence in Delphinidec, whieh fits into and closes the outer creseentic aperture, at the will of the animal: other muscles serve to open and dilate the spout-hole. The great Cachalot, when gasping in the death-throes, opens it widely: in the ordinary state it will admit, in the Whale, a man's arm. Lower down, in the Porpoise, larger lateral narial sacculi extend hoth forward and backward: the parietes of all these plicated expansions are invested hy a layer of muscular fibres; wherehy the water that may get access to them hy the hlow-hole, and to which they serve as diverticula, can be expelled along with the expired current of air. The number, size, and complexity of the narial sacculi vary in different genera: Hunter remarks that 'the Spermaceti Whale has the least of this structure.' \({ }^{1}\) In Delphinida the nasal meatus divides on entering the osseous part of the passage, which is traversed by a medial prefrontal and vomerine 'septum narium,' fig. 297, \(d\) : below this the passages again intercommunicate and receive the swollen apex of the glottis. In the small Cachalot (Euphysetes) the hony narial septum exists, hut the right meatus is so small that only the larger left one is tra-
versed by the air-passage ': and in the great Cachalot it is this disproportionately enveloped 'bony nostril' wbicb is described as the 'single eanal' by Hunter. \({ }^{2}\) In the Balcenidee the two narial canals are eontinucd from the blow-holes; distinct from one another to the lower and hinder border of the bony septum. In all Cetacea a dark pigment is continued with the dense epithelial lining of the narial passages from the blow-hole down to the bony tract. The phenomenon described and figured as the 'spouting of the Whale' consists chiefly of the expired pulmonary vapour : it does not include water received into the pbarynx from tbe moutb; but it may contain that which has been diverted from the pasal passage and accumulated in the saceuli : and the appearance of a fountain may be enlianced by superincumbent sea-water 'blown up' in the violent act of expiration, begun before the blow-hole itself had emerged.

Similarity of structure can as little be predicated of the bcginning of the air-passage as of the digestive aud circulating systeins, in the herbivorous and the carnivorous marine apodal Manmals. The Dugong and Dolphin present opposite extreines, e.g. in the development of tbe epiglottis, which can hardly be said to exist in Sirenia. \({ }^{3}\) The glottis is very small and T-shaped, tbe upper transverse slit being crescentic, with the borns bent a little way outside the vertieal slit: the epiglottis is not long enough to close or cover this, but makes an obtuse prominence in front of the glottis: the sides of the opening are formed by the menbranc covering the tbin convex borders of the arytenoids. The cartilaginous wings of the thyroid are not confluent, but are joined antcriorly, for a short way, by sclerous tissue, and below this by membrane and areolar tissue: the mesial cleft below is continued on as a fissure to the upper cleft of the thyroid: each wing is an irrcgular rhomboid, of which the forcmost end is the point of junction witl its fellow, while the opposite angle is produced into the 'inferior cormu,' and is similarly connected by sclerous fibres to a prominence on the side of the cricoid : the intermediate angle on the posterior margin of the thyroid feebly represents the 'superior cornu,' which is connected to the thyrohyal by ligament ineluding a nuclear • cartilage of Morgagni.' The cricoid is a larger cartilage, and forms a complete ring: its broad posterior surface offers threc longitudinal facets-one medial, narrow but expanding above and below, and two lateral and broad: the lower border describes three straight lines: the upper border is very thick, and presents, on cach side, an elliptical convex articular

\footnotetext{
' xı, x'. p. 37, ph. 13, fig. 1, of.
Ibid.
cxyti". p. 30 (1838).
}
surface for the arytenoid: the anterior part of the cricoid is convex and notched above. Each arytenoid is an irregular three-sided pyramid, the inner surface flat, the antero-external surface convex, the postero-external surface concave, the base excavated to fit the cricoid articular tubercle, with which it is articulated by a synovial and fibrous eapsule; the apex is compressed and extended in the antero-posterior direction, forming the convex lateral margin of the glottis. The short space between the arytenoid and thyroid cartilages is traversed by a thick fasciculus of dense elastic fibres representing the lower vocal cord, and covered by the lining membrane of the larynx: there is a small pit between the anterior insertions of the ' chordæ,' but no other indication of sacculus. The mucous membrane is smooth for a short extent below its reflection and over the arytenoid apices, and then begins suddenly to be disposed in numerous narrow plice which increase in breadth as they descend into the tracbea: at the back part of the larynx are a few longitudinal rugx. There is no true cartilage in the epiglottis: the small pyramidal prominence in front of the glottis includes yellowish and white fibrous tissue which degenerates gradually into the areolar substance occupying the interalar thyroid space : the other parts of the laryngeal framework have bony granulcs scattered through their gristly tissue. A' byoepiglottideus' is continued from the fore part of the epiglottis to the base of the tongue. The 'arytenoidei obliqui' and 'transversi' are represented by a single pair of muscles, which derive a broad and extensive origin from the posterior and external ridges of the arytenoid cartilages, and converge to be inserted into a small round cartilage in the posterior interspace of the arytenoids. Tbese muscles, through the advantage afforded them by this middle fixed fulcrum (whicb ought therefore to be regarded as their point of origin), act with great power upon the arytenoid cartilages, drawing them together, and thus forcibly closing the narrow glottis. They are directly opposed by strongly developed 'thyreo-arytenoidei,' which pass obliquely backward from the internal and interior part of each division of the thyroid cartilages to the posterior and outer part of the arytenoids, which they draw apart, and thus open the glottis. The 'crico-arytenoidei' arise from the anterior border of the cricoid, and are so inserted as to draw the arytenoidei forward as well as outward. The 'crico-thyroidei' cover the whole of the fore part of the cricoid cartilage. The 'stcrno-thyroidei' and 'thyreo-hyoidei' are extremely powerful. \({ }^{1}\)

In the Elephant the ale of the thyroid are externally convex and unite anteriorly at an obtuse angle; the upper cornua are short, the lower ones are notched anteriorly. The cricoid extends posteriorly over the first tbree trachcal rings. The arytenoids are long: the lower vocal cord is well-marked; the upper one indistinct. In the Rhinoceros the wings of the thyroid cartilage meet at a slightly obtuse angle: there is no notch at the upper margin of the anterior median line; but there is a considerable triangular vacancy below, filled up by dense elastic and aponeurotic mombrane, to whicb yielding walls of the larynx some of the fibres of tbe tbyreo-arytenoidei muscles adhere. The cricoid is nearly thrice as decp behind as in front, contributing to the extent of the crico-thyroid interspace. The arytenoid eartilages are relatively of large size: their base extends half-way across the apcrture of the larynx, and from the anterior extremities of these produced bases, tbe upper and lower "chordæ vocales" extend forward to the thyroid cartilage and base of the epiglottis. Only the anterior half, thereforc, of the 'rima glottidis' is bounded by vibratile vocalising material, and the ordinary voice of the Rhinoceros is a feeble bleat like tbat of a calf. Between the upper and lower chorda vocales is the opening of a large sacculus laryngis, which communicates anteriorly with a crescentic fossa under the base of the epiglottis. A fold of membrane cxtends on cach side from a small scmilnnar fibro-cartilage at the iuncr and under side of the base of the cpiglottis, downward, inward, and forward to tbe anterior termination of the chordæ vocales: these oblique folds form the inner or posterior walls of the anterior fosse of the sacculi laryngis. Tbe anterior or supcrior labia of the glottis form two broad, thick, slightly cverted folds of mucous membrane. In the mass of muscles attached to and passing between the arytenoid cartilages, there are developed about twelve tendons which radiate to be inserted into a central sesamoid eartilage. The epiglottis is of a triangular figure, with the pointed ajex curved forward, and having strong glossocpiglottidei muscles attached to it.

In the Ilorse the wings of the thyroid meet at an acute angle, leaving a large inferior notch : the back part of the thyroid forms an almost acute angle with the cricoid: the cricoid has similar proportions to that in Rhinoceros: it has been vertically cleft belind and the moictics divarieated, in fig. 462, \(i, i\). The arytcnoids, il. \(f, f\), have their bases deflected from each other, keeping patent the 'rima glottidis': the 'cartilages of Santorini,' ib. \(k, k\), are hook-shaped. The lower vocal cords, ib. \(g, g\), are large and
prominent; above them are the orificcs, \(e, e\), of the deep 'ventrieles': the upper cords are barely definable. The epiglottis, ib. \(a\), is a longish triangle with the apex entire and antroverted, the base medially cleft by the so-called 'sulcus,' ib. \(d\); and produced into two processes ('cornua' of Casserius). Between the commissure of the lower cords, \(g, g\), and the epiglottis is an oval cavity, \(c\), above which is the 'semilunar ridge' or ' membrane,' \(b\).

In the Ass, the wings of the thyroid unite anteriorly at a rather obtuse angle: the cricoid


Lidrynx of the Horse laid open. ceckx. resombles that of the Horse: it is similarly cleft and divaricated in fig. 463. The erico-thyroid interspace is relatively less than in the Horse. The epiglottis, \(a\), is a more equilateral triangle than in the IIorse, with the apex


The Larynz of the Aes laid open. cocxu.
less acute: it is perforated by two apertures, ib. \(c, c\), leading to two 'sacculi' continued upon part of the inner surface of the thyroid. Between the apertures is the arched recess, ib. \(b\), in which the lower vocal cords, \(d, d\), are inserted; these arising behind from the bases of the arytenoids.

The roice of the horse under sexual or other pleasurable excitement is duc to movements of the vocal cords throngh forcibly expired air, but with short intervals or interruptions of the current,
producing the shrill but tremulous or vibratory seale of notes, sinking to its close, and called the 'neigh.' It is peculiar to the group of Equidre with callositics on both fore and hind legs and with flowing mane and tail; the species with callosities on the fore legs only, with stiff erect manes and naked terminally tufted tails, vibrate their vocal cords by currents of air in altcrnate opposite directions, produced by vigorous acts of inspiration and expiration, with the head and ncck held in the position in wbich such currents can best act upon the larynx ; the sounds so produced are termed the 'bray:' in some species the notes are longdrawn out, c.g. the ass; in otbers they are shortened to a kind of 'bark,' as in the S. African striped ass, called, on that account, ' couakka' or ' quagga.'

The thyroid of the Tapir is thicker than in the Horse or Ass, and lies more in the plane of the trachea: the ericoid is less than in thein, and has no tubcrele on the back part. The arytenoids resemble those of the Horse, but are less hollowed bchind. A triangular fibro-cartilaginous mass represents the two cartilages of Santorini (fig. 462, \(k, k\), Horse); a sinilar triangular fihro-cartilage at the anterior border of the arytenoid represents the cuneiform cartilage, and is continucd at its apex into the lower vocal cord; this is well marked, sharp, and joins its fellow at an acute angle; the upper vocal cord is very short, but definable. The
ventricle' is prolonged into a blind oval sac resting upon the inncr surface of the thyroid. From the anterior conflueuce of the lower cords a membranous fold ascends toward the epiglottis, and divides into two semilnuar folds which bound small follicular depressions. The epiglottis rescmbles that of the A.x ; an opening at its base leads to a curvel cavity on cach side.

In Artiodactyles the wings of


Mesind section of the Larsinx of the Pig (Sus scrusta), ctarx the thyroid unite at an acute angle. In the Hog theye are no upper cornua: the cricoid, fig. \(46+, f\), is broad and thick behind, with a tuberous process on each side. The arytenuids, \(c\), are united at their apices ly a "santo111.. 111. Q Q
rinian cartilage;' both upper, \(b\), and lower, \(c\), vocal cords are well defincd, and directed obliquely downward to be inscrted into the thyroid about one-eighth of its length from the lower margin. The ventricle, commencing by the chink, \(d\), is continued upward into an oblong flattened sacculus, \(a\). The range of voice is considerable, from the low grunt to the loud discordant squeal.

In the Camel the wings of the tbyroid meet at an almost right angle, and unite along the mid part, leaving an upper and an under notch. The upper cornu is represented by a slightly prominent tubercle; the lower cornu is more produced, overlapping obliquely the cricoid, and tied to a tubercle near its lower border by short ligamentous fibres. Tbe cricoid is a deep and thick annular cartilage; the vertical extent anteriorly is about


Largnx enposed from boulnd, Cramel. cecxx: balf of that behind; the upper border has an oval facet on each side for the arytenoids. The base of the arytenoid developes an external, fig. \(465, d\), and an internal process ; the body is lamelliform, and expands aloove into a punctate softer cartilage whicb curves outward. The epiglottis, ib, \(a\), has a median rising or tubercle, \(h\), on the binder surface; the lower cords, \(c, c\), from the basc of the arytenoids, are neatly defined, more linear in tbe Llama than in the Camel; the broad membranes, \(b, b\), continued from the anterior border of the arytenoids to the base of the epiglottis, represent, by a slight thickening of their lower border, the upper cords; a slit-like aperture between these and the lower cords leads to moderately developed ventricles. The thyroid cartilage is perforated by a laryngeal nerve and by a vessel.

In the \(0_{x}\) the thyroid alae are sub-equilateral, and united at an obtuse angle: the upper vocal cord is less marked tban in the Camel; the lower one is rather longer, and vibiates so as to produce the bellowing roar of the bull and the sonorous lowing of the cow.

In the Elk (Alces), the upper cornu of the tlyyroid, fig. 466, ", is much produced; the lower one is obsolete, and the rounded angle there is connceted by ligament with the cricoid tubercle. The cricoid is short anteriorly, ib, \(L\), and connected there by the
erico-thyroid ligament, \(d\), erossing the wide space of that name, to the thyroid; the ericoid is expanded behind and thence produeed downward, at \(c\), во as to cross the five first traeheal rings. The upper cord is not defined: the lower one is inserted into the middle of the fore-part of the thyroid. In the Rein-deer a laryngeal sac protrudes below the base of the epiglottis.

The Giraffe is mute, save at the sexual season. The larynx of the Deer, with the annexed vaseular thyroid bodies, undergoes a periodical development, at the season of the rut, in the male, which then utters notes characteristic of the speeies: in the Reddeer it is termed 'belling' (quasi bellowing) : in the Fallow-deer it is something between a beleh and a bray: in the Roe-buek it is a shriller grunt.



Latyux, Uvans Malayanus, cocex.

In the Bear the thyroid is eonvex, the alre meet at an obtuse angle, and unite along the upper half of their fore part, whieh developes a tubcrcle, fig. 467 , \(a\), to whiel the epiglottis is attached: the iuferium eleft, ib. \(\dot{0}\), almost extends thereto in \(T_{r} r, u s\) urchus: the upper cornua are short, the lower ones, ib, \(q\), are very long. The ericoid is almost divided by an anterior eleft, \(p\),
and the latcral halves are connected chiefly by ligament. The arytenoids, fig. 468, are rhomboid: between them at the hind part of the rima glottidis are the sesamoid cartilages, ib. \(d, d\), upon which a few muscular fibres act. Cuneiform and santorinian


Rlom gloteidis, with arytenold sud sesumoid curtilages, Ureus Mala yanus. cecxs. cartilages are also present. The lower vocal ligaments rise, as they advance, toward the upper ones. The epiglottis is broad, with an obtuse apex. In the Badger the laryngeal sacs are deep and bifid, one portion extending to beneath the root of the tongue, the other to between the thyroid and cricoid cartilages. In the Otter the anterior cleft of the cricoid, fig. \(469, c\), extends to near the upper border: the lower or hinder border of the thyroid, \(\mathrm{ib} . b\), is deeply emarginatc: the middle of the upper border sbows a rounded apex, like a process: the epiglottis \(a\) is oval.

In the Dog the epiglottis is triangular, with a medial furrow at tbe base: the ventricles are deep: santorinian and cuneiform cartilages are present, superadded to the arytenoids which curve away from each other. In the Cat tribe the upper vocal cords, fig. \(470, c\), are unusually prominent, and by their vibration cause the ' purring' sound : the lower vocal cords, ib. \(d\), are shorter and less prominent, and do not support any membranous appendages: the epiglottis, ib. b, is triangular with a subaeute apex: in the Lion this is more obtuse. The ventricles form a sae between the vocal ligaments. The larynx of the Lion differs from that of the Cat ehiefly in its more free suspension, allowing the strong vibrations of all the parts producing the terrific roar. In the Cat the upper cornua of the thyroid are closely conneeted through the medium of the thyro- and cerato-hyals, with the stylohyals: in the Lion a long ligament intervenes between the stylo- and cerato-hyals.

In the Aye-ayc (Chiromys) the thyroid is like the prow of a boat, without keel, being laterally contracted and produced: the crieoid is notehed at the middle of its broad back part: the ericothyroid interspace is narrow. The vocal cords are slender and well defined; hetween them and the epiglottis is a large and deep pouch, from which a median sacculus is produced between
the back of the thyroid and the base of the epiglottis. \({ }^{1}\) An interarticular cartilage lies between the arytenoids. I found both these cartilages partly ossified and the cricoid confluent with the upper two tracheal rings. The


Laryux of Cat, ecoxx. laryngeal cartilages are commonly more or less ossified in the Slow Lemurs.

In Stenops gracilis the lower cornua of the thyroid are produced over and


Vertleal section of the bead and neck, with the expanded bumbeal and lax'sux, of Mscetes seblculuy Lxix',
beyond the cricoid to be connected with the first tracheal ring: the crico-thyroid interspace is narrow, but vertically wide: there are both santorinian and cuneiforn cartilages. The upper vocal cords are rather thick and attached forward to the root of the epiglottis: the lower vocal cords are narrow, short, and attached to the thyroid: the ventricles are shallow, and are confluent beneath the epiglottis. This rises high and has its free border rounded and notched. The thyroid is prominent, with a median emargination above, in Lemur Mongoz: the back of the cricoid is ridged below, and a bove this is excavated. The arytenoids are rather large and high, having the santorinian bodies connected, but not confluent, with their apices. The vocal cords are well

\footnotetext{
' cri, p. 44, pl, 10, fig. 3.
}
defined, the upper ones are hroad; alove tbcir epiglottidean attachments there is a widish sac: the intercordal ventricles arc moderate.

Among Platyrrbine Quadrumana the larynx of Hapale, Callithrix, and Cebus retains the moderate proportions of that in Lemuride: it is relatively larger in the Spider-monkcys (Ateles) and attains, with the byoid, an enormous size in the Howlers (Mycetes, fig. 471). In most the upper horder of the thyroid is emarginate: but Ateles arachnoides and Hapale rosaZia are exceptions; instead of the notch tbere is a modian process, and a small sacculus projects from the crico-thyroid interspace: the santorinian cartilages are confluent at their apices, and distinct from the cuneiform cartilages, in Cebus and IIapale; hut both are fibrous rather than gristly: they appear as processes of the upper vocal cords. These are attached to the thyroid like the lower cords, which there rather overlap them : the ventricles are moderate: the rima glottidis is ordinarily wide and alnost perpendicular: the hasihyal is not excavated. In Ateles the basihyal is quadrangular and excavated: the santorinian and cuneiform bodies coalesce with each other and with the cpiglottis, of wbich they seem to be processes. In the Howler (Mycetes) the cricoid, thongh small in proportion to the rest of the larynx, is larger than in other Platyrrbines and remarkahly thick and powerful, especially behind: it is ossified, and impressed on each side, near the lower posterior angle, hy an articular cavity for the short obtuse lower horn of the thyroid. Tbis cartilage sbows a still larger relative size, which is thrice that of the human tbyroid: it makes a strong anterior promineuce, bulging out there to lodge a pair of sacculi continucd from the fore part of the long intercordal cleft or ventricle. The arytenoids are small, with their uncinate apices continued into a large fibro-cartilaginous mass, representing vastly developed and confluent santorinian and cuneiform cartilages, connecting the arytenoids with the long sigmoid epiglottis, and including the scarcely distinguishable upper vocal cords. Tbe lower ones are broad, hut well defined. From the fore part of the intcrcordal space tbe pair of sacculi are developed which line or occupy the thyroid bulla. The epiglottis is more than 4 inches in length and 2 incless in breadth, with the sides bent down so as to form a kind of arch ahove tbe glottis. The 'rima' so covered consists of an anterior semilunar portion, from whicb a chink extends backward, dilating into an oval aperture. Betwecn the glottis and the arytenoid cartilages are the orifices of a pair of pouches, continued rather from the pharyngeal than the laryngeal
membrane, which extend forward and upward on each side of the epiglottis. From the upper part of the thyroid sacculi are continued a pair of ' pyramidal oval' sacculi, which occupy the sides of the interspace between the epiglottis and the hyoid: and from the fore part of the thyroid sac is continued the neck of the large 'infundibular sae;' which expands to occupy and line the huge 'bulla 'or bony cave formed by the basihyal, and of which the section is shown in fig. 471. Travellcrs in the forests of tropical America testify to the astounding tones enitted by these far-heard ' howling ' Monkcys.

In most Catarrhines the basihyal is expanded and excavated for the reception of a laryngeal sacculus, hut in a far inferior degree to that in Mycetes. In the Baboons a section of the basilyall is shown at \(b\), fig. \(472,{ }^{\text {, }}\) to expose the sacculus, \(c\), which is continued from below the root of the epiglottis; from this pouch the sacculi continued from the intercordal ventricles are distinct. The hack part of the cricoid is traversed by a medial ridge. The upper


Laryin of Baboon. (Cynocephithe), cooxx. and fore part of the thyroid, ib. \(d\), is produced, and supports the hyoid sac: the wings of the thyroid coalesce at an obtuse angle. The crico-thyroid interspace, ib. \(f\), is wide. The arytenoids, ib. \(a\), resemble those of Man: the santorinian eartilages, therefrom continued, are not confluent with each other apically, as in Platyrrhines. The cuneiform fibro-cartilages are continued from the upper vocal cords, are large, aud project from the aryteno-epiglottidean folds: the free border of the epiglottis is obtuse, in some spccies emarginate. The uppcr vocal cords are hent; the lower ones are rather thick: ahove the convergence of the upper cords is the longitudinal fissure leading to the hyoid sac.

\footnotetext{
This figure is taken from the preparation, No. 1173, xx. vol. ii. p. 110. (1834)
}

In the green Monkey (Cercopithecus sabaus), the structure of the larynx aecords with that in Macacus \({ }^{1}\) and Cynocephalus. In fig. 473 , B shows the expanded and excarated basihyal, \(f\), with the attached thyrohyals: in \(A, a\) is the epiglottis, \(b\) the hasihyal, \(c\) the hyoid snc, \(d\) the thyroid cartilage, \(e\) the trachea.

No tailless Ape has the medial aperture and hyoid sac. In the Gibbons the larynx is relatively large, the vocal cords well defined, with deep intervening ventricles, from one of which is continued the sac projecting into the thyro-hyoid space. If Mycetes has the loudest cry, the Gibbons have the greatest range of notes; they alone, of brute Mammals, may be said to sing. I

heard, with astonishment, the Wouwcu (Hylobates agilis), captive at the Zoological Gardens, emit the rising and falling scale of semitones, throughout the octave, which Martin has acsurately rendered in the musical notation given in ccxx" In the Orangs the sacculi continued from the intercordal ventricles pass out between the thyroil and hyoid, and in the adult males extend over the fore part of the neck and upper part of the chest, being subdivided into scveral pouches, as in fig. 474, the lowest of which may be crossed by the pectoralis major. In the young Chimpanzee (Troglodytes niger), the laryngeal sacculi, fig. 475, \(a, a\), produced from the ventricles extend upward and outward, the left, in the specimen dissected by me, being continued for-

\footnotetext{
' xx . vol. ii. p. 110, fig. 1173 c.
\(2 \pi x\). vol. ii. No. 1173 A.
}
ward, ib. \(c\), below the basihyal, \(\mathrm{ib} . b\), which was slightly expanded and excavated for its reception. In the larger species of Troglodytes ( \(T\) : Gorilla), this sacculus is developed in the adult male to the degree which it presents in Pifhecus Satyrus. The roar of the male Gorilla is loud, and may be heard far off in its native forests.

In Mau there is no such excess of development of the laryngeal sacculi or other part of the vocal organ. The cords are long and well-defined, and all parts of the organ are in well-balanced proportion. The chief elcments of the vocal organ have been already defined and exemplified in figures 453 and 454. The external muscles of the larynx, viz., the 'thyro-hyoidei,' 'sternothyroidei,' and 'crico-thyroidei,' operate (among other actions) in producing that rotation of the ericoid upon the thyroid which effects the important change in the angle of the vocal cords as it exists in ordinary breathing, when they are so inclined to each other as to have no vibratory motion, to the position in which their surfaces lie in the same plane, and when the breath excites their vibration; the 'thyroarytenoidei,' fig. 477, \(d\), \(d^{\prime}\), eo-
 operate in putting the cords into this position. The quality of the vibration dependent upon the degrees of tension of the vocal cords, and the rocal tones due to degrees of patency of the 'rima glotidis,' are mainly influenced by muscles acting upon the cords, fig. 476, \(c, c\), through the medium of the arytenoid cartilages, \(b, b\). If the left wing of the thyroid be removed, the following muscles operating on the vocal cords through that medium may be demonstrated. To each arytenoid cartilage proceeds a pair of muscles; one, 'thyroarytenoidcus,' fig. 477, \(d\), arises from the inner surface of the anterior part or angle of the thyroid \(a\) : the superior fibres, \(d^{\prime}\), pass horizontally backward and outward to be attached to the prominence on the outer side of the arytenoid, \(l\); these, sometimes distinguished as the 'thyro-arytenoideus superior,'
must be removed to give a full view of the rocal cords, as at \(c\), c, fig. 476. The 'crico-arytenoidei postici,' figs. 476, and 477,

\(e, e\), arisc from the back part of the cricoid, and are inserted into the outer and back part of the base of the arytenoid. The - crico-arytenoideus lateralis,' ib. \(f\); arises from the upper and fore margin of the cricoid, aud passes upward and backward to be inserted, with the thyro-arytenoid, \(d\), into the outer basal prominence, l, fig. 47 7. The line C G, frg. 476 , is the vertical projection of the cricoarytenoid articular axis. The tendency of \(e\) and \(f\) to divaricate the arytenoids and open the glottis, is counteracted by muscular fibres passing from one arytenoid to the other, and which have received the names of 'arytenoidei obli.
qui' and 'ar. transversi.' In fig. 478 , the mucous membrane is removed to show the vocal cords, \(v, v\), bounding the glottis: attached behind to the arytenoids at \(F\), and in part to the thyroid at \(T\). The ring of the cricoid cartilage is shown at \(X\), L, which can be rotated on its axis \(R\), \(s\), by the crico-arytenoidei postici, and the crico-ary tenoidei laterales.

In the louder tones of voice or song the vibrations extend from the cords to the contiguous elastic tissues, and even to the thyroaryteuoid muscles, \(i b . k\). In the deeper notes the cords are relaxcd by drawing the arytenoids toward the thyroid to the degree in which the air-current can put them into vihration, and according to the length of the cord that can be made to vibrate is the depth of the bass note. In the medium degree of tension, when the wrinkles of the rima glottidis are effaced, the ordinary tones of thic voice and the middle notes of its compass in singing are produced. The higher notes depend on combined tension of the cords with narrowing of the glottis and strengthening of the currents of air. The vocal cords in men are about one-third longer than in women and boys. Castration arrests that prominent growth of the thyroid, \&c., which accompanies the elongation of the cords. \({ }^{1}\)

1 For the further and minor influences of the rarious combinations of the actions of the foregoing muscles on the vocal mechanism, reference should be made to cecxx, cexyit , ccexi", ccxxiri", and especially to cexxini".

\section*{CHAPTER XXXIV.}

\section*{URINARY SYSTEM OF MAMMALS.}
§ 356. Kidneys of Mammals.-These glands (fig. 422, o, o, and vol. ii. fig. \(139, k\) ) are cbaracterised, in the present class, by being composed of two kinds of substance differing in colour ; one ' cortical,' highly vascular, with tortuous secerning tubes, fig. 479, \(c\); the other 'medullaxy,' less vascular, with straigbt secerning tubes, ib. m. They are preceded, in the development of Mammals, as of Birds, by the temporary embryonal bodies, noticed and figured in vol. ii. p. 226, fig. 103: but the persistent kidneys reach a higher grade of structure, differentiated as above. Tbey have a more compret and definite form than in birds, and tbeir vascular supply is more exclusively their own; the uriniferous tubules converge toward the interior, and do not spread to the exterior, of the gland; the ureter, moreover, is not directly continued from them, but receives, by a dilated beginning or pelvis, \(p\), tbeir terminations usually crowded upon a prominence called 'mammilla.' All mammals bave the urinary bladder.

In Lyencephala, Lissencephala, and most of the smaller species of Gyrencephala, the kidney offers its most simple mammalian con-


Type of Mammallan kldney. dition, as exemplified in fig. 479. The cortical substance, of softer texture, and usually of a dull light-red colour, contains the malpighian bodies, fig. 481, \(m, c\) (vol. i. p. 538), and the reflected tortuous beginnings of the uriniferous tubes, ib. \(t\) : the medullary substance is firmer, of less uniform colour, conical in form, dark red at the base, lighter-coloured toward the apex in many Mammals; it is devoid of malpighian bodies, and is composed chiefly of the uriniferous tubes continued from the cortical part in a straighter course, uniting as at \(q, s, t\), fig. 480, on the dichotomous plan, and converging to oper upon the apex of the medullary cone.

The membranous beginning of the ureter, reflected upon the
apex of the cone (where this projects), is called 'ealyx;' its contracting continuation to form the duct is the ' infundibulum;' the cavity of the gland which it lines, as at \(p\), fig. 479, is the 'pelvis' of the kidney; the fissure from which it emerges is the 'lilum.' The renal artery, derived directly from the aorta, fig. 422, \(d\), \(d\), divides into two or three branches on entering the hilum, and, of the subdivisions of these in the medullary substance, the two principal, in the Kangaroo, anastomose to form an arch over the base of the cone, whence proceed the arterioles, fig. 481, \(a\), to the cortical substance. Here the terminal twigs, ib. \(f\), enter the malpighian body, \(m\), to form the vascular brush or tuft; the returning vessel, \(d\), combines, with those from other tults, \(e, e\), to form the capillary plexus, \(p\), which surrounds the uriniferous tube, \(t\). The capillarics unite to form venules, which on the surface of the human kidney have a stelliform disposition, and when congested give it a fincly lohulated appearauce. The veius from the centre of each 'star' dip into the renal substance, unite, and ultinately emerge at the 'hilus' anterior to or ventrad of the artery; but, in a few Mammals, they unite in an arboreseent


Tubull urlniferl of cortical and medullary paris of kidpey. cclaxixi. disposition (Felis, Hymena) or form a network ( \(I^{\prime} / 1, \cdots,+u\) ) upon the surface of the kidney; in all, the venous trunk, fig. \(418, h\), terminates in the postcaval, ib . v . The uriniferous tubule commences in Mammals, as in lower Vertebrates (vol. ii. p. 538, fig. 356), from the malpighian corpuscle, fig. 481, \(m, c\), and passes toward the surface of the kidney, before being reflected and convoluted in the cortical substance.

The elief modifications of the kilncess in Mammalia are seen in the shape or absence of the mammilla, and in their composition by a seeming imultiplication of simple kidneys,either with or withont a common cortical envelope. The first of these is presented by the Ouni-


Plan of the renal circutation in mammalla. cxxyyti. thorhynclums, fig. \(502, a\), in which the tubuli uriniferi ternimate
on the concave surface of a small and simple pelvis. The ureter, ib. \(c, c\), takes the usual course to the contracted neck of the bladder, ib. \(d\) : but terminates, in the male, in the urogenital canal, below the vasa deferentia; and, in the female, fig. \(534, l, l\), beyond the uterine orifice, \(m\), which thus intervenes between the ureter and the orifice of the urinary bladder. In all respects, save the place of termination of the excretory ducts and their relation to the reservoir of the secretion, the urinary system of the Monotremes adlieres closely to the Mammalian type: in the Echidna the mammilla slightly projects. The circumstances in which they deviate from the higher Mammals approximate them to Reptiles; and it is to be observed that the deviation commences wbere the urinary system begins to be connectcd witb the generative organs, in which the oviparous type of structure is especially manifested.

In the Marsupialia the tubuli uriniferi terminate on a mammilla which projects into the commencement of the ureter in the Opossums, but does not extend beyond the pelvis of the kidney in the Kangaroos. In the Iarger herbivorous Marsupials the inedullary substance forms several lateral abutments to the base of the cone. In Macropus Parryi the kidneys are situated six inches above the brim of the pelvis, and lie in the same transverse line: they have the same relative position in other Poephaga. In the Koala the right kidney is higher by its whole length than the left. In Dasyurns macrurus and D. viverrinus the right kidney lies half au inch higher or in advance of the left; in this carnivorous genus a few branches of the renal veins are distributed upon the surface of the kidney, but not in the same proportion or with the beautiful arborescent disposition characteristic of the kidneys of the Cats, Suricatcs, and Hyæna. In a Dasyurus macrurus weighing three pounds eight onnces, the two kidneys weighed thirteen dracbms. In a Phalangista vulpina, weighing five pounds thrce ounces, the two kidneys weigbed only ten drachms. The ureters terninate, in all Marsupials, at the back of the ncek of a large and pendulous urinary bladder, fig. 422, \(l\).

In Hyrax capensis the tubuli uriuiferi terminate in a prominent and pointed mammilla; in all the large Perissodactyles, e. g. Horse, Rhinoceros, Tapir, they open upon the concave surface of the renal pelvis, and can be readily injected from the ureter. Injection of the arteries of the Horse's kidney shows the terminal branch, fig. \(482, f\), dilating within the malpighian corpuscle, \(d\), and there dividing into lobes or groups of capillaries, \(l, i\); the returning or efferent vessel is shown at \(2, e\); and the continuation of the uriniferous turbule at a. \(t\). from the
capsule of the corpuscle, \(m .^{1} \quad \ln\) the Rhinoceros the pelvis is rcpresented by two longitudinal canals which eonverge and unite to form the ureter, of wbich they may be said to be the beginnings. The kidney is lobulated, or composed of numerous renules, each with its cortical and medullary part, but the tubes of the latter unite and converge to open into the longitudinal, quasi pelvic, canals without any valvular prominence. \({ }^{2}\) The kidney of the Elepliant differs chicfly in the terminaltion of the tubuli of the lobes upon slight prominences; of these there is nos appearance in the Equida. The tubular divisions of the pelvis are shorter in the Zebra than in the Horsc or Ass, where they are contimned nearer to the upper and lower ends of the kidneys. The ureters in these, as in the 'lapir, terminate as usual in the neck of the bladder. But in Hyyrax, conco-

 mitantly with an musual length of loins, the ureters do not reach su far down, but opeu obliqnely into the back part of the - findus vesica?.

In the Hus-tribe the kidncy is simple; but the mammilla is somewhat cxtended at its free ternination. In the Chevrotains and other suall ruminants the kidney is simple as in Lissencephalu; but in larger deer and antelopes the beginning of a more complex structure is seen in the aggregation of the tubuli uriniferi into wewral cones, distinct at their bases, but blending into a common clongate or ridge like mammilla. This structure also obtains in the Camelide; but in the Bovidae the cone are distinct, termimate by mamuille in tubular productions of the renal pelvis, and are assuchated with some lobes or divisions of the cortical substane, such divisions sometimes including more than one cone.

In the lugnge the tubuli terminate in a single pelvis by moneral lateral rilges; but the exterior is undivided. In the Manaten, and in Rhytina, according to Steller, the kidney is
lobulated. In the human kidney the tubuli are gromped into from twelve to fifteen conical bundles, the apices of whieh project


Section of part of Yuman kidney : nat. size. cchaxxin. into a common pelvis; but oecasionally two cones eombine to terminate by a common mainmilla: in fig. 483 are sbown three cones, in section, with the relative position thereto of the arteries, \(a\), and the veins, b. In the foctus tbe cortical part is subdivided like the medullary, but the clefts become obliterated iu the growth of the kidney.

Quadrumana liave a single mammilla; but in the larger kinds it is extended, and the tubuli are partially grouped into bundles near the eortical substance. The kidney in

484
 the Suricate, Viverridx, Hyænas, and Felines is chiefly remarkable for the arborescent disposition of the veins on or near the surface; the mammilla is single, as it is, also, in the Mustelide, Canida, and Subursidce. In Bears, Seals, and Whales, the kidney is divided into numerous lobes or renules, in the Walrus amounting to three or four hundred, and in the Porpoise, fig. \(427, \mathrm{e}\), to even a greater number. Each renule has its own capsule, which is removed at \((1, a\), fig. 484; a section of the renule shows it to be consposed of a cortical and medullary
substanec, \(\mathrm{ib} . b, c\); the tubuli terminate at the apex of a mammilla, \(d\), which projects into an infundibulum. The infundibula are prolonged, and unitc to form the ureter whicb comes out at the medial and hinder surface of the kidney and enters the neck of the urinary bladder.

In most quadrupeds this reservoir is more pendulous, has a more complete covcring of pcritoneum, than in Man. 'Theoblique valvular course of the uretcrs through its coats is common to the Mammalian class. The monotremes are the sole exceptions; in them the ureters, fig. 485, \(l\), 2, do not terminate in the bladder, \(k\), but in the urogenital canal, \(c\), the orifice of the spormduct or oviduct, \(m\), intervening between that of the ureter and the bladder. The urine may dribble out with the fæces, or may pass by a retrograde course into the bladder; but, in either case, it is expelled per cloacam not per urethram: the penis in the male subserving the conveyance of the semen only. In all other mammals both urine and semen are carried out by the urethral eanal

chtorle, vaglun and vent, sltrew. in the male ; and, in some Insectivora (Shrews, Moles) and Quedrumana (Slow Lemurs), the clitoris in the female is similarly traversed by a canal, which here, however, is exclusively for the urine. The vaginal orifiec intervenes between the prominent and perforate clitoris, figs. \(485,546, c\), and the anus.

\section*{CHAPTER XXXV.}
tequmentary system and appendages of mammalia.
§ 357. Derm.-The main constituent of the skin of Mammals consists of an interlacement of fibres of the white or sclerous kind, fig. 486, \(f\), continuous with those of the subjacent areolar tissue, \(i\), but more or less abruptly defining a firm sheet of strong and tougb fasciculate framework investing the body: the looser central or initial texture, \(i\), includes, in its larger mesbes, fat, sweat-glands, \(h\), bulbs of hair, of bristles, or of spines, with sebaceous follicles, according to the species: it is traversed by tbe nerves of the sensitive or tactile papillæ, \(d\), by sweat-ducts and by arteries, veins, and absorbents : it is covered by the epiderm, \(c, a\). Witb the sclerous fibres of the derm are blended a varying proportiou of the yellow elastic fibres, and of unstriped muscular tissue, espccially in relation to the roots of the hairs or spines.

The texture of the derm is firmest at its periphery, where its surface is best defined: its tbickness varies in relation to the bulk of the speeies and to other eircumstances; it is such, e.g., in certain Perissodactyles and the Hippopotamus, as to have suggested the name of ' Pachyderm for an artificial group of Ungulates in the Cuvierian system. In the full-grown Giraffe tbe corium hardly exceeds half an inch in thickness at any part: in the Indian Rhinoceros, of about the same weight, the average tbickness of the derm is between two and tbree inches: it is thinner on the less exposed surfaces and at the bending of the joints. In the large speeimen which I dissected the intcgument on the middle line of the abdomen presented a general thickness of thrcefourths of an inch: on the inner side of the extremities, it was about one-fourth of an ineh in thickness. It was connceted to the abdominal parietes by a loose ecllular tissue, and by a eloser one to most of the other parts of the body; but the parts to which the stiff and ponderous hide most firmly adhacred were the spinous processes of the posterior lumbar and saeral vertebre, and the anterior extremities of the iliac bones, at which places the corium was blended with the periosteum, and was thin. The derm adhered over the jugal boncs to a kind of movable
fibro-cartilage; but its attachment along the median line of the fore part of the head was so firm as to require, especially beneath the horn, the use of a chisel in order to separate it from the skull.
Besides its attachment to subcutancous cellular substance, fasciæ, elastie tissue, fibro-cartilages, and periosteum, the derm is connected with parts which are destined for its motions and adjustment upon the body. 'The 'panniculus carnosus' of the Rhinoceros is developed in certain parts to an extraordinary thiekness; the permanent folds in the hide of tbe Indian speeies serving to afford, like the processes of bone, a firmer insertion to the aponeuroses of the cutancous muscles than a plane surface of integument could liave done. A sheet of these muscles situated on each side of the thoracic or scapular region sends its fascia into the interstice of the fold in front of the anterior extremities, the skin being bent upon itself, as it were, to grasp this fascia. Similar portions of panniculus earnosus send their aponeuroses into the posterior folds of the skin.

The derm, in Cetacea, is a somewhat gradual condensation of the close fibrous reticulation in the areolæ of which tbe oil is containcd; the thickness of such snbeutancous tissue, called 'blubber,' being euormous in the large Whales: it is wanting at the fins, and here the derin is closely connected with the sclerous tissue covering the bony framework of the pectorals, and contributing mainly to form the dorsal and caudal fins: in the latter the subdermal fibres become assorted into three layers, the upper and under ones being longitudinal, the intermediate layer transverse, and the texture of the whole so compact that the traversing veins as well as the arteries preserve their open state when eut across. The fine lengthened papille or villi from the periphery of the derm are noticed at p. 188.

Cortain Rodentia contrast with the l'achyderms in the thiuness and lacerability of their dern, resembling birds in that respect. Another Lisseneephalous fanily reproduces a crocodilian character, in the development of osseous scutes upon the peripheral part of the derme (vol. ii. p. 396, fig. 261). These scutes are stimall, mostly quadrilateral, and suturally united so as to form three prineipal gronps: one protectiug the trunk like an arched roof, a second forming a flatter shield or helm upon the head, the third encasing the tail, like a sheatlı. In most existing Armadillos the trouk-armour consists of an anterior thoracic buckler in which the ossicles form a kind of mosaic work; a middle 'annular ' part in which they arc disposed in transverse series movable upon ench other; and a posterior lumbar buckler, like the thoracic
one: hy this modification of the dermal plates the little animal is enahled to roll itself into a ball, and protect its snout and legs heneath the trunk-armour. In the large extinct Armadillos (Glyptodon) the annular or banded modification of the armour was not present; and the whole of the dermal scutes of the trunk were united into one massive domed roof: the marginal scutes being generally triangular, the rest more or less regularly hexagonal. The inner surface of the scutes, imhedded in the derm, is smooth; the outer surface coated with epiderm is sculptured in a definite pattern, distinct for eacb species and characteristic thereof. The dermal platcs of tbe caudal sheath in certain kinds of Glyptodon formed annular series of large conical tuhercles: the first ring, in all, was distinct from the rest of the caudal sheath, to facilitate the movements of the tail.

In the Pangolins (Manis) the exterior of the derm is grooved, as in Lizards, for the lodgment of the bases of the large horny scales, which protect the hody and tail by their imhricated over-. lapping arrangement (vol. ii. fig. 158). The muscular tissue enters in greater proportion than usual into the composition of the derm of this Mammal, in connection with the thick 'panniculus carnosus,' and in relation to the erection of the scales, when the integument is drawn defensively ahout the uprolled trunk and tail.

Productions or duplications of the derm, with included muscles, \&c., form the peculiar mammalian oral appendages called 'lips:' an everted fold of skin forms the 'scrotum:' an inverted fold the marsupium and the cheek-pouch (p. 386, fig. 300) : the derm is extended between the digits to form the 'web' in most aquatic quadrupeds, and also heyond the digits to augment the swimming surface in the Ornithorbynchus: a duplicature of integument forms the 'dewlap' in certain Bovines: it forms a broad fold on each side, continued from the fore to the hind limhs to form the parachute, in the Petauxists, Pteromyds (Vol. ii. fig. 156), and Flying Dormice (Anomalurus): in the Colugos (Galeopithecus) the dermal fold expands from the nape to the fore-feet, from these to the hind-feet, and thence to the tip of the tail, forming a triangular 'interfemoral' flap. But the most extraordinary developments of derm are presented hy the Bat tribe (vol. ii. p. 278, fig. 156) : the 'antibrachial fold' crosses the deep interspace hetween the humerus and radius; the 'digital fold,' whicb mainly forms the wing, occupies the interspaces of the long and attenuated digits; the 'flank-folds' extend from the fifth digit to the tarsus; the ' interfemoral fold 'passes from leg to leg, intercepting more or less of the tail.

The wing-membrane is sometimes further developed, so as to be disposed at one part in the form of a pouch, as in the genus of Bat thence called Saccopteryx, in which the pouch is plicated, and its linear orifice is near the head of the humerus. The delicate organisation of these modifications of the derm has been noted at p. 189; and, as regards its vascular structure, at pp. 549 and 553. The conchal or auricular productions of the derm are considerable in all Bats: the two outer ears are confluent, or united by a transverse fold of skin, erossing the forehead, in Nycteris and Megaderma; in these and many other genera, e.g. Rlinopoma, Rhinolophus, Ilkyllostoma, the nose, also, is furnished with a crest or with foliaceous lamella.

The sudoriferous or sweat-glands, fig. 486, \(i\), consist of a fine sccerning tubule, csiled up into a ball, and situated at the under aurface of the derm or in the subcutaneous tissue, \(h\) : the duct traverses the derm, at first in a wavy course, \(g\), becoming straighter in the denser peripheral part, and spiral as it passes through the epiderm, \(b\), to terminate at the sweat-pore. The sebaceous glands relate chiefly to the hairs, and mostly open in to the hairsheath or follicle, fig. 487, \(h\). The movements of the derm are due either to intrinsic or extrinsic muscles: the former, ib. \(g\), which are sinooth as a rule, produce the shrinking called 'cutis anserina,' on account of the protrusion of the hair-sheaths, and the depression of the intervening part of the skin; the extrinsic muscles, which have striped fibres, move more or less of the integument, as when cattle after a shower, or a dog quitting the water, shake

section of Lfuran elcin, magn, off the moisture, or when a fly or other irritant is sought to be dislodged.
§ 358. Epiderm.-Upon the papillose surface of the derm, in the embryo, albnninoid atoms in the solution exuding therefrom fornify as cells, and between the ontermost of these, condensed and dried by exposure after birth, and the derm, formifaction continues, throughout lifc, to produce a precipitate of cells. These, at first, are perpendicular to the derm, in one or more strata; then, as they are pushed off by newly formed cells, they assume a more rounded shape, lose their soft granular contents, afterwards their

\footnotetext{
The derm, \(f\), so magnifinl, is considerably thicker than here represented.
}
firmer nuclei, and, finally, become pressed into dry hard scales at the periphery of the epiderm. Many of the deepest-seated and first-formed cells contain coloured particles or pigment, constituting the 'rete mucosum,' or 'malpighian layer,' fig. 484, d. This pigment, combined with the cells constituting the hairs or spines, gives the characteristic colour of the quadruped, and seems to affect the derm itself. It rarely manifests, in Mammals, the bright and pure colours noticed in the skin of Birds (p. 231, vol. ii.); but to the face of certain baboons it may give a red, blue, or violet tint. In quadrupeds with circumscribed patches of black hair a deposition of dark pigmeutum may be traced in the corium above the sheaths whence the black hairs grow. The darker-coloured skin and hair is, as a rulc in Mammals, on the upper or more exposed surface of the body, and the lighter-coloured pelt is below. But in the Ratel and Skunk the ordinary arrangement of colours is reversed, the back being light and the belly dark: the white bands of hair in the Skunk are associated with a corresponding colour of the corium, and are seen on the inncr side of the dried pelt. In the human subject the amount and colour of the subcuticular pigmental cells relate, but not absolutely as regards existing continents and pcoples, to the degree of solar influence to which the skin is exposed. A fair complexion and light hair do not characterise any race indigenous to tropical and warmer temperate latitudes, but are limited to cooler temperate and cold climes, which, from the present excess of dry land in that hemisphere, are northern or arctic. The continent of Europe, if the complexions of its peoples be compared from Scandinavia to the Mediterranean, exemplifies the progressive deepening of the tints of skin, hair, and eyes, as the sun excrts more power. But the Asiatic part of the "Old World'shows this relation in a minor degree. The aborigines of Northern Asia to Kamtschatka are, like the Japanese, of a brownish-yellow complexion: the same prevails through all the latitudes of the vast Chinese Empire; but the southern extensions of that people into Cochin-China, Siam, and Burma, do show a deeper brown. The Hindoos retain the same almost black tint over a range of twenty-six degrees of latitude and twenty-four degrees of longitude; but these are tropical, or nearly so. The Malays of the Indian Archipelago preserve the same deep brown tint over cighteen degrees of latitude, reckoned from the equator northward, and the tint would seem still to relate to such excess of solar influence; although the sway of other causes is exemplified by the darker Mincopies, Cingalese, and Hindoos, under similar
influcnces. 'still more strikingly is this sbown by the blackness of the Melanian aborigines of New Guinea, Australia, and Tasmania, retained from tbe sixth to the forty-third degree of south latitude; and especially of those of the outlying islands in proximity with others inhabited hy tbe olive-brown Polynesians, whose complexiou prevails from lat. \(12^{\circ} \mathrm{S}\). to \(46^{\circ} \mathrm{S}\). (New Zealand). But the most instructive example of the closer relationship of tint to race than to climate is afforded by the ahorigines of the New World, which hold nearly the same depth of copper-hrown or reddish tint, latitudinally from Tierra del Fuego to Hudson's Bay, and longitudinally from the Atlantic to the Pacific. The contrast between the South American Indians and the African Negrocs would seem to be decisive against the hypothesis of degrees of solar influence being the causes of degrees of darkness of complexion.

But there is an element in the problem which ought to be taken into consideration, viz. 'time.' If Africa he an older continent than South America, its aborigines may have heen suhjeeted to solar influences through a longer series of generations. We know not the exteut of such series; some may deem that were the intertropical \({ }^{4}\) South Amcrican Indians subject to a vertical sun during the long ages of Africa's emersion, they would acquire a darker complexion.

Climate, however, depends on other influences than sunshine. Degrees of moisture, and whatever influences cause a contrast or gradation of seasons, \&e., may have their effects upon complexion. Eilthy babits, foul air, and bad food, affecting biliary and other sccretions, have their sbare in darkening the skins or sallowing the complexions of the Esquimaux, Fins, and Laps, c.g. as comparcd with the cleanlier and more healthily living and better nourished Scandinavians residing some degrecs further from the pole. But assuming, as the gencral result of the ahove survey of human complexions, that such complexions do, in the main, show a eertain dependent relationship on solar light and heat, and postulating the effect of long periods of such subjection, we might then he led to conelude the darkest of the intertropical and warm temperate pooples to be the oldest; that the Melimians, scattcred on islauds to the east of the Indian Ocoun, inhabit relics of a continent as old as, perhaps older than, Afrion; and that the lighter-tinted races on intercalated or contiguons portions of dry land are subsequent immigrations or derivatives from lands less affected by solar influenees. On this hypothesis it may be inferred that the decpest-tinted races
existing in the islands of the Malayan Archipelago are the oldest inhabitants of such-those most entitled to be termed aborigines. The Ifindoos, by the same pigmental test, would be deemed older than the Parsee or Malometan natives of Hindostan, as history, indeed, testifies. In extra-tropical latitudes, human generations may have succeeded each other for the same duration of time as in tropical ones, withont further deepening or development of pigment than such diminishing influence of the sun may effect. Such peoples, migrating to tropical countries, may long maintain their inherited complexions; just as the black races migrating to extra-tropical latitudes long retain the tint inlierited from forefathers in whom it has been established primarily by the requisite continuance of exposure to extreme solar heat and light.
§359. Callosities.-The epiderm, besides forming the firm and more or less insensible outer protection of the derm, acquires unusual thickness at certain parts in different mammals. It forms callosities over the sternum of the Camel and Dromedary, and upon the parts of the joints (carpal and rotular) on which these useful beasts of burden kneel. It defends the broad back of the peuultimate phalanges of the fingers of the knnckle-walking Apes, the ischial tuberosities of most lower Catarhines, and the prehensile surface of the tail in many Platyrbines.

In the Equida there are callosities on the inner surface of the limbs, which, however, are more dermal than epidermal. In the Horse, on the inner side of the fore-leg, a little above the carpus ('fore-knee' Hippotomy), and on the inner side of the hind-leg, a little below thic 'tarsus' (hock-joint, Hippotomy); is a naked protuberance of a soft horny consistence, about the size of a chestnut, and called 'châtaigue' by the French veterinarians. Behind the metacarpo-phalangeal joint is a similar but smaller borny tubercle, called the 'ergot,' or spur. The Ass has not the 'châtaigne' on the lind-leg; but there is the vestige of one on the fore-leg, situated there as in the Horse; it consists of a patch of black skin devoid of hair, but not horny. There is a similar trace of the spur (ergot) behind the netacarpo- and metatarso-phalangeal joints. The Zebra resembles the Ass in these respects: the homologuc of the fore-leg callosity is a patch of black naked skin about \(3 \frac{1}{2}\) inches long and 3 inches broad; the callosities hehind the metacarpo-tarso-pbalangeal joints arc like those of the Ass.
§ 360. Hair. - The cutancous clothing characteristic of the Mammalian class is 'hair.' It consists of unbranched filaneuts of epidermal material, usually composed of 'pith 'and 'crust,'
and in which are distinguislied the 'root,' the 'stem,' and the - point.'

The root is softer and lighter in colour than the stem, \({ }^{1}\) is contained in a canal of the skin o. sheath, fig. \(48{ }^{7}, r\), and expands at the implanted end into the 'knob.' This part during the growth of the hair has a conical cavity inclosing the 'bulb,' ib. \(f\), which forms the "pith;' from its base there is reflected upon the ' knob" a capsular layer of cells which forms the 'erust;' this layer is continucd to near the outlet of the sheath; it consists of two or more layers of cells, the outermost of which have gencrally lost their 'nuclei.' The proper tunie of the sleath is 'derm,' lined by epiderm continuous with the euticle, which accordingly, when shed, usually brings away the hairs. In the dermic part there is a vascular and a hyaline layer; the latter ceasing with the capsular part of the hair's matrix.
'Two scbaccous gland, ib. \(h\), usually open into the hair-sheath; and one or more delicate muscles, ib. \(g\), of unstriped fibre, pass from the harder


Section of bean with hatronntrictes. superficies of the derin to be inserted into the capsule bencath the glands; these are mainly concerned in raising the lairs.

IIairs, like teeth, are of two kinds as regards growth; one temporary, the other persistent. The former are shed and succeeded by new hair, usually once a year; the latter have persistent bulbs and perennial growth. The body-hair of the Horse is an example of the first kind, the hair of the mane and tail of the sccond kind. In many Mammals there are two kinds of hair, according to form, length, and structure; one short, fine, more or loss curled, and mostly hidden by the longer, coarser, and straighter kind, which is sometimes called the exterual coat, albeit the ronts sink deeper into the derm than do those of the internal coat, usually called 'fur:'
"Whese two kinds of hair-inner and outer-are most distinetly as well as abundantly shown in arctic and aquatic quadrupeds, (crminc, sable, beaver, and the seal-tribe), especially in the young state, when the heat-fcrming power is weak. In some species of

Tbo contust is striking in the hair of tho Ornithorhynchus, in which the brown tint is conflned to the expunded terminal purt of the hair.

Seal the 'fur'gets scanty in the adult (Otaria lobata, e.g.); in others it continues abundant ins quantity, and of fine quality (Otaria ursina, e.g.); hence a difference in the commercial value of the skins, whereby 'sealers' distinguish between the 'hairseals' and the 'fur-seals.'

The term 'wool' is commonly understood to mean the modified hairs of domesticated breeds of sheep, which, through a finely imbricate arrangement of superficial serrated scales, and a curly disposition, have the property of mutual cohesion, called 'felting,' on which depends the value of wool in inanufactures. The property is present in a minor degree in the longer, straighter, scantier fleece of such wild sheep as the Himalayan Ovis Vignei, the Ovis Ammon of Contral Asia, and the Ovis Musimon of Sardinia. In tbe domesticated races the fleece has been modified and improved, in various degrees, by crossing the breeds, by choice of climate and pasture, and by careful attention and defeuce during its growth, until not only has the original coarse character of the product disappearcd, but qualities of wool of different kinds and of different degrees of superiority have been obtained, generally divisible into two classes, one better adapted for ' carding,' the other for 'combing,' and both available for a great variety of useful and elegant textile fabrics. \({ }^{1}\)

The fleece of the domesticated varieties of Auchenia (Llama Vicugna) has analogous properties rendering it useful for various manufactures. In all Ruminants the hair is shed annually: this would happen to the wool of Sheep were it not shorn. The Llamas form no exception : the fleece of one in the London Zoological Gardens became ragged and detached in masses in the month of July. Mammals living in cold clincs develop a thick undercoat of fur or wool: this is seen in the Musk-bubale, and was the case with the primigenial Elephant \({ }^{2}\) and Rhinoceros, \({ }^{3}\) its former associates in high northern latitudes.

The muzzlc, the inside of the ears, the sole of the paws, are defended by hair in arctic quadrupeds (e.g. Ursus maritimus). The sole of the foot in the Camel and Dromedary is defended by

\footnotetext{
In judging of these qualities in wools, it is requisite to test the finevess and olasticity of the fibre, the degrees of imbrication of the scaled surface of the fibre as shown by the microscope, the quantity of fihe developed in a giren space of the fleece, the comparative freedom of the flece from extraneous matters, and the skill and care employed in preparatory processes; such, for example, as that termed 'scouring' the fleece, upon which deponds its liability or otherwise to mat at the hottom of the staple. cexxvifi.
\({ }^{2}\) ccxu," p. 263.
}
hair from the hot sand of the desert. \({ }^{1}\) Nocturnal quadrupeds of hot climates, as, c.g., Lemuride, have the soft fur and the longer scanticr kind of hair. The northern Wild Boar has an undercoat of fur besides the bristles: in most domestic Hogs the latter alone are developed; and a gland-like body partly surrounds the matrix of the bristle, fig. 485, i. Rhinoceroses and Elephants of tropical latitudes have but one kind of hair, most conspicuous in the young, espccially in elevated localities, but almost wholly lost in the full-grown animal. The Hippopotamus, Sirenia, Cetacea, Bimana, are examples of naked Mammals; but on the limited localities where the skin develops such a covering, it is of the mammalian character-hair or bristle. The foetal Whales show the latter on the lip, the adult Elephants and Rhinoceroses on the tail. IIuman hair, which continues to grow through more or less of life, has distinctions as to localities and length, characteristic of age and sex : it varies in colour from pale yellow to black, and in form from straight to crisp, resembling wool on the head of the Negro variety.

The degree of imbrication of the scaly outer layer of the human hair is such that rubbing one between the thumb and finger pushes the root-end away. Bencath the scales the cortical part of the bair is minutely fibrous; it includes a cellular pith with pigment, upon which the colour of the hair mainly depends. In the minute hairs on the general surface of the body, the pith is wanting. l have obscrved the hair of the beard to be three-sided, with rounded angles, in transverse scetion; the hair of the head of the same individual being a full oval in such scetion.

The gencral dircetion of the minute and fine hairs on the human limbs accords with that of the medullary arteries of the long bones, viz. toward the clbow-joint and from the kneejoint. \({ }^{2}\) A corresponding disposition prevails in the hairy clothing of the limbs of Quadrumana. In the attitude assumed by an Ape crouching beneath the pelting of a tropical shower, with close-bent limbs, thigh and fore-arm upward, arm and leg downward, the reverse directions of the hairs on the proximal and distal'segments will be scen to be such as to act in both as a downward watershed.

The general direction of the hair in swift quadrupeds offers lcast impediment to forward motion. Some small burrowers, which move backward as well as forward in their long and narrow

\footnotetext{
xx. rol. iii. p. 243.
* Facuricur has giren amplo details of the disposition of the hair in the human foetus, in ecxax ",
}
tunncls, would he inconvenienced hy such unchangeable disposition of their fur. Accordingly in Moles, Shrews, and Platypi, e.g., the stem of the hair is filamentary, the end broad and flat, and the slender and expanded parts may alternate twice or oftener in the course of the hair, enahling the whole fur to assume any direction in which it may he stroked.

The heat-retaining property of the pilose covering is mainly due to the amount of air it is ahle to retain. The long curly character of the Sheep's and Llama's fleece is one modification to this end; the swifter Deer and Antelope are not so encumbered; hut the hairs composing their thin but close and smooth pelt have a cellufar structure which comhines lightness with the requisite air-intercepting quality.

In the Horse there is a central point on each flank, whence the hair radiates in a somewhat spiral manner: the corresponding centre in the Giraffe is a little behind the middle of the ahdomen, towards the lower part. \({ }^{1}\)

The hide of the larger Ruminants which are exposed to the elements in the prolonged act of grazing is defended by the greasiness of the hair, as may be felt in the recently killed Reddeer or Fallow-deer. The amount of sehaceous matter excreted with the hair in some Antelopes is such as to have suggested a specific name in accordance therewith. \({ }^{2}\)

The varieties of structure of hair are extreme: those of Deer seem alnost wholly to consist of cellular pith, the cortex undefinahle: the tail-hair of the Horse, and the Pig's bristle, offer the opposite extreme of thiclness of cortex and minimum of pith. But these and other modifications demand a special micrography. \({ }^{3}\) Hairs of some quadrupeds, the Racoon, e.g., in the filamentary productions of the cortical scales, recall the character of the immature down in Birds (vol. ii. p. 237). In some Rodents, the Hare, e. g., several fine hairs project from the mouth of the same sheath as the larger hair. In Mice and Shrews the margins of the cortical scales encompass the hair and project forward or rootward. This free projection is such in some hats that the hair presents the appearance of a succession of ensheathed funnels with their apices backward or outward. The hair of the Sloth is fluted, the crust appearing to he composed of several

\footnotetext{
- The rarieties in this respect merit more notice than they have hitherto received.
\({ }^{2}\) Laurillard's Antilope unctuosa is probably the same species as Kobus Sing-sing of Ogilby.
\({ }^{3}\) Brief immersion in sulphuric acid and cleansing with ether are requisite preliminaries for clear and satisfactory microscopie specimens of hairs.
}
filaments confluent with a common central pith. In the Peccari the pith of the coarse body-hair is crossed by condensed cells like bcams strengthening the cortex. The colour of the hair is lost by age in Man, and during the winter season in the annually renewed covering of unany arctic Mammals: the endosmotic transfer of their contents from cell to cell of the pith effects this change. The hairs of the Cape-Molc are peculiar for the iridescent tints they reflect, whence its gencric name, Chrysochloris.

The stiffer, thicker kinds of ' lair' are called 'bristles:' when these attain unusual length, grow from the lips; chceks, and other parts of the head, and have the matrix supplied by unusually large nerves, codowing them with tactile or exploratory faculties, they are termed 'whiskers' or 'vibrissex': those which beset the muzzle of the Walrus attain the thickness and stiffness of spines, and serve, also, mechanical uses. \({ }^{2}\) The muscles moving vibrisse have the striped fibre.
§ 361. Spines.-Over the major part, including the morc exposed surfaces, of the skin of the Medgehogs (Erinaceus, Centetes) spines arc dcveloped iu such numbers and of such lengtlo as to conceal the hairs; they are nearly straight, terninate in a point, and, when fully formed, are smaller at the root than in tlie shaft. They have a thick, stiff, horny cortex, including a pith of cells arranged in transverse groups, fig. \(488, a\). The matrix is originally situated bencath the derm, in contact with the strong 'panniculus


Section of skin, with oblues, of Ifedgelog: \(a_{1}\) scecthon of splue magn. carnosus;' hut section of the skin shows the roots and sheaths of the quills, cxtending to different depths according to the period of their growth: the newly formed oncs are lodged decp, and terminate without contracting, the pulp being large and active, and the cavity containing it of corresponding size; but as the growth of the quill procceds, the reflected integument forming the sheath gradually shortens and draws the quill nearer the surface; the pulp is at the same time progres-
\[
\text { sx. vol. iii. p. 24̧ิ. } \quad=\text { Ib. p. } 246
\]
sively absorbed, and the base of the quill is contracted in diameter, until it adheres to the surface of the derm by a narrow neck, below which is a slightly expanded remnant of the matrix. The disposition of the dermal muscles subserving the spiny armour of Erinaceus europrers, is given at pp. 18, 19, figs. 7 and 8.

In the Porcupine (IXystrix cristata) the spines attain so great a length that they are called 'quills.' The formative pulp, fig. 489, \(e\), is longitudinally furrowed; to it is due the cellular pith : the eapsule or inner layer of the theca is reflected into, or fills, the pulp-grooves, and deposits therein, and continuously around the whole, the horny cortex : the consequent arrangement of crust and pith is such as in transverse section to give the figure, fig. 489. Beneath the matrix is a cavity like a minute ' bursa mucosa,' which allows much freedom of motion to the quill when acted upon by the muscle, \(d\), of the sheath, \(f\) : a sebaceous gland, \(h\), serves the quill opening into the sheath near the outlet. When the growth is completcd, the matrix shrinks; and the same movement to the periphery of the derm takes place as in the spines of the Hedgehog. Thus it happens that when the quills of the Porcupine are violcntly shaken by the action of the cutaneous muscle, \(c\), the adhesion of some old quills to the derm has been so reduced that they are thrown off.


Section of skin, with matrix and root of quill: \(i\), section of quill, Forcupinc,
§ 362. Scales.-Only one genus of Mammal (Manis) offers a covering of scales; and with them are associated hairs. The scalcs are large, epidermal or horny in tissue, and inbricate or overlapping, with the free border turned backward, vol. ii. fig. 158. The exterual surface of the derm is raised into large rhomboidal processes, upon which the scales are moulded: beneath the derm is a thick 'panniculus carnosus,' adapted to draw the integument around the animal as a means of defence, and connected with muscular slips, which erect the scales.

A few other Mammals show partial deposits of scale-shaped euticle. Thus, in the tail of the Beaver the epiderm is disposed in hard scale-like plates, the anterior margins of which project obliquely inwards, and develop small pointed processes which pass into corresponding depressions of the derm. In the great Flying Dormice of Africa (Anomalurus) there is a douhle row of alternate overlapping horny plates at the under part of the base of the tail, reminding one hy their size and strength of the scales of Manis.
§363. Nails, Clumss, and Hoofs. - The derm covering the ends of the digits, in Man, is closely connected or confluent with the periostc at the back of the last phalanx, and forms near its base a crescentic groove or ' nail-bed,' from the ridged and highly vascular surface of which a solution of epidermic material exudes, which material formifies as cells, at first vertical to the surface; then, when pushed off by a succeeding precipitate of cells, becoming flattened, and ultimately condensing or coaleseing into the horny plate termed the ' nail.'

In the hoofed quadrupeds the ridged or laminate vascular derm or dermo-perioste extends over the fore and lateral parts of the last phalanx, and similarly provides it with a thick hard horny wall, in great part of which the primitive cells have condensed into fibres perpendicular to the plane by which the superincumbent weight is transferred to the ground. In the Horse the formative lamelle are shown in fig. 17, at 17 ; the resulting hoof being turned off to expose the horny lamelle, ib. 3, which interlock with the vascular lamellie. From the greater part of the derm covering the under surface of the foot homy matter arranged as vertical fibres is also formed, completing, with the denser front and side walls, the case called 'hoof.' The fibrous epiderm on the sole of the bisulcate foot of the Ruminant is very thick, hut less dense than in the soliped. Further particulars of the structure of the Horse's hoof are given at pp. 39-41.

In ("ornivera the hase of the last phalanx forms a nail-bed' much decper than in Man, a plate of bone being reflected forward like a sheath for the hase of the terminal, prominent, and pointed part of the plaalanx. The dermo-perioste of this bed develops a very dense horny sheath covering the claw-core, and reciprocally reccived at its basc within the 'hed' or sheath formed by that part of the ungual phalanx. For the form of sueh 'claw' in the Felincs, and the muscular and clastic structures connected thercwith, sce 1 p. 69, 70, and fig. 36. The maximum of claw-development is, however, presented by the Armadillos (vol. ii. figs. 272, 276 ), the Sloths (ib. fig. 280), and the Antcaters (ib. fig. 263): in
the gigantie extinct members of the order Bruta (Megatherium, fig. 279 , c.g.) the claws and their core or supporting bone rivalled the horns of many Ruminants in bulk.
§364. Horns.-The horn of the Rhinoceros consists of a uniform compact agglutinate mass of epidermal fibres, the slightly concave base of which is attached to the dermo-perioste of as slightly elevated a rugous tract of bone: it is mcdial in position and symmetrical in shape.

The Asiatic continent and the Island of Java have the onehorned species called Rhinoceros indicus and Rh. sondaicus (vol. ii. p. 284, fig. 165): the same continent and the Island of Sumatra bave the two-horned species (Kh. sumatranus): all the known kinds of Rhinoceros, four in number, of Africa are two-horned: in tbese one horn is behind the other in the same medial tract of the upper part of the skull. The nasal bones support the constant or anterior horn: when a second is superadded it is attached to the frontals, and is, usually, shorter than the first ; \({ }^{2}\) in Rhinoceros Oswellii considerably shorter; but in Rh. Ketloa it is almost or quite as long as the first horn, but is straight. The horn or horns of the female Rhinoceros are asually shorter or smaller tban in the malc. In the young one-horned Rhinoceros living, from 1834 to 1849, at the Zoological Gardens, the new fibres of the growing horn were chiefly added to the front and sides, those at the back decaying, and by this direction of addition the horn praserved its relative position to the fore part of the growing bead. This local decay and renovation became less conspicuous after the animal had gained its full size; and in the long horns of aged individuals the whole basal circunference presents the same smooth and polished surface, the reception of additional matter being then restricted to the completed area of the basc.

Raise and prolong the bone covercd by the vascular hornforming tegument, and the next type of horn would result. In most Ruminants (Oxen, Antelopes, Goats, Sheep) a pair of processes extend from the frontal bones, the dermo-perioste of which develops a sheath composed of borny fibres: but the supporting process is long and conical, and the horn which sheaths it is correspondingly hollow, whence the Ruminants, so armed, are termed 'hollow-horned.' The bone is termed the 'core:' it has usually a rugous or grooved exterior: in Bovidee and Ovida the frontal

\footnotetext{
The nasals of the fossil Rhinoceros minutus, Cuv., show a transverse pair of small and smooth conical processos, which cannot confidently be inferred to hare sustained horns: like the Rhinoceros incisivas, I believe it to have been hornless.
\(z\) There are reports, needing confirmation, of a small third horn, as a rare variety.
}
sinuses extend therein: in Antilopide the core is solid or but slightly exeavated at the base. In an Indian species (Antilope quadricornis, fig. 491) two pairs of horn-cores are developed from

skull of Ox with home core, \(a\), mud hom, \(b\),
the frontals; the same peculiarity characterised the gigantio extinet Antelopes (Bramatherium and Sivatherium, vol. ii. p. 473, fig. 322), and they also combined the branched cbaracter of the horn in the linder pair, which is at present restricted to the single pair borne by the Prong-horn Antelope (Antilocapra Americana, fig. 492).


Brancied home of the Preng-horu.

In the true Oxen (Bas) the horn-eores spring from the posterior angles of the frontals, fig. 490 : in the Bisons (Bison) their origin vol. iff.
is a little in adrance of these angles (vol. ii. fig. 320): in the Buffaloes and Bubaline Antelopes the horn-cores rise by broad and extended bases, meeting at the mid-line (Bubalus Caffer, B. moschatus, B. Gnu): in Antelopes the origin of the horns are more in advance. The shape, size, length and direction of the horns vary extremely in the hollow-horned Ruminants: in many they are transversely ridged or annulate; but several rings may be formed in one year : a periodical activity of growth is noticeable in most, as in the Ram and Goat, toward tbe period of the rut. Horns are usually present in both sexes; but in sone genera of Antelopes (Tragelaphus, Cervicapra, Cephalophus, e.g.) only in the male. In Antilocapra the rudimental horns in the female are sometimes conspicuous, but are small, short, and simple, as in the yearling-buck.

The Prong-buck acquires its full-sized borns by progressive growth of the persistent core and by annual shedding and rencwal of the extra-vascular sheath. The latter phenomena have bcen


Shedding and formation of borny sheath of horm, Anilacarara Ansericana. coxxry" witnessed and recorded by two trustworthy observers. Mr. Bartlett noticed their fall in a young male at the Zoological Gardens, November 7th, 1865: the shed sheath was 8 in . long, and showed an obtuse beginning of the lower prong of the fork; fig. 493, A, c. The dermo-perioste of the core does not lose its vascularity: the shedding of the agglutinated fibres of the sheatb, like tbat of the ordinary hair, is due to the oblitcration of the matrices of these fibres and their extrusion from the dermo-perioste; which, in the meanwhile, has begun to develope a new coat of fibres, \(\mathrm{ib} . b\). These, on the shedding of the old mass, appear as an abundant covering of long, straigbt, silky and light-coloured hairs, ib. d, the growth of which mechanically uplifts and pushes off tbe old sheath. The new sheath, 4 inches long when so exposed, grew to 6 inches in the course of three weeks, at which time tbe fibres had begun to felt or agglutinate into a compact born at the summit, fig. \(493^{3}, \mathrm{~B}, e^{1}\)

Dr. Canfield observed in a young yearling male Prong-buck, which he had captive, at Monterey, California, the growth of the
first pair of borns commencing in July (1855), and attaining the length of \(\frac{3}{4}\) ths of an inch and the form of a mammillary knob; the sheath was shed, early in December, leaving the core \(\frac{1}{2}\) an inch long, and covered by fine silky hairs: in a week the agglutination of the summit into compact horn commenced. In October 1857, the animal being two years and a half old, the horns were 9 inches long, and the anterior prong was indicated by a protuberance, as in fig. 493, a, the agglutinate tip of which soon became confluent with that of the main stem. The pbenomena noted between 1855 and 1857 indicated an annual sbedding of the horn-core. \({ }^{1}\) It is probable that such takes place," also, in the fully-formed horn and, in the month of November, as a rule. \({ }^{2}\)

The Giraffe has a pair of small, short, cylindroid unbranched horns which consist of bone covered by hairy skin terminated by a tuft of coarser hair. The boncs are not processes of the skull but arc joined, like epiphyses, by 'synchondrosis' to both frontal and parietal bones, the base crossing the coronal suture. They are present in both sexes (vol.ii. p. 476, fig. 325); and the young is born witb such horns, being the sole horned mammal tbat enters the world with these weapons. \({ }^{3}\)

In Deer (Cervide) the horns consist wholly of bone wbich grows from the frontal, the periosteum and finely haired integument, called 'velvet,' co-extending thercwith during the period of growtb; at the end of which the formative envelope loses its vascularity, dries and is stript off, leaving the bone a hard insensible weapon. After some months' use, as such, the horns or more properly 'antlers,' having lost all vascular connection with the skull, and standing in relation thereto as dead appendages, are undermincd by the absorbent process and shed; whereupon the growth of a succeeding pair commences. The shedding of

\footnotetext{

Thus Dr. Canfleld observes:- In the month of December and January I have never killed \(n\) buck with large horns; and at tbat time of the year all the bucks nppear to be young ones, because their horms are so small, whereas in the spring and summor monthe almost all the bucks appear to be old ones, for their horns are then large and noticeable:' He also romarks:- In the summer months the line of demarention is "ery apparent and abrupt botweon the horn and the skin from which it grows, but that in winter there is no demareation, the horn being very soft at its base, passing insensibly into cuticular tissues, and the horny substance being covered thinly with hair.' Ib, p. 108.
"cexvil'. p. 25. A brond obtuse eminence formed by thickening of contiguous purts of the two frontals at the part of the frootal suture, the base of which eminence is often irregularly excurated or undermined ly ressels, hns been mistaken for a thind horn, frticuluted to the frontals. See xcrir. p. 219 ; and section through this part, vol. ii. fig. 326.
}
the antlers coincides with that of the hair, and, with the renewal of the same, is annual.

As a rule the antlers of deer are branched: their base expands into a series of dense osseous tubercles (vol. ii. fig. 327, b) called the 'burr;' this ridge defends the edge of the frontal skin and periosteum, which terminates abruptly beneath it, usually on a persistent process or 'pedicel:' the vessels co-extended with the 'velvet' during the growth of the antler, check the continuous development of the basal ridge, and leave it notched and perforated. The 'burr' is not the mechanical cause of the obliteram tion of the vessels. To suppose that the growth of the antler is stopped by sudden suppression of its supply of blood--by a sort of bony ligature of the arteries-exemplifies a shallow physiology: \({ }^{1}\) the ebb of blood, like the flow or 'determination' to the periodically growing part, whether 'horn 'or 'testicle,' is due to deeper constitutional conditions. As the vessels of the antler gradually diminish in size, the ' burr' encroaches upon their channels; but of these sufficient remains in the form of perforations and notches to allow blood enough to pass to the 'velvet,' if its entire deprivation of nourishment were not a pre-ordained condition, independent of the 'burr.'

The stem or body of the antler is termed the 'beam'; its branches are the 'tynes,' its branchlets the 'snags': the first or lowest branch is the 'brow-tyne,' as projecting from the forepart of the base, forward, fig. 494, \(m\); the second is the 'beze' or 'bez-tyne,' ib. \(n\); the third is the 'royal,' ib. \(o\); the upper ones, which are more or less clustered on an expansion or 'crown'
\[
494
\]
 of the beam, are the 'surroyals,' ib. \(p\). When a branch is sent off from the hind part of the beam, as in Megaceros, \({ }^{2}\) it is a 'back-tyne:' this is long and subpalmate in the Chinese C. davidianus. \({ }^{3}\)
In the Red-deer (Cervus elaphus), as in all other species, the first pair of antlers which the young male developes in the spring of the year after his birth, consist of beam only, fig. 494, \(a\); they are called 'dags,' and the animal carrying them is a 'brocket:' the next year's pair

\footnotetext{
\({ }^{1}\) xcvi'. p. 518.
}

X \(\mathrm{FII}^{\prime}\). p. 456.
- ccxi", p. 27, pl. 4.
develope the 'brow-tyne,' \(b\), and characterise the 'spayad,' but occasionally a 'royal' also appears, as at \(c\) : the bez-tyne, a 'royal' and short 'sur-royal,' characterise the antlers, ib. \(d\), of the 'staggard' or male of the fourth year: in the fifth year the antlers assume the type of \(e\), and the animal is a 'stag.' They go on increasing in size, length of tynes, and number of those diverging from the expanded crown, ib. \(f, p\), until the male becomes a 'great Hart', and may be 'summed of from 10 to 16 points.' Rarely, however does a Red-deer of the restricted 'forests' of Britain or France, now become a 'Cerf de dix cours.' \({ }^{\text {' }}\) But, with a range affording choice of favourite food, and under other conditions of constitutional vigour, among which may be reckoned the absence of that irritation of nerves caused by the dread and persecution of man, the bony sexual appendages of the skull have attained grand proportions. The largest which I have personally examined are of a Red-deer, killed some centuries ago in Wallachia. The length of each antler from burr to extreme tip, following the curve of the beam is 5 feet 8 inches: the crown divides into four primary tynes, the subdivisions or snags of which, included with the ordinary tynes, give a total of upwards of 20 points: the weight of the pair is 74 lbs . avoird. These antlers are now in the possession of Earl Powerscourt, by whom I have been favoured with the opportunity of inspecting them.

In the Fallow-deer the yearling fawn 'puts up' a conical, commonly slender dag, fig. \(495, a\); so long as it is carried the animal is a 'pricket': the antler of the following year is longer, and sends off two tynes, ib . \(b\); such antlers characterisc the 'sorel': the third pair, increasing in size, show, in addition to the two anterior tynes, an expansion of the beam with two or more short snags, ib. c; they characterise the 'sore or buck of the fonth year: in


Aptlers of and costh year in the Rallor.dect. the fifth the antlers assume the form characteristic of the species, ib. \(d\); and the numal is a 'buck of the first head.' In the seventh year the antlers have acquired their full size and their best

\footnotetext{
'The foregoing terms, with those applied to the Fallow-deer, belong to "Venery,' or the Art of the Chase.
}
condition, iu regard to length and sbarpness of snags, for weapons of combat: the buck is now 'full-headed.' After the seventh year the antlers are thicker, heavier, more obtuse, becoming shorter in the beam, and especially in the hranches. The antlers of the Fallow-deer are shed in May; their growth is complete in August ; they are ' burnished,' or the formative covering is stripped or ruhbed off, early in September; prior to this they are said to be ' in velvet', the fine hairs clothing the temporary skin resemhling the pile of velvet. In the Red-deer these annual phenomena occur about a month earlicr. Soon after burnishing, the combative instincts of the males arise; and, when the swelling of the throat and the 'belliug' challenge announce the 'rut,' the combats ensue à loutrance: thereupon the coincidence of the perfectiou of the antlers with the acquisition of maturity of strength and wind, enabling the male to wield them in the most efficient manner, gives him the command of the field, and he drives off every younger and less favoured antagonist from his chosen seraglio of hinds or does. The antlers of an older buck or stag, though more massive, are more obtuse; the addition to the bulk of the body is then due to other matters tban working muscle, and the animal is sooner 'out of wind.' Consequently the male that has been the victor of one year is conquered by the younger one, now in his prime, who ventured into combat with him and was beaten the previous year. Thus is provision made for the propagation of the race by the best and strongest. It may further be remarked, that the fawns are 'dropped' at a time when the paternal antlers are shed; and the males, which are vicious, are thus deprived of the power of injuring the young during their more tender period of life.

The Rein-deer (Cervus tarandus) is one of the very few Cervidce in which antlers are developed by the female: they are sbed and renewed as in the male, but are much smaller. In the male they are remarkable for the length and forward curvature of the beam, and for the length and broad terminal snagged expanse of the tynes, especially of the brow-tynes, which also converge with occasional decussation of snags; whence Cæsar was led to descrihe the Rcin-deer haunting Germany and the South of France, in his day, as having a third horn growing out of the middle of the forehead. \({ }^{1}\) The opposite extreme is scen in \(C . d a-\) widianus, in which the hrow-tynes are wanting. In the Elk (Alces) they are represented by the lowertynes of the generally expanded antler. Species of deer of small size, e. g. the Roe (C. capreolus)
and the South American C. rufus, C. simplicicornis, bave antlers more or less in the condition of 'dags' at all ages.

If a Fallow-buck, with antlers, be castrated, they are shed earlier than usual, and by a more active absorbent process, which leaves an irregular concavity at the basc: the antlers that are subsequently developed are small, seldom brancbed, retain the 'velvet' longer than usual, and become thickened by irregular tuberculate masses of bone. If a young buck be castrated before it has 'put up' antlers, it does, afterwards, in some instances, develope them, but of reduced size and abnormal shape, retaining them, with their formative covering, longer than usual. Occasionally, though rarely, they are shed and renewed: but such shed antlers of a 'beavier' or castrate deer are characterised by the excavation of their base. \({ }^{1}\) The normally shed antlers of perfect males have the base flat or convex, and almost smooth. A rare instance of the sexual relation of antlers, the coincidence, viz. of a small one witb a diseased ovary of the same size, in a fallowdoe, has bcen recorded. \({ }^{2}\)

In most decr the antlers are supported on permanent processes, or 'pedicels,' varying in length in different species, and attaining their greatest in the Muntjac (Cervus Muntjac, vol. ii. p. 478, fig. 328), which thus secms to shed only half its borns. The persistent integument of such pedicels is always defended by the burr (ib. b), below which the absorbent process takes place at the shedding period.

Thus Deer are the only Ungulates that annually shed their horns: the Prong-buck is the only known bollow-horned Ruminant that annually sheds the extravascular part of the horn, called the "sheath.' The horns of Ungulates may be summarised as consisting cither of horn only (Rlinoceros), of bone only (C'crus), of horn and bone (Bos), or of skin and bone (Camelopardalis).

\footnotetext{
Redi's dictum :-' Si corrus jucenis castretur, nondum emissis cornubus, cornus munguan emittil: si castretur jam emisais cornubus, cornus nunquam mutat; sed que dum castratur habet, castratus semper retinet' (coxxvif. p. 162):-is adopted by luaffin:-'Si l'on fait cotta operation dans le temps qu'il a mia bas sa tête, il ne a'en formo pus uno nouvello; of si on ne la fait au contraire que dana le temps quila refait sht tite, ollo ne tombe plus; l'animal, on un mot, reste pour toute sa vie dans l'Etat où i] satit lorsqu'il \(a\) subi la castration,' cxur'. tom, vi. p. 81.

Tho experiments (xuv. pp. 590, 591), which Sir Philip do M. Groy Egertom, Bart., wats so kind ns to have made, at my suggestion, on Fallow-deer, in Oulton Park, yitlded in the main the results given in the text. It is desirable that similar experi. ments should be reponted in the Red-deer. Two males of Rein-deer, said to be casthatem, at the \%oological Gardens, and whith heve mever shown sign of rut, have shed aud reproduced antlers of nommal form, and nearly full size during three consecutire yents.
"cext11". p. 356.
}

\section*{CHAPTER XXXVI.}

\section*{RECULIAR GLANDS OF MAMMALIA,}

Most species of the Mammalian class have their peculiar odour, whereby, mainly, the individuals of such recognise each other; and, in the gregarious kinds, a stray one may be guided to the herd by scenting the secretion which has been left upon their track. Such odours are commonly due to follicles or glands opening upon some parts of the skin; but there are, likewise, glands subserving other uses, peculiar to certain species.
§ 365. Opening upon the head.-In many Ruminants and some hogs, a depression or inverted fold of skin, near and usually anterior to or below the orbit, is perforated by the ducts of numerous more or less developed sebaceous follicles, discharging their secretion into the cavity. As this is often placed so as to receive an overflow of the lacrymal secretion, and as a corresponding depression is usually present in the large facial plate of the lacrymal bone, it has been termed by French naturalists 'larnier:' by English writers, the tegumentary sac, with its glands and muscles, is called 'suborbital pit or sinus.' In the Indian Antelope (Antilope cervicapra), it is large and dcep: a few short hairs project between the glandular orifices at the bottom of the sac: its circumference is entire and provided with radiating and circular strata of muscular fibres on the surface next the depression of bone in which it lies: by these muscles the tegumentary pit can be expanded, contracted, protruded, and partially cyerted, whereby the glandular surface may be brought into contact with and rubbed against foreign bodics: the follicles are multilocular and numerous in this species. The odour of the secretion, inclining to musky, may be recognised by a stray individual of a herd, or by the doe, which might thereby be guided to her mate. The gland seems most nearly to relate to the sexual function: it is usually larger in the male than the female, and its development is checked by castration. It is present, but small, ill most goats
and sheep; also in many deer, \({ }^{\text {b }}\) in which it appears as a simple fissure continued from near the lacrymal angle of the eye. A similar pit oecurs in a more advanced position in some antelopes; such ' maxillary pits' sometimes co-exist with the suborbital ones, sometimes replaee them. A third position of the cutaneous gland-pit is more rare, viz. behind the base of the ear, as in the Chamois (Antilope rupicapra). With a view to test the relation of these organs to the habitats, and gregarious or solitary habits of the Antilopida, I drew up the subjoined table \({ }^{2}\) :-
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\(\left.\begin{array}{l}\text { Suborbital } \\ \text { nnd maxil- } \\ \text { lary pits. } \\ \text { Suborbital pits }\end{array}\right\}\) \\
large. \\
small.
\end{tabular} & & \begin{tabular}{l}
Antilope Sumairensis. Hab. hilly forests; habits of the Goat. quadriscopa. Senegal. \\
cervicapra. Open plains of India; gregarious. \\
melampus. Open plains of Caffraria; flocks of six or eight. \\
picia. Dense forests of India; small herds. \\
scoparia. Open plains of S. Africa; subgregarious. \\
trayulus. Stony plains and valleys of S. Africa; in pairs. \\
melanotis, Plains, hides in underwood; in pairs. \\
Dorcas. Borders of the desert ; gregarious. \\
Kevella. Stony plains, Senegal; gregarious. \\
subgutturosa. Plains, Central Asia; gregarious. \\
Bennettii. Rocky hills of Deccan; not gregarious. \\
Arabica. Stony hills of Arabia; sub-gregarious. \\
Scemmerringii. Hills in Abyssinia; not gregarious. \\
Euchore. Dry plains of S. Africa; gregarious. \\
pygarga. Plains S. Africa; gregarious. \\
Mhorr. Deserts of Morocco. \\
ruficollis. Deserts of Nubia; gregarious. \\
Antilope colus. Vicinity of lakes; gregarious, migratory. gutturosa. Arid deserts, Asia; periodically groge:tious,
\end{tabular} \\
\hline Suborbital pits.
Suborbital pits. & & \begin{tabular}{l}
Atrtilope Saltiana. Mountainous districts, Abyssimia; in pairs. Oreotragus. Mountains of the Cape: sub-gregarious. Thar. Hills of Nepaul; not gregarious. Gazella, Senegal. \\
Antilope Babalus. Mountains and deserts, Tripoli; gregarious, \\
Cama. Plains of S, Africa; gregarious. \\
Iunata. S. Africa; gregarious. \\
Gint. Karroos of S. Africa; gregarious. \\
tourina and Gorgon. S. Africa; gregarious,
\end{tabular} \\
\hline Maxillary pits. & & \begin{tabular}{l}
Antilope silvicultric. Thickets and underwood, Africa; \\
mergens. Forests and underwood, S. Africa; in pairs. \\
Grimmia, Guinea. \\
Burchellii; S. Africa, in pairs. \\
perspisilla. Bushes, S . Africa; in pairs. \\
Marwellii. Ib. ib. \\
pygmea.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
xx. rol. iii. p. 272, no. 2101 (Cervis tarandus). cexxxmi'. p. 37.
}
\begin{tabular}{l} 
No suborbital, \\
or maxillary \\
pits.
\end{tabular}

From the foregoing summary it may be inferred tbat the scented secretion of the suborbital sinus serves rather to attract or guide the female, tban a stray individual of a berd. In the African Water-hogs a naso-maxillary pit opens between the eye and snout, rather nearer the eye.

In the Elephant a large gland of a flattened form and multilobate structure, lies beneath the skin of the face, in the temporal region: the secretion exudes from a small orifice, situated about half way between the eye and ear. Tbc gland enlarges, in the male, at the rutting season, and the secretion then has a strong musky odour.
§ 366. Opening upon the trunk. - In certain tropical bats (Cheiromeles torquatus, Cheir. caudatus, e.g.) a glandular sac exudes upon tbe forepart of the breast, near the axilla, a brownish sebaceous secretion of a penetrating submusky odour.

In many Shrews two longitudinal series or groups of glandular tubes, open upon the flanks, at a part surrounded by short bairs; the tubes are tortuous and closely conglomerated at their blind ends, but become straighter near their termination. The peculiar odour, more or less musky, of Soricide, is due to the secretion of these glands, and makes the shrew-mouse unacceptable as food to the cat that may have killed it.

In the Peccari, a large gland, fig. 496, consisting of many lobes, exudes its secretion by an orifice, ib. \(b\), on the midline toward the hinder part of the back. The resemblance of this orifice to the navel on the opposite part of the trunk suggested
to Linneus the term Dicotyles, for this genus of S. American porcine animals.

In many Antelopes there are situated in the groin, external to the nipples in the females, glandular depressions of the skin, or pouches, sometimes of large size, as in Antilope corinna, e.g., in which the secretion is yellow, like cerumen. \({ }^{1}\) The presence or ahseace of the groin-pits in the different species of Antelopes is noticed in the table, p. 633.

The most notable development of scent-


Dorsal scent-giand, Peccarl; one-third nat size, glands and hags, at the groin, are those which open into the prepuce of the small Ruminant, called on account of the odour of the secretion 'Musk-deer' (Moschus moschiferus). The fully developed gland at the fundus of the sac raay he three inches in diameter and one inch at its thickest part; the moist secretion accumulates in the cavity of the tegumentary pouch, and constitutes, when dried, the costly medicament or perfume, 'musk.'

The analogous carminative or antispasmodic substance 'castoreum' is the secretion of glands, fig. 497, exuding into the preputial and ano-preputial passage of the beaver. They present the appearance of two large mansces, with a common muscular investment on cach side the dorsal tricet, which is unusually prolonged beyond the pelvis for their accommodation in that rodent. On rcmoving the muscular layer,


Preputial and glands of the Benver. each nass has its capsule: on dissecting this away, the upper mass cexxxyl. rol. ii, p. 146.
is seen to be a large pyriform bag, fig. 497, \(p\), with a corrugated glandular lining membrane, \(r\); the pair terminates by a common orifice, \(q\), in the ano-preputial passage, \(q, e, a\) : the other mass may he separated into three rather compact glands, \(o, l, h\), with short ducts, ending by a common orifice, \(e, e\), on the same passage, nearer the anus, \(a\). The secretion of these latter glands is yellow, viscid, and musky; that of the upper bags, \(p, r\), is greyish-coloured and more offensive: both secretions appear to be mixed in the dried 'castoreum' of commerce, of which that from the Castor fiber of Europe and Asia has a higher value than the 'New England castor,' obtained from the Amcrican beaver.

Homologues of the glands, \(o, h\), of smaller size and simpler structure exist in many Rodents, and are reckoned as anal:' they are shown in the Agouti, at \(r\), \(s\), fig. 506; iu the water-vole, at \(t\), fig. 510 ; in the male hare, at \(k, 7\), fig. 505 ; and in the female hare at \(q\), fig. 539. In Lepus the follicles open into a deep glandular fossa occupying the interspace between the rectum and prepuce, on each side. Hunter, after noting in a male Helamys capensis the position of the vent 'about two inches from the tail,' proceeds to state :- About half-an-inch fartber between the legs is another opening, similar to the anus, passing in tbe same direction between the two crura of the os puibis, and leading to, or terminating in, two blind ends, between the rectum and tbe bulbous part of the urethra. Tbese two ends are glandular, or secrete a whitish mucus; they are lined with a cuticle, are white and silky, having a good deal of short white hair.' \({ }^{\text {' }}\) On each side of the termination of the rectum in the cloaca of the Ornithorhyachus there is an oblong glandular prominence, about four lines in length and two in breadth, on whicb there are about ten orifices of follicles which scerete a scented sebaceous matter. In all Marsupials two similar cavities with sebaceous follicles open into, or near to the termination of the rectum. The short vestibular or cloacal passage in the two-toed Sloth shows many orifices of such follicles. A pair of small anal bags exude their secretion near the verge of the anus in the Armadillos.

The anal gland-bags are most constant and hest developed, as a rule, in the Carnivorous order: they are each provided with a muscular capsule, fig. 498, \(a\), and present a smooth surface when this is removed, as at \(b\) : they are, also, commonly smooth within, and lined hy a dense epithelium: the glandular stratum is some-
times limited in extent, and usually thickest toward the orifice of the bag which is just within the verge of the vent. The glandular stratum is thick and continuous in the Otters and Skunks, and in the latter, at least at certain seasons, secretes the intolcrable, penetrating and long-enduring odour for which these quadrupeds are proverbial, and from which they derive some means of defence against foes: the orifice from which the secretion is ejected is situated on a mammillary prominence (Mephitis, Mydaus).

In the Hyana the anal glands are thickest and largest; they are two in number on each side and open into a wide transverse depression or sinus extending aeross and ahove the amus. \({ }^{2}\) In the Civets

498


Aral gland-baga, skunk, J (Viverra civetta, V. genetta) the two lateral gland-bags interconmunicate sooncr, before forming the common eanal opening into the transyerse sinus; which, moreover, crosses hetween the vent and prepuce in the male, and betwcen the vent and vulva in the female. The modified musky odour of the secretion has made it sought for and vendihle, under the name of 'civet.' In the Suricate and Ichneumon a glandular glossa surrounds the anus.

In Chiromys and some other Lemuride, the anal glands are reduced to two shallow cutaneous pits at the sides and upper part of the vent: in higher Quadrumnua this trace disappears.
§ 367. Opening on the tail.--In certain large Shrows (Myogulea, Macroscelides) the under part of the hase of the tail is tumid, through the development of glandular follicles: these open there in a double row in the species which, from the odour of their seeretion, is termed Myogalea moschata.

The eaudal seent-gland in the Fox is elliptical, ahout an inch in length; it is minutely lohulate; each lobule consisting of elusters of spherieal follicles terminating hy a short duct; the orifices of these ducts are on a linear tract, indieated hy hairs of a different colour from the rest. \({ }^{3}\)

\footnotetext{
xx vol. if. p. 183, No. \(2803 . \quad\) Ib. p. 181, Nos. 2797, 2708.
\({ }^{3}\) coxxxul \({ }^{\prime \prime}\) p. 309, tab. vint.
}
§368. Opening on the limbs.-In certain Bats (Emballonura, e. g.) a glandular cutaneous sac, exuding a reddish mal-odorous secretion, opens upon the anterior horder of the wing, near the head of the humcrus. In Saccopteryx (at least in the male) a larger sac, with a plicate internal surface situated on the under part of the wing, near the ulna, opens hy a fissure on the upper surface of the limh.

In the one-horned Rhinoceros ( \(\boldsymbol{R} h\). indicus, and prohahly in other species) there is a glandular orifice at the hack part of each foot, situated about three inches ahove the callous sole: it is concealed in the middle of the transverse fold that runs parallel to the interspace hetween the carpus and metacarpus, and hetween the tarsus and metatarsus. The gland is of a compressed ovate figure, measuring one inch and a half in length, and one inch in hreadth: it is hollow, with parietes from two to three lines in thickness, consisting of a compact congeries of follicles, surrounded externally hy a muscular and


Interumgelate gland, shaep. \({ }^{2}\) tendinous capsule. The external orifice may be expanded to a width of eight lines. \({ }^{\text { }}\)

In most bisulcate Ungulates a similar gland exudes its luhricating sehaceous secretion from an orifice at the upper and fore part of the cleft between the principal hoofs. In the sheep, fig. 499 , the gland is elongate and hent forward at an acute angle upon its duct, (indicated hy the hristle in the figure and preparation). These post-digital and interdigital glands, in ungulate quadrupeds, scem to relate to lubricating or greasing the hoofs.

The most remarkable of the 'peculiar glands ' iu the Mammalian class, and one that relates most closely to sex, is that which in the mature male Monotremes sends its duct to terminate in the hollow spur projecting from the heel. The character is not manifested in the young animal. A small spur concealed in a cavity or socket of the integument covering the heel, the hottom of which closely adheres to the accessory tarsal ossicle, exists in the immature of hoth sexes. \({ }^{3}\) As the young animal advances to maturity the cutaneous socket increases in width and depth in the female, but without any corresponding growth of the rudimentary

\footnotetext{
- \(\mathrm{v}^{\prime \prime}\), p. 34, pl. ix. figs. 1 and 2.
\({ }^{2}\) xx. vol. iii. No. 2152 в.
- A magnified view of the part in the young male is given in uxxvir'. pl. 32, figs. 1 \& 5.
}
ajur, of which in aged females no trace remains. In the male Ornithorhynchus the tarsal spur soon begins to rise above the socket, and finally attains a length of ten lines with a basal breadth of five lines, apparently everting the tegumentary socket in the progress of its growth. The spur, fig. \(500, e\), consists of a firm semitransparent horn-like substance; it is conical, slightly bent, and terminated by a sharp point; its base is expanded, and notched at the margin for the implantation of the ligaments which connect the spur with the accessory flat tarsal bone (vol. ii. fig. \(199 k, d\).) The base of the spur is covered by a thin vascular integumont. The spur is traversed by a canal which commences at the centre of the base and terminates by a fine longitudinal slit, about one line distant from the point, closely resembling in this respect the canal that traverses the poison-fang of the venomous snake. Like that weapon the spur of the male Monotreme is subscrvient to the transmission into the wound it may inflict of the secretion of a peculiar gland.

This gland, fig. \(500, a\), is situated at the back part of the thigh, between the femur and the long olecranoid process from the head of the fibula, covered by the integument and the cutaneous muscle. It is triangular, convex above, concave below, or toward the leg,


Crutal gland smd spur tmalo Ornfthorlaynchus Lxxxi*. from twelve to fourteen lines in length, seven or eight lines broad, and threc or four lincs thick, with a smooth exterior, invested by a thin capsule, on the removal of which the gland may be divided into a mmber of small lobes. Its intimate structure, as displayed by a successful injection of mercury, is minutely cellular; the excretory duct is continued from the concave side of the gland, and small clusters of vesicles are developed from parts of its expanded conumencement. The duct, which is about a line in width and with pretty strong tunics, descends straight down the back of the leg, covered by the flexor muscles, to the posterior part of the tarsins, where it suddenly expands into a vesicle, ib. \(b\), applied to the base of the spur, and a minute duct, \(\mathrm{ib} . c\), is continued from it into the canal which traverses the spur.

The tarsal perforatel spur and its glandular apparatus are both
relatively smaller in the male Echidna than in the Ornithorhynchus. The gland is situated lower down, in the popliteal region, hetween the insertions of the deep-seated fasciculi of the adductor femoris and the origins of the gastrocnemius; it is of suhspherical form, ahout the size of a pea, with a smooth cxterior ; the excretory duct, wide at the commencement, soon contracts into a filamentary canal, which again enlarges to form a small reservoir for the secretion just above the hase of the spur. The duct is accompanied and partly covered hy the posterior tihial nerve.

The spur is a round, curved, sharp-pointed cone, traversed hy a canal, continued from the reservoir, and opening on the convex side of the spur a little way helow the pointed extremity.

The true nature and use of this apparatus has not yet heen determined. Its close analogy with the poison-apparatus in other animals suggests a corresponding function; hut no well authenticated case of symptoms of poisoning consequent upon a wound inflicted hy the spur has heen recorded: it seems on the contrary that the Ornithorhynchus possesses not the instinct of availing itself, when attacked or annoyed, of a weapon so formidahle as, upon this theory, the spur must he. \({ }^{1}\)

\section*{CHAPTER XXXVII.}

GLNERATIVE ORGANS OF MABMALIA.
Outward characters of sex are least marked in Lissencephala. To distinguish the male from the female Mole, Shrew, Hedgehog, Sloth, Rodent, requires close scrutiny, if not dissection. The male Monotreme is known hy his hecl-spur; the femalc Marsupial by her pouch and hy her smaller (in Kangaroos much smaller) size. Among Cetacea the tusk distinguishes the male Narwhal, and the larger head the male Cachalot: in Seals the canines are usually larger in the male. External parts of generation are conspieuous in other Gyrencephala. Besides these, most Ruminauts have sexual characters in the horns, either hy their presence or greater size; the Stallion and Boar have the tusks: tbese by their greater length distinguish the malc Elephant, especially the Indian kind. In the Carnivora the male is the strongest: the Lion is dignified by his grand mane. The larger canines, with greater general size, mark the malc sex in most Quadrumuna np to and including the Gorilla. Besides some differences in size and proportions of body, developments of hair are the outward marks of sex in Bimana.

\section*{A. MALE ORGANS.}

In the Nammalian class the testes attain their most compact form, with most definiteness and finish of parts, in unravelling which anatomy has surpasscd itself, ehiefly upon the glands as they exist in Man, from which type of testicular structure there is no essential departure in the lower orders. The peritoneum adds a scrous layer to the proper sclerous covering of the gland: :und when this passes, as in the majority of Mammals, out of the ahrlomen, it pushes before it another portion of peritoneum, which becomes reflected after the manner of serous memhranes, to form the 'tunica vaginalis testis.' This, however, is an accidental adjunct, dependent upon the 'descent of the testis.' The constant and proper covering, 'tunica alhuginea,' consists chiefly of the white selerous tissue: the spermatic vessels ramify therein, expecially the veins, so locally as to facilitate the separation of the tunic into an outer dense protective layer, and an inner laxer layer, the seat of the minuter subdivisions of the arteries proceedVOL. III.
ing to, and of the venules returning from, the essential parts of the gland. Processes of the inner layer, resolving into areolar tissue, convey the vessels into the gland-substance, and partition that suhstance into lohes: a denser layer is continued from the line of the alhugineal tunic perforated hy the testicular vessels, and projects some way into the gland: it is called ' corpus Highmori,' or 'mediastimum testis,' and varies in longitudinal extent, and depth of position, in different Mammals: in Man it is limited


Glandular atracture of Human testis, as shown by mercurial injection, nat, size. eclxxrr". to the tract, fig. \(501, b\), along which the reticulate ducts emorge or become 'efferent.' The cavities in which the sperm-cells are developed, fig. 514, have the form of tuhes, of a diameter of from \(\frac{3}{150}\) to \(\frac{1}{200}\) of an inch, minutely and extensively convoluted: from two to five of such tubes, averaging two feet in length in the human testis, are packed into a long pyramidal lohule, invested by a process of the inner alhugineal tunic: and the snm of these lohules or packets of seminiferous tubules forms the glandular part of the testis, fig. \(501, a, a\). The reticulate intercommunication manifested in the wider spermogenous tracts of the milt of fish (vol. i. p. 569, fig. 379 ), prevails in the more fixished and thickcoated seminal tubules of Mammals: and, where such hecome free, they have hlind ends. From the lohules the tubules converge, anastomosing, hut with straighter course, to the mediastinum, and there form the plexus called 'rete testis,' ih. \(b\). From this the 'vasa efferentia,' ih. \(c, c\), cmerge, and enter the upper end of the appended body called 'epididymis,' ih. \(d, g\). Here the convoluted disposition of the tubule is resnmed, and from ten to twenty groups, called 'coni vasculosi,' resemhling, save in the greater width and less length of the tuhuli, the lohes of the testis, comhine to form the head or 'glohus major,' \(d\), of the epididymis. Tiy repeated anastomoses there, a single tuhe results, the trans-
versely disposed convolutions of which, \(f\), form the rest of the epididymis: at its lower part the tube naturally untwists, and increasing in size, ib. \(g\), \(i\), becomes the spermduct or 'vas deferens,' \(k\). In Man and many lower Mammals another feature of the spermogenous tract is commonly shown in the epididymis by the offset and blind termination of one or more tubules, as at \(h\), fig. 501.

The epididymis varies in relative size and position to the testis in different Mammals. In all, the semen is eonducted, in coitu, by a single intromittent organ traversed by a complete canal, which may bifurcate at its termination in the lowest members of the class. Accessory secretions are added to the semen at the bcginning of the urethro-seminal canal, by glands called 'vesicular,' 'prostatic,' and 'Cowperian.' But these do not eoexist in every spccics, and the varieties in regard to their presence and development, as well as in the structure and muscles of the intromittent organ, are the chief clements in the comparative anatomy of the Mammalian male generative organs.
§ 369. In Monotremata.These are true 'testiconda:' each testicle, fig. \(502, e, e\), is situated immediately bclow, or sacrad of, the kidncy, ib. \(a\), and is sus.. pended to that gland by a fold of peritoneum ; the same fold is continued to the neck of the bladder, inclosing the vas deferens, fig. 308, a, which appears to be thick and simple, but when injected and dissected, as at \(f\), fig. 602, is seen to be slender and disposed in a series of close transverse folds. In ncither Ornitharhynchus nor Echidna
 is there any disparity of size between the right and left testicle. The vas deferens emerges from the upper and inner part of the testis \(e\); and, from the peculiar extent of its transversely folded disposition, seems to prolong the epididymis nearly to the neck of the bladder; the folds gradually diminish, and the duct iteclf' cnlarges, as it approaches its papillary termination, which is in the heginning of the urogenital canal, \(g\). This eanal is continucd
through the pelvis and terminates in the vestibular passage, anterior to the orifice of the rectum, \(q\). The vascular tissue of the penis commences at the termination of the urogenital canal ; it is scparated by a inedian septum into two lateral moieties, and both are inclosed by a commou dense fibrous sheath. The whole penis in its collapsed and retracted state is about fiftecn lines in length in Echidna, and is concealed in a large preputial shcath. The terininal half of the penis is formed by the glans, which, in Orrithorhynchus, presents a quadrilateral form, \(l\), and is traversed hy a median longitudinal furrow upon both the upper and the under surface. Its exterior is beset with numerous short and hard epidermal spines: its extremity is bifurcate, and each lobe is directed outwarl, and terminates in three or four spines, ib. \(k, k\), much larger, but softer, than the rest, and which are usually retracted in a depression. A longitudinal azygos 'levator' muscle runs along the upper surface of the penis; it arises by two lateral slips from the internal stratum, ib. \(\mu\), of the protrusive sphincter, 0 . Another longitudinal, but longer and more slender inuscle, the ' retractor penis,' ih. \(p\), arises from the base of the coccyx, and is inserted into the origin of the penis near the termination of the urogenital canal. The urethral canal of the penis hegins hy a small orifice at its root, communicating with the termination of the urogenital passage, and by the combined action of the last described muscle with the 'sphincter cloacm' it can be brought into contact with the terminal papillæ of the spermducts. Such temporary continuation of the urethral and seminal passages takes place during the vigoxous muscnlar and vascular actions of the parts in coitu, the semen being then propelled from the one along the other without escaping into the cloaca. Under ordinary circumstances, as whon the urine is transmitted along the urogenital passage, that fluid escapes into the vestibule, and may there be blended, as in the Bird, with the rectal excrement. The seminal urethra, commenciug by the distinct aperture above described, is about a line in diameter, and continues single to the middle of the glans, where it divides into two canals; each branch runs along the middle of the bifurcation of the glans, and, when arrived at the base of the large papillæ, subdivides into sunaller chaunels corresponding with the number of the smaller ones, and opening upon their apices. If the canal of the penis were slit open along its under part, and thus converted into a groove, the male organs of the Ornithorhyachus would be like those of a Tortoisc; and although the Mammalian type of intromittent organ is manifested by the completeness of the urethral canal, a resemblance to that of Lizards is
evineed in its bifurcation, corresponding with that of the glans itsolf. That the existence of a penis is essentially related to the sexual organs and not to the renal, is singularly illustrated by the complete separation of the uro-uretbral from the seminourethral passages in Monotremata. The modifications by which the male organs in the Echidna differ from those of the Ornithorhynchus, are confined to the glans penis, which divides into four mammilloid processes, roughened by minute papillæ, and terminated by a depression in which is the branch of the seminal canal that traverses each proeess. Cowper's glands, fig. \(3, k, k\), and fig. \(502, h\), are of large relative size; tbey are situated between the base of the penis, the arch of the ischium, and internal part of the thigh: their secretion is carried by a long and slender duct, ib. \(m\), into the scminal urethra. The physiological relation of these glands to such a canal is clearly illustrated by their presence in the Monotremes, and by their absence in the oviparous animals which have merely a scminal groove. There are neither prostatic nor vesicular glands. It is probable that the spurs, in the male Monotreme, fig. 500 , e, may relate to the sexual act, as holders or' stimulators.
§370. In Marsupialia.-In these Lyencephala the testes, which arc still abdominal at the time of birth, descend, soon after the foetus is transferred to the pouch, into the external pedunculate prepenial scrotum; the eanal of communication between the abdominal cavity and the tuniea vaginalis is long and narrow, but always remains pervious. The tubuli tcstis are relatively smaller than in Monotremes, but the corpus Highmori is near the surface and upper part, not at the centre, of the gland. The epididymis is large, and generally loosely attached to the testis. The spermatozoa of the Perameles have a single barb at the basc of the head, whieh is sub-elongate and compressed; in other respeets, as in size and proportion of the filamentary tail, they rexmble those of the Rabbit. Neither in the Kangaroo, Phalanger, nor Dasyure do the spermatozoa present a spiral head or any noticcable deviation from the characters of the spermatozoa in the smaller placental quadrupeds: those of the Dasyure have a norle at the base of the head. The spermduct passes along the infundibular muscular sheath formed by the cremaster as far as the abdominal ring, then bends downward and backward, external to the urcter, and tcrminates, fig. 503, \(a\), at the commencement of the urethra, at the side of a longitudinal verumontanal ridge. There are no vesicular glands.

As the part of the urethral canal immediately succeeding the
termination of the spermducts is the bomotype of the vagina some modification of this part might be anticipated in the male
 corresponding witb the extraordinary form and development which eharacterise the vagina in the female: accordingly we find that the prostatic tract of the uretbra, \(\mathrm{ib} . b\), is proportionally longer and wider in tbe Marsupial than in any other Mammal. It swells out immediately beyond the neck of the bladder, and then gradually tapers to its junction witb the spongy part of the urethra. Its walls are thick, formed by an external thin stratum of nearly transverse muscular fibres, and by a thick glandular layer, tbe seeretion of which exudesbyinnumerable pores upon the lining membrane of this part of the urethra. In a male Kangaroo I found that a glairy mucus followed compression of this musculoprostatic tract of the urethra: the canal itself is but slightly dilated. Three pairs of Cowperian glands, ib. \(\boldsymbol{c}\), \(c, c\), pour their secretion into tbe bulbous part of the urethra : the upper or proximal pair are not half tbe size of the two other pairs in the Kangaroo, but are relatively larger in the Koala and other Marsupials: the two lower pairs are situated, one ou eacb side the lateral division, \(e, e\), of the bulb of the urcthra; their ducts meet and join, above this part, with the duet of the smaller gland: caeh
gland is enclosed by a muscular capsule. The penis consists of a cavcrnous and a spongy portion, each of which commences by two distinct bodies. The separate origin of eacb lateral half' of the spongy body constitutes a double bulb of the urethra, ib. \(e, e\), and the 'accelerator urinæ,' as it is termed, undergoes a similar division into two separate muscles, each of which is appropriated to eompress its particular bulb. The two bulbous processes of the corpus spongiosum soon unite to snrround the urethra, but again bifurcate to form a double glans penis in the multiparous Marsupials, in which most of the ova are impregnated in both ovaria, as e.g. in the Phalangers, Pcrameles, Opossums, \&c., b, b, fig. 504. In the uniparous Marsupials, as the Kangaroo, the glans penis, fig. \(503, f\), is single.

Thic intermediate structures of the glaus between the two extremcs above instanced are presented by the Ursine Dasyure, Koala, and Wombat. In tbe Koala, fig. 503, b, the glans penis terminatcs in two semicircular lobes, and the urctbra is continued by a bifurcated groove along the mesial surface of each lobc. In the Wrombat, \(\mathrm{ib} . \mathrm{c}\), there is a similar expansion of the urcthra into two divergent terminal grooves, but the glans is larger, cylindrical, and partially divided into four lobes: the chief pcculiarity in this part of the Wombat is the callous exterual membrane of thic glans, and its armature of small recurved, scattered horny spines. The small retrovertcd papille on the infundibuliform glans of the Koala and on the bifurcate glans of the Phalangers and P'etaurists are not horny. In the Perameles lagotis not only is the glans bifurcate, but each division is perforated, and the urethral canal is divided by a vertical septum for about half an inch before it reaches the forked glans: from the septum to the bladder the canal is simple, as in other Marsupials. The divisions of the glans in the Opossums, fig. 504, \(\ell\), and Phalangers are simply grooved.

The corpus cavcrnosum penis commences by two crura, figs. \(503,504, d, d\), neither of which have any immediate attachment to the pelvis. In the Kangaroo these crura, and the two bulbs of the corpus spongiosum, soon unite to form a single cylindrical body, the blended cavernous and spongy structures forming tbe parietcs of a canal which nearly follows the direction of the axis of the penis, and contains or coustitutes the urethra: a transverse section of the corpus cavernoso-spongiosum thus resembles a ring; but tbe lateral erectile tracts are separated by two vertical scpta which extend from the central canal, the one to the dorsum penis, the other to the inferior wall: in this case therc is no definite commencement of the glans penis; its termination is that of the
corpus cavernosum, the urethra, with a corpus spongiosum, projecting and opening beneath the apex. In Perameles, Didelphys, Phascolarctus, and Phascolomys, the corpus spongiosum maintains its character for a greater extent, and may be more distinctly recognised as forming the proper wall of the urethral canal, which sooner becomes superficial, and the .glans penis is better defined. In the Kangaroo and Potoroo, the erectores penis,' fig. 503, \(d, d\), arise by a thin fascia from near the lower part of the symphysis pubis, soon become fleshy, and increase in thickness as they pass outward: each muscle then returns upon itself, at an acute bend, to grasp the crus penis, and terminates in a strong tendinous expansion at the junction of the cavernous with the bulbous structures. The 'retractor pcnis,' figs. 503, 504, g, g, arises in the Kangaroo from the middle of the sacrum, and divides into two muscles,


Male orgnas, ODossum. cexxxp". behind the rectum, opposite the dilated commencement of the musculo-prostatic part of the urcthra; each division diverges to the side of the rectum, then passes to the interspace between the recturn and roots of the penis, converging along the lateral and posterior part of the penis, to be inserted with the opposite muscle at the base of the glans. In the Opossum and thoseMarsupials which, having a bifid glans, enjoy, as it were, a double coitus, there is a ' levator penis,' fig. 504,f,f, which is not present in the Kangaroo. Each portion of this muscle takes its origin from the fascia covering the crus penis, converges towards its fellow above the dorsum penis, diminishing as it converges, and terminates in a common tendon inserted into the upper part of the base of the glans. There is another powerful muscle which, though not immediately attached to the penis, must excrt in all Marsupials an important influence upon its erection. This is the external 'sphincter cloace: :' it is an inch and a half in breadth in the Kangaroo, and half an inch in thickness; from the back of the termination of the rectum it passes over the anal glands and sides
of the base of the penis, inclosing the two bulbs with Cowper's glands and their museles, and terminates anteriorly in a strong faseia nbove the dorsum penis, so as to compress against that part the venæ dorsales. In all Marsupials the penis is bent upon itself when passive and retracted; with the glans eoneealed just within the cloacal aperture, from whieh it emerges, as in oriparous Vertebrates, when the penis is turgid and erect.
§371. In Rodentia.-Here, likewise, the penis is habitually retracted out of view, being strongly bent, in many (e. g. Sciurus, Custor) in a sigmoid eurve, with the glans directed backward, fig. 497,8 , within a prepuce, which opens into, or forms part of, the common passage, \(\mathrm{ib}, g, e, a\), in which the rectum, \(\mathrm{ib} . b\), terminates. The testes undergo a periodical increase of size and change of position, passing from the abdomen into a sessile scrotum, and being again retracted, after the rut (except, perhaps, in Lepurida) within the abdomen. Besides Cowperian there are prostatic and vesicular glands, usually large: bint, again, the Leporidae show their exceptional character in the Order by the absence of the latter. In the Hare (Lepus timidus) the tester, make a more conspieuous prominence than in other Rodents, in their scrotal bags, one on each side the eloacal vent, fig. 505, \(a\). The tunica vaginalis retains an opening wide enough for the repassage of the testis into the abdonien, but it adlueres to the bottom of the sac, the scrons mombrane of which is there reffected by a fold upon the epididymis, fig. 505, \(h\), \(i\), and be-
 ginning of the vas deferens, ib. \(p, q\). The testes, \(f, g\), in this figure, have been dissected from the scrotum and tunica vaginalis. The cpididymis is extended beyond the testis, as at \(h\), \(i\), before being reduced and reflceted as 'vas deferens:' the sperm-ducts enlarge at their tcrmination between the urinary, \(e\), and protometral, \(d\), bladders, into the latter of which they open, very near
its communication with the urethra. The protometra, \({ }^{\prime} d\), has thin walls, except at its terminal neck, where it seems thickened hy the adhesion of prostatic follicles, opening hy distinct ducts iuto the urethra. The Cowperian glands lie at the sides of the muscular tract of the urethra, and open into it. The penis is short, consistiug chiefly of a pyramidal pointed glans; it is exposed at \(b\), in its prepuce, which opens into the suhanal fossa, \(a\), into which the preputial or ano-preputial glands, \(k, l\), exude their firm sehaceous secretion. The 'erectores penis' arise from both pubis and ischium, and are inserted chietly into the outer side of the 'crura corporis cavernosi: ' the 'levator penis 'arises from the symphysis pubis, and is inserted into the glans hy a small tendon, passiug along the dorsum penis, over the convex bend, which it straightens when the penis is extended in erection. The Rahbit differs from the Hare chiefly in the larger relative size of the protometral vesicle, which also more commonly shows a hitohation of the hase: its terminal orifice, in the urethra, is transverse and crescentic 'as if hent round the swellings of the vcrumontanum.'2 Lagomys rcsembles Lepus in its male generative organs.

The vesicular glands are present, but small, in the Sciurine family. In the grey Squirrel they are slender, somewhat elongatcd hodies, bent upon the base of the prostate, through the substance of which their conmaratively long ducts pass, together with the vasa deferentia. The prostate is a relatively large elongated compact body, loosely attached to the posterior part of the neck of the hladder and muscular part of the urethra. Cowper's glands are also relatively of large size; they are situated at the sides of the rectum, of a rounded conical form with the hase hent forward upon the apcx, from which a long, thick duct, with glandular parietes, is continued into the hulh of the urethra. The diminutive size of the so-called 'vesiculx seminales' is not compensated hy a dilatation of the vasa deferentia, as might have been expected had their office heen to serve as a reservoir for the secretion of the testes, hut hy the magnitude of the other glands, viz. the prostate and Cowper's, the admitted function of which is to add some accessory fluids to the semen; and the Squirrels do not differ in the mode or duration of the act of copulation from other Rodents in which the vesicular glands are largely developed.
In the Porcupine (Hystrix cristata) the 'tunica vaginalis testis' adheres to the scrotum and ahdominal ring hy so much and so lax arcolar tissue that its inversion with return of the testis to

\footnotetext{
ccxxxv1, vol. ii. p. 167 (note). "Uterus masculinus,' cexxxynif". passim, 'Corpnsculum Weberianum,' 'Vesicula prostatica,' 'Sinus prostaticus,' cexxxix' . p. 1415.
\({ }^{2}\) ccxxxix'. p. 1419.
}
the abdomen is easy. The epididymis, after quitting tbe testis, recedes, and is connccted therewitb for the rest of its extent by a fold of serous membrane. The prostatic glands are large and ramified, one on each side the muscular part of the urethra, with which they communicate close to the verumontanum: the terminal orifices of the vesicular glands are wider. Tbe levator penis is inserted into an ossicle in the glans. The penial bone is strong in the Capybara: the vesicular glands in that Rodent are long and large, slightly branched: the prostatic glands are short, broad, and thick, consisting of numerous slender ramified cæca.

In the Agouti and Acucbi (Dasyprocta) the testes, during the rut, lie in the perincum, one on each side the retroverted bend of the penis; the cremaster is a sacciform development of the inferior fibres of the obliquus internus abdominis, wbich is inverted when the testes return to the abdomen. Adipose appendages extend from the spermatic cords. The vasa deferentia, fig. 506, \(c, c\), have usually a tortuous course behind the bladder: they terminate in the urethra distinct from the ducts of the vesicular glands, \(i\). \(h, h\) : these bodies, \(i, i\), are long and ramified; the style, \(l, m\), indicates the urethral end of the duct. The prostaticglands, e,e, are shorter, and consist of a fasciculc of slender creca, which unite and form the short duct through which the style, \(g\), \(k\), passes. The Cowperian glands, ib. 0,0 , are of a


Sinle nrgons, Agouti. exxir. compact oval form, and send their sceretion by a short duct, traversed by \(p, q\), into the bulbons part of the urethra. The bulb is compressed by its 'acceleratores:' the cavernous crura of the penis by the 'erectores:' the 'levatores penis,' which unbend the organ during erection and compress the 'venæ dorsales penis,' rise from the symphysis pubis, and send their tendon along the dorsum to be inscrted into the ossicle of the glans. This part is proviled with a pair of lateral dentate horny plates, ib. \(b, b\).

In the Guinea-pig (Cavia cobaya), the 'os penis' is a flat and slightly curved bone imbedded in the upper part, and reaching as far as the extremity of the glans above the eanal of the urethra. Behind and below the termination of the urethral eanal is a wide pouch, in the bottom of whieh are lodged two horny styles. This pouch, during erection, is everted, so that the horns protrude externally. Two tendons are eonnected with the bottom of this pouch, which run along the penis inferiorly, and come from a thin layer of muscular fibres, derived from the erectores: they invert the pouch and draw it baek again within the glans. The surface of the glans is beset with corneous scales.


Glass penis of the spotted Cayy. This singular armature of the intromittent organ is maximised in the spotted Cavy (Cologenys subfuscus), of which, fig. 507 shows the glans beset with short spines, the long terminal horny spikes, and the lateral horny plates, with marginal retroverted serrations.

In Capromys I found a large adipose appendage attached to the epididymis. The ducts of the seminal, vesieular and prostatic glands terminate by distinct orifices; the fossa receiving those of the right side being divided by the verumontanum from the left one. The protometra is reduced to a small cul-de-sae behind the neek of the bladder; it seems like a blind baekward continuation of the urethra separated by a transverse ridge from the orifice of the bladder. The vesicular glands present a white and glistening exterior; they are of an elongated form, with thin parietes, and send off, on one side principally, from fifteen to twenty obtuse cæcal processes. The prostate gland consists of four principal masses or lobes, eaeh composed of a number of flattened tubular eæea, with thin and easily lacerable parietes, compacted together by cellular tissue. The muscular part of the urethra is closely embraced by a thick stratum of muscular fibres, diverging in a double oblique or penniform manner from a middle longitudinal inferior raphe: the 'acceleratores urinæ' have the usual relations to a large bulb of the urethra: the crura penis are embraced by short but strong • erectores;' the 'levatores' muscles, or 'compressores venæ dorsalis,' terminate in a single tendon, passing along the dorsura penis, to be inserted into an elongated flattened ossicle in the glans, which, in this genus, is
unprovided with the horny armature which gives it so remarkable a character in the Cavies.
In the Beaver (Castor canadensis) I have usually found the testes, fig, 508, \(r, s\), though small in proportion to the bulk of the animal, lodged in subcutaneous depressions between the castor-bags; but with the usual wide opening of the 'tunica vaginalis,' permitting easy return of the gland into the abdomen. The tortuous disposition of the vasa deferentia would favour such periodical movements of the testes: the terminal portion of the ducts, fig. 508, \(\alpha\), is dilated, or enlarged by glandular thickening of the walls, the inner surface of which is multiplicate. The vesicular glands are (for Rodents) moderate sized convoluted bags, fig. 508, o, \(p\) : the duct, fig. \(509, d\), sometimes communieates with, sometimes terminates distinctly from, the contiguous vas deferens, ib . . The prostatic glands, ib. \(c, c\), are a cluster of shorter pyriform sacs, the long slender duets of which intercommuni-


Male orgnns, Beaver. caxi". eate beforc terminating in the urethra. The protometra, ib. \(b, b\), soon divides, after its communication with the urethra, into two long 'cornua,' which lie on the peritoneal fold behind the neek of the bladder,' mesiad of the vasa deferentia, the course of which they follow till they become too attenuated for distinction. The Cowperian glands, fig. 508, m, n, are of a compact oval form, situated between the 'crectores' and 'acceleratores' museles; and opening into the bulb of the uretbra. The maximised preputial glands, ib. e, \(f\), and ano-preputial glands, \(g, k, h, i\), have already been described.

In the Water-vole (Arvicola amphibia) the epididymis, fig. 510, \(f, g\), is connected by longer "vasa efferentia' than usual with the testes, ib. \(c, d\). The vesicular glands, ib. \(k, l\), relatively larger than in Custar, are bent upon thenselves, and subdivided along oue border : cach prostate consists of three lobes, ib. \(m-r\), or
aggregate groups of cæca. The Cowperian glands resemble those of Castor. A pair of long thin glandular bodies opening into the prepuce, on each side the glans, ib. \(a\), answer to the chicf eastor-bags, \(c, f\), fig. 607, in the Beaver: the homologucs of \(g-k\), fig. 508, are confluent and surround the termination, fig. \(510, v\),


Protometra whi prostates, Bcaver. (Part of Pl. pi, cocxxxytix" \({ }^{\prime \prime}\) )
of the rectum \(s\), and exude their opaque whitish secretion near the anus.

In the Marmots (Arctomys) the preputial orifice is more distinct than in most Rodents from that of the rectum : in the Alpine marmot the space of an inch intervenes. The prostates form a considerable mass, aggregated into two roundish lohes. The mesorchial accumulation of fat is considerable at the commencement of hibernation. The vesicular glands of the Jerboa (Dipus sagitta) resemble those of the Vole, but are less notched. In Helamys capensis, they eonsist of slightly saeculate pendulous bags, with thin walls : the prostatic follicles are numerous, short, and thick: the glans penis becomes singularly expanded, and forms a hollow dise in the centre of which opens the urethra.

In the Rat and Mouse the periodical enlargement of the testes,
fig. \(511, \mathrm{c}\), is considerable \({ }^{1}\) : the globus major of the epididymis lies in the cremasteric pouch, which is inverted when the reduced testis returns in to the abdomen. The vasa deferentia, ib. \(f\), receive at their termination the secretion of the small glands with a granulated exterior, \(e\) : the ' vesicular glands,' ib. \(a, a\), are large, lobulate, and exude a hardish cheese-like secretion. The prostatic glands, \(b, c\), are masses of slender subconvolute tubes. The Cowperian glands, of the usual compact form, lie onc on each side of the rectum and send their long ducts to the large 'foramen crecum' at the urethral bulb. The penis has its 'levator' muscle and ossicle: the prepuce is scrved by a pair of glands secreting a whitish mucus.

The spermatozoa of the \(M u\) ridce have the 'body' shaped like the bent blade of a knife, when viewed in profile, fig.


Malo otgana, Water-7ole. cxxir. \(512, A, B\); the vibratile 'tail' is very long: in the Squirrel (fig. 513) the body is lamelliform, with the surfaces subbiconcave, and the margin thickened anteriorly: the 'tail' is of moderatc length. It is relatively shorter to thebody in the Guinea-pig, fig. 514, \(d\) : in this figure a portion of a tubule of the testis is magnified 300 diameters, showing the bnsilemma \(a\), \(a\), its lining(precipitate) of nucleate corpusclesand granules, \(b\) : with the developed nuclei of detached cells, forming the spermatozoa, \(a\).
\$372. In Insecticura. - The periodical enlargement and As in birds ; see vol. ii. p. 243, and xx. Fol, ir p 79.
- descent' of the testes are better marked, perhaps, in some Insec-

512


Spermatozoa, \(A\), of the Rat: \(B_{3}\) of the Mouse: magn, cocyI, tivora than in Rodentia. In Dccemher the testes of the Mole lie on each side of the urinary bladder, with the inverted cremasteric pouch attached to the grat end of the epididymis: in March they are protruded into scrous sacs, which look like a continuation of the ahdominal cavity heneath the hase of the tail. The prostatic glands, which begin to increase in February, acquire an enormous size and conceal the urinary bladder towards the latter* end of March. The Cowperian glands lie beneath the integument above the root of the tail, and send their duct to terminate in the urethral bulb. The penis, bent backward upon itself, terminates in a very long conical glans with an ossicle, lodged in a preputial sheath, which projects freely, a short distance helow the anus. In a Cape-mole (Chrysochloris) I found the testes near the kidneys; but the convolute course of the vasa deferentia indicated their periodical movements. The accessory glands are better differentiated into "vesicular" and "prostatic than in Talpa.

In the Hedge-hog the vesicular glands, which hecome cnormous at the rut, lie mainly behind the urinary bladder; the flattened mass of prostatic glands rises in front: they are supported by folds of peritoneum. The Cowperian glands, as in the Mole, are extra-pelvic, behind the ischia, and accordingly reach

513
 maga. ccevr. the urethral hulh hy very long ducts. The penis is long and bent when at rest. There are two "levatores' which rise from the ischial tuberosities hehind the 'erectores:' passing along the sides of the penis, their tendons meet upon the 'dorsum " near the reflection of the long prepuce, crossing the 'vena dorsalis ' and inserted into the 'ossiculum glandis': the urethra opens upon a special process which projects beyond the main body of the glans. In the Shrews, temporary receptacles in the perinæum receive the enlarged testes during the rut; but do not project, as a scrotum. The epididymis
extends round two-thirds the circumference of the testis. The terminal half of the sperm-duct is dilated, like a uterine horn.

In a proboscis-shrew (Rhynchocyon) the testes, fig. 515, \(t\), have a long epididymis, e, terminating in the usual convoluted vas


A purtina of a tubuice of the tently, Guineaply, with aperto-culla лad ajurmatozua, coxc. Magnified 300 diametere.
deferens, \(d\) : large conglomerate vesicular and prostatic glands, \(p, p\), extend along the upper half of the elongate muscular part of the urethra: a pair of small Cowperian glands, \(e, e\), open into the bulbous part: this is grasped hy a strong ' accelerator,' \(b, b\). Above the ' erura corporis cavernosi ' are the 'levatores penis,' \(k, k\). The glans is nearly half the length of the penis ; its termination is suddenly attenuated, with a crenate border and a filamentary appendage: there is no ossicle in this or other shrews.

In the Bats the prepuce is relatively longer in its freely projecting part than in Moles and Shrews, and the penis is pendulous. The glans offers odd modifications in some species: a lateral pair of prominences extend its upper surface in Vespertilio scrotinus, the lower surface being carinate and produced into a hirsute point upon which the urethra opens. In Galeopithecus the glans shows two lateral longitudinal prominences which do not extend to the pointed urethral termination. There is anossiculum penis in Pteropus: these furgivorous bats have large vesicular glands.
§ 373 . In Bruta.- \(\Lambda\) long epididymis charaeterises the testicle vol. in.
in the Armadillo: the tubuli testis are rclatively large and disposed in narrow ohlique folds heneath the tunica albuginea. The testes lie above the brim of the pelvis: they appear not to pass out of the abdomen, for the vasa deferentia are short and unconvolute: these, converging behind the hladder, penetrate a compact triangular prostate (or protometra?): there are no vesicular glands. The Cowperian glands are situated bebind the urethral bulb: each has its muscular capsule. Two 'levatores' arise from the symphysis puhis and send a common tendon to the glans penis. The preputial sheath is of great extent, and the reflected membrane is coloured by a dark pigment. The penis has a disproportionate length, in relation to the mechanical obstacles to coition presented by the body-armour. The testes are constantly abdominal in the Anteaters and Sloths. Hunter notes that the ducts of the vesicular glands of the Anteater open into "the urethra by a separate sulcus from the common canal." Tbere are no vesicular or prostatic glands in the Slotb. "The penis is a short flat body inclosed in a prepuce whicb is within the verge of the anus. It is not above two-tenths of an inch in length, and terminates in an

Male orgnns, Delphints. xin.
 obtuse point. It has a groove whicb runs along its under surface, and which makes the point somewbat forked., \({ }^{2}\)
§ 374. In Cetacea.-Here the testes are abdominal, situated at the linder part of the cavity between the great depressor muscle of the tail and the transversalis abdominis: they greatly augment in size at the rut, but do not cbange in position: in their quiescent state they assume an elongate form, fig. 516, \(a\), and the epididymis, \(l\), extends unusually far in advance of the gland itself. Tbe vas deferens, \(c\), has a short tract, but is convolute. There are no vesicular glands. The prostatic part of the urethra, ib. \(k\), \(k\), is surrounded by a thick capsule of muscular fibres. Tbe protometra is reduced to a small, elongate cacum, fig. 517, \(a\),

\footnotetext{
\({ }^{1}\) cexxexin rol, ii. p. 182
\(=1 \mathrm{l}\). vol. ii. p. 180.
}
conccalcd in the prostate, and opening by the usual transverse crescentic slit, ib, \(c\), into the urethra, between and a little beyond the tcrminal orifices, \(\mathrm{ib} . b, b\), of the sperm-ducts.
The penis commences by two cavernous crura inclosed in strong ' erectores,' arising each from the looscly suspended ischial ossicle of the same side. The crura coalesce into a single cavernous body surrounded by a very thick sclerous sbeath. After the junction of the crura the penis, in Delphinide, describes a close sigmoid curvature, hefore terminating in the long, straight, gradually tapering glans. The corpus spongiosum commences by a bulbous expansion, fig. 518, l, emhraced by the 'accelerator fihres,' \(g\); but degenerates into little more than a close venous plexus as it penctrates, in the Porpoise, the corpus cavcrnosum; it then emerges and extends along the under part of the corpus cavernosum, to re-expland into the vcnous plexus surrounding the tuberous basis


Protometra of Narthal. coxverx". of the glans. The upper part, or dorsum, of the cavernous body is grooved for tbe lodgment of the plexiform vena dorsalis. In the unexcited state the penis is withdrawn and concealed in tbe long prepuce, the orifice of which is considerably in advance of the vent. The retraction is effected by a pair of musclcs, \(m\), arising from the aponeurotic commissure anterior to the sphincter ani \(e\), and rurning along the under or urethral side of the penis to be inscrtcd into the sclerous basis of the glans. The protrusion of the organ is aided by the transverse fibres of the 'panniculus carnosus' surrounding the preputial sheath. The suction of the penis of a Balcnoptera preserved by


Male urgaim, Phocena. x14, Huntcr shows a single corpus cavernosum grooved above for the U 42
vena dorsalis, and more deeply excavated helow for the corpus spongiosum urethre.'
§ 375 . In Sirenia.-These mutilate Mammals are also 'testiconda,' hut differ from the Cetaces in having vesicular glands, a penis with a 'scptum corporis cavernosi,' and provided with a pair of 'levatores,' which unite to form a tendon upon the 'dorsum.' In the Dugong (Halicore), the glans consists of two semilunar side-lobes, including the conical process, on the apex of which the urethra opens. In a half-grown male the vesicular glands were four inches long and two inches across the fundus, where their glandular parietes were thickest; the internal surface was reticulate. The vasa deferentia were irregularly convoluted: they communicated with the duct of the vesicular gland, the common opening being into the dilated heginning of the urethra, which describes a curve helow the vesical orifice: according to Louckart, it receives the opeaing of a hottle-shaped protometra, about an inch in length. \({ }^{2}\)
§ 376. In Proboscidia,-The testes retain in the Elephant the situation in which they were developed, viz. below or beyond the kidneys. Their ducts have the sane minor degree of density as in Sirenia and other 'testiconda;' they describe a tortuous course to hetween the urinary bladder and vesicular gland, where they terminate on a papillary eminence at the fundus of a true seminal hladder, of a pyriform shape, with thin walls and a smooth internal surface. These terminal reservoirs are in contact and adherent: they open into the heginsing of the urethra distinctly from the orifices of the vesicular glands. These are elongated and rather contracted toward the closed end, which is divided hy a constriction or septum from the general cavity, with which it communicates hy a small canal. The glandular parietes are thickest at the closed end, and the inner surface is broken by decussating columnar processes projecting into the cavity; their interspaces extend in many parts, like sinuses, decp into the suhstance of the vesicular walls: towards the urethra these walls become smoother. Each vesicle has a special muscular investment, for expulsion of its secretion into the urethra. The prostatic glands are two on each side, external to the vesicular ones, and of much saaller size: they are also provided with a partial muscular covering. A cxcal rudiment of the protometra extends from the base of the verumontanal cul-de-sac. The corpora cavernosa penis are divided" by a thick sclerous vertical partition, and in transverse section present a reniform figure, with
the corpus spongiosum and urethra oecupying the concavity. The veins of the eorpus eavemosum are surrounded by a soft tissue of unstriped muscular fibre. The glans penis is elongate, subeylindrie at the base, beconing rather depressed at the end, which is obtuse and rourded. Besides the ordinary museles, there are a pair of ' levateres penis,' arising from the pubis, sending their tendons into the dorsum, where they coalesce above the vena dorsalis, and run along a sheath of the thick sclerous wall to the glans.
§377. In Perissodactyla.-In the Rhinoceros the testes are inguinal, in elose contact with the abdominal rings. The tuniea vaginalis communicates freely with the peritoneal cavity. The testis is surrounded by a strong and thick 'tuniea albuginea:' the 'corpus Highmorianum' is continued in the form of a moderately thick white band, from the end where the efferent vessels pass out to form the 'eaput epididymidis,' along the whole longitudinal axis of the gland. From this hand or centre of the cellular framework of the gland, the septal layers diverge to all parts of the external tunic, forming the compartments in which the lobes of aggregated 'tubuli seminiferi are lodged. The branches of the spermatic artery, on penetrating the tunica albuginea, pass directly to the corpus Highmorianum, and their ramifications diverge thence, supported by the radiating scpta, and form a rieh network upon the inner or vascular layer of the capsulc of the testis. The vas deferens in the inguinal eanal is surrounded by the vessels and especially by the plexiform veins of the spermatic chord; on entering the abdomen it is rcceived in a peritoneal fold, and is conducted to the side and then to the back part of the mrinary bladder, passing between the bladder and the ureter: having got to the inner side of the termination of the ureter, fig. 519, \(u\), the rasa deferentia, ib. od, descend straight, slightly converging, to the middle of the back part of the prostate, \(p\) : they penetrate that gland, together


Accessory glinds. mile organs. Rhinoccros. with the duets of the vesicular glands, \(v s\), lying to the inner side of these; and, eommunicating with them, the common duct
on each side finally terminates by a minute pore upon the crucial verumontanum. The vasa deferentia are thickened to about thrice their ordinary diameter in the last three inches of their course;
 but their canal or area is not proportionally dilated; it is, on the contrary, rather contracted, by the thickness of the cellulo-glandular parietes to which the enlargement of the duct is due. The vesicular glands, ib. vs, present an clongate subcompressed pyriform shape, cight inches in length, and three inches and a balf across the broadest part of the fundus. They have a lobulated exterior, and a structure very similar to that of the same bodies in Man. The prostate, ib. \(p\), resembles that of many Rodents, being composed of an aggregate of long slender cacal tubes witb glandular walls converging to the ducts of the vesiculx and vasa deferentia, and opening by numerous minute apcrtures on the verumontanum. The breadtb of the prostate is six inches; its antero-posterior extent four incbes: it does not quite surround the beginning of the uretbra, but is closely applied to the back and sides of that canal. The muscular part of the uretbra extends about three incbes from the prostate before it joins the bulbous and cavernous portions, close to wbich are situated two large subcompressed oval Cowperian glands, ib.

521
 khinoceros. \(c, c\). Each of tbese measures three inches and a half by two inches and a half. The great plexus of veins above the dorsum penis, near its root, is enveloped in a mass of elastic tissue, like the 'dartos' of the human scrotum.

The fleshy part of the 'levatores penis,' fig. \(520, l, l\), measures fourteen inches in length, five inches across tbeir basal origin, and between one and two inches in thickness. Their oblique origin is extended over the space of one foot from tbe ento-pelvic part of the pabis down to the ischium. The tendinous part of the muscle commences where the pubic portion joins the ischial one at the inner and under border of the flesby part:
it is laalf an incli thick at its commencement, but expands as it extends along the muscle, the fleshy fasciculi of which are inserted into the tendon in an obliquely converging, or semipeuniform manner. Is the tendon angments in breadth, it diminishes in thickness, converging towards its fellow, which it neets and joins two inches beforc the anterior termination of the fleshy portion. The two united flattened tendons beyond are grarlually couverted into a round chord of ligamentous substance an inch in diameter. This chord, ib. \(l, l^{\prime \prime}\), glides through a strong slightly elastic aponeurotic sheath, along the median groove of the dorsum penis; it is connected with the inner surface of the sheath by a highly elastic cellular tissue; the chord maintains its ropelike character along the basal third of the glans, then subsides, cxpanding laterally, and is finally lost upon the firm capsule of the glans. There is no 'os penis.' A pair of 'retractores penis,' fig. \(520, t, t\), are inserted into the under part of the base of the glans. The nerves of the dorsum penis, the arteries, and trunks of two large plexuses of veins, pass beneath the bridge. formed hy the confluence of the tendinous and muscular parts of the 'levatores penis' and between the two suspensory ligaments of the penis. Thesc ligaments are an inch in brcadth, and onethird of an inch in thickness at their origin from the ischio-pubic arch a little in advance of the ligamentous attachments of the crura corporis cavernosi. The total length of the undistended penis is three feet nine inches; the circumference of the prcpuce is one foot five inchos. The preputial orifice is two feet ten inches from the vent. The substance of the large reflected preputial fold of soft intcgument, fig. \(520, p, r\), is from half an inch to two-thirds of an inch in thickness, and consists of a moderately compact cellular corium, with a delicatc cpiderm, minutely rugose, in the transverse dircction, and perforate or punctate with the pores of the mucous follicles which are very regularly dispersed at intcrvals of about a quarter of an iuch. The glans penis, ib. \(g l\), is a long and slender subcompressed cone with a truncate apex; in its flaccid undistended state, it is one foot in length: the prepuce is reflected upon its base at the same transverse or circular linc, and there is no freenum. The apex, ib. \(a\), is not simple, but resembles a mushroom on a thick peduncle, fig. \(521, l\), projecting from an cxcavation at the end of the glans with a thin wall or border, ib. e, e, like a second prcpuce; but this is of the same structure as the rest of the firm surface of the glans. On each side of the base of the glans, and rather towards its under part, there
is a longitudinal thick oblong ridge or lobe, fig. \(520, r\), three inches and a half in length, and eight lines in basal thickness: the thick rounded free border of each lohe inclines downwards. A narrow ridge commences in the inedian space of the • dorsum glandis,' which increases in height as it advances forwards, and then subsides two inches from the border of the terminal or apical fossi. The projecting border of this fossa describes a compressed oval, and is attached to the pedunculated appendage, fig. 521, a, by a process, like a frænum, continued upon the middle line of both the upper and under surfaces, \(\mathrm{ib} . f\), of the thick peduncle: the fossa between this peduncle and the free external border is two inches in depth. The stem, \(l\), of the terminal expanded discoid appendage is subcompressed witb an oval section: the disc is ovate, one inch eight lines long by one inch across its broader inferior part, where it extends fartbest from the supporting stem. The urethra, \(u\), terminates in tbe middle line of the disc between its middle and upper third.

In the Sumatran Tapir tbe base of the glans bas an upper lobe as well as one on each side, beyond which it is continued forward contracting, but terminates in a truncate surface on the middle of which the urethra opens. In the American Tapir the orifice is nearer the lower margin of the disc. The testes are inguinal, in a slightly indurated sessile scrotum, about 6 inches bclow the vent. Tbe accessory glands resemble tbose of the Rhinoceros.

The testes were abdominal, below or beyond the kidneys, in the Hyrax ( \(H\). capensis) dissected by me: the vasa deferentia are convoluted, like a second epididymis, hehind the urinary bladder: they terminate near to, but distinct from, the ducts of the vesicular glands, at tbe lower end of the unusually elongated muscular tract of the uretbra: the vesicular glands extend on each side of this canal, their closcd ends just reaching the bladder. Two prostates, of a tubular structure, are near the duct-ends of the vesiculx. Two small fattened Cowperian glands communicate hy long ducts with the wide cavity of the bulb of the urethra. The penis is bent abruptly backward, and the glans has a truncate termination. Besides the 'erectores' and 'acceleratores,' tbere is a pair of 'levatores,' arising from the symphysis pubis, and terminating by a single tendon, as in the Rhinoceros.

In the Horse the scrotum, fig. 522, \(a\), is suspended between the thighs at a distance of about nine inches beneath the allus, whence
it is prolonged forward, to terminate in the prepuce, ib. \(f, e\). The testis, ib. \(g\), is of a subcompressed ovoid form, the epididymis, \(h, l\), rather closely attached to the testis and not longer than the gland. The vas deferens, \(m\), enlarges at its terminal part, ib. o, o, and fig. 523, \(a, a\), by the development of its inner tunic into numerous close-set transverse glandular lamellæ. The vesicular glands, fig. 522, \(x, x\), fig. 523, \(b, b\), are simple bladders with thin walls. In the transverse fold of peritoneum connecting together the enlarged parts of the sperm-ducts is situated the protometra, fig. 523, \(c\), in form of a slender clongatc tube, bifureate, in the Zebra and Ass, at its blind end. \({ }^{1}\) The prostates are parenchymatous, and open into the upper or vesical end of the muscular tract of the urethra :


Mnle organas. Holse at the lower end of this part are the Cowperian glands, fig. \(522, y, y\), which open into the bulb of the urethra.

The corpus cavernosum penis is formed by confluence of that of the two crura, into one body, without vertical septum, ' the parts composing its cells appear muscular to the eye, and in a Horse just killed they contract on being stimulated.'2 The fibrous tissue here noticed lies between the vascular and sclerous parts of the cells. The glans has two latcral semilunar lobes, and at its apex a central pyramidal process on which the urethra opens. The - crura penis " are surrounded by thick 'erectores,' having an extensive origin, fig. 524, \(d\) : two strong suspensory ligaments, ib . \(a\), pats, from the symphysis pubis to the dorsum. Besides the ordinary muscles, there is a pair of small 'levatores,' ib. \(b, c\), serving mainly as compressors of the vena dorsalis penis, ib. \(e\) : there is

\footnotetext{
1 xx. vol. ir. p. 93.
* xciv. p. 30.
}
also a pair' of 'retractores' arising from the os coccygis, fig. 522, \(p, q\), passing on each side the sphincter ani, \(r\), then converging to run together along the urethral side of the penis, \(s\), to the base of the prepuce. In the castrate horse these usually dcgenerate into elastic sclerous tissue.
§378. In Artiodactyla.-The male organs of the Suidce are chiefly remarkable for the enormons development of the Cow-


Protometra, \&c. of the Ass. coxxxiv".
perian glands. The testes are perinæal: the scrotum slightly projects; it is not pendulous. The vesicular glands are large, lobulated, with parenchymatous walls, their ducts terminate distinctly from those of the testes. The prostates are small, near the cervix of the vesicula. The muscular part of the urethra is of great length and the Cowperian glands are co-extended therewith: each presents an elongate subtrihedral form, invested by a muscular capsule; the glandular parietes are very thick:
the terminal duct opens beyond a transverse valvular fold separating the bulbous from the muscular part of the urethral canal. The penis sbows a sigmoid flexure, and has a pair of 'retractores,' arising from the hollow of the caudal end of the sacrum, and inserted at the end of the bend next the glans. This is triquetral, elongate and pointed. The spongy part of the urethra, between glans and bulb, is reduced to a few vcins. The preputial opening is near the navel.

The Ruminant Artiodactyles are devoid of vesicular glands; tbeir testes pass into a pedunculate scrotum. The spermatic arteries form,


Suapensory liganents and muscles of peala, Horse. hy tbeir close and numerous convolutions, a plexiform mass, which is specially notable in the Bull. The vasa deferentia slightly enlarge at their tcrmination in the Camel, but are not tbere different in structure from the rest of the sperm-ducts: they terminate upon a broad wrinkled verumontanum. The prostate is a transversely oblong compact body with a smooth exterior, the secretion passes by several orifices into the depressions at the sides of the verumontanum. Cowper's glands are of moderate size, subcircular, compact in structure, with a thick muscular .capsule. The corpus spongiosuin commences by a plexus of veins affecting a parallel course around the membranous part of the uretbra, but convolute in diverse directions to form the bulbous expansion; advancing from which the veins become reduced to two or threc in number, running parallel with eacb other and the urethra. The cavernous part of the penis forms a slender cylinder, it extends forward beneath the linea alba, closely connected therewith, making a ridge along that part of the abdominal surface; then becoming free and receiving a reflected covering of skin, or 'prepuce,' anterior to which usually depends a tuft of hair. The glans, in the C:unel, is long, pointed, with its apex continued beyond the urethral opening and bent back.

In the Goat, fig. 525, the dilated terminal parts of the spermduets, \(a, a\), have a glandular thickening of the inner tunic. The
prostates, \(b, b\), have each a small central cavity; whence the duct is continued to terminate near the sperm-duct, in an oblong depression by the side of the verumontanum : on a small fold of

this part is the orifice of the protometra whicb is continued, at \(c\), between the dilated sperm-ducts, closely attacbed thereto by areolar tissue; then di-


Prostates and protometrn, weer.
cexxy \(1 x^{\prime \prime}\). viding into two borns diverging and closely apposed to the sperm-ducts, \(a, a\), as far as the epididymis, in which they are lost. The Cowperian glands, two on eacb side, open upon the margin of a fold at the bulb of the urethra. Tbe prostatic glands in the Deer, fig. \(526, b, b\), are more slender in proportion to their length than in the Goat. The protometra, \(c\), is reduced to a hardly distinguishable trace; and its cavity, which exists in the embryo, is obliterated at birth.

In the Bull the narrow elongate prostates are irregularly contorted. The erectores' and 'acceleratores' are powerful muscles. The slender 'retractores' arise from the anterior commissure of the sphincter ani. There are preputial follicles in most Ruminants, especially the Antelopes; but only in the Muskdcer do they attain the size and structure described in the preceding chapter. In no boofed Mammal is there an 'os penis.' § 379. In Carnivmra.-The outward indications of the male sex
are hardly distinguishable in the Seal tribe. Here, tbe testes, when extra-abdominal, nake no scrotal projection : they are imbedded in areolar tissue, between the pubis and the thigbs: the tunica vaginalis communicates freely with the abdomen : tbe sperm-ducts take the usual course. There are no vesicular glands; there is but a small subbilobed prostate. The penis makes no outward projection: the preputial opening, about six inches in advance of the vent, is inconspicuous. The glans penis is pointed, supported by a bone about half an inch long, in Phaca vitulina, into wbicb are inserted a pair of 'retractores,' arising from the anterior commissure of the anal sphincter. The remnant of the protometra in Ph. vitudina, is but two lines in length; tbe orifice behind the verumontanum is rarcly patent. The os penis of the Walrus is a massive subcylindrical bone, sometimes two feet in lengtb, expauded at one end, where tbe cancellous structure prevails. \({ }^{1}\)

The test.s lie under the skin of the groin in otters, under that of the perinæum in civets. The scrotum, wherc best developed in Curuivora, is hairy and less pendulous than in Ruminants. As in these, the vesicular glands are absent \({ }^{2}\); the prostatic glands are small and compact. The penis, save in Canids, Viverrida, and Hycua, has a bone.

In the Bear the sperm-ducts are enlarged and in close contact at their terminations, with thick follicular walls: beyond this glandular part they retain their width, but coutract to open upon the verumontanum. \({ }^{3}\) A thin layer of prostatic substance surrounds the beginning of the urcthra. The os penis in Ursus arctos may be 6 inches in length. \({ }^{4}\) In the Subursine genus Meles a remnant of the protometra, fig. 527, a, rises between the glandular ends of the sperm-ducts, \(b, b\) : its cornua are reduced


Protometrat, th, nat, size, Badger. ConMxix". to mere flaments, \(c\) : the prostate is better developed tban in Ursines, especially in the Racoon, in wbich it is in advance of the nock of the bladder. In the Kinkajou the os penis is sub-bifurcate at the distal end, which is covered, as in most Nubursines and Mustelines, by the membranes of large dila-

\footnotetext{
\({ }^{1}\) szlv. p. 638, No. 3910.
2. Les vixicules rumianles existent dans les coatis,' xir, tom. viil. p. 160. Hunter, however, "xprovsly affirms of his 'Swash,' which I determined by the skull (No. 4669 , xav.) to be a young Coatimondi, that 'it las no rosicula seminales.' ccxxxys, vol. ip. p. 00. The same result has leen had from subsequentedissections at the Zoological Gardens. ccuxxan",
\({ }^{2}\) ccx.xyvi. yol. ii. p. 92, note 3.
A fussid specimen of this bone, in Ursue epoletus, measured nime inches.
}
table sinuses, and projects heyond the proper erectile tissuc of the glans. Besides the usual muscles of the penis there is, in Plantigrades, a pair arising from the sacrum diverging to include the sphineter ani, and then continucd on to the dorsum penis as far as the hone. In the Otter the sperm-ducts have glandular terminations. 'Between the two there is a small hody or canal which enters the urethra at the caput gallinaginis, hut not with the vasa deferentia:' \({ }^{1}\) in this remnant of the protometra the cornua are filamentary, as in Meles. In Mustela martes, also, Hunter ohserves:- "There is a small cavity between the two vasa deferentia, at their entrance into the urcthra, which will admit the small end of a surall blow-pipe; hut I could not find any natural opening into the urethra.' \({ }^{2}\)

In the Dog-trihe the scrotum is more prominent than in Mustelines or Plantigrades. The prostates form a protuherant body, and exude the secretion by several pores at the sides of the verumontanum. The spongy tissue of the urethra expands suddenly and considcrahly at the base of the glaus, which has an ossicle: the blood is thence returned by two 'veur dorsales penis': these are com. pressed hy the action of 'levatores,' arising from the first caudal vertehra, passing one on each side of the anal sphincter, then con--verging to gain the dorsum penis, crossing the veins, and terminating at the hase of the hulbous part of the glans. As long as the 'levatores' retain the stimulus to contract, after coition, the distended glans forms a mechanical impediment to retraction of the penis from the vagina. \({ }^{3}\) The ossicle is grooved for the urethra.

The prostates are moderately large and lohulate in the Ichneumons, in which Cowperian glands also exist. In the Suricate (Rhyzena tetradactyla) the scrotum is as little marked as in Mustelines: there are neither vesicular nor prostatic glands; hut there is a pair of very large Cowperian glands, with the usual muscular capsule, and with unusually long ducts, through which the secretion is propelled to a dilatation near the distal eud of the urethra: behind their orifices a semilunar fold opposes the rctrograde passage of the secretion into the long tract of urethra intervening hetween it and the neck of the hladder. In the Zibet (Viverra Zibetha) there is a small prostate: heyond

\footnotetext{
coxexyı, rol. ii. p. 74. See also ccxli". p. 49.
\({ }^{2}\) Ib. ib. p. 67.
' I laid bare the penis of a dog, almost through its whole length; traced the two veins that came from the glans and separated them from the arteries by dissection, that I might be able to compress them without affecting the arteries. I then compressed the two reins, and found the glans and large bulb became full and extended.' xciv. p. 32.
}
which the muscular tract of the urethra extends far hefore its combination with the erectile parts of the peuis: here, hebind the bulh, is a pair of large Cowperian glands. The penis is eontinucd from the junction of the crura, forward, in front of the puhis to a small prepuce at the fore part of the enlargement caused hy the scent-glands. The glans penis is pointed and bent downward: it has no bone. This is wanting also in the Musangs, in which the prostate is large, hut surpassed by Cowpor's glands: the preputial scent-follicles open upon a traet distinct from the anal glands. In the Hyana the prostates fig. \(528, c, c\), are large and reniform, partially eonfluent hehind: therc is a minute flaslı-shaped protometra, ih. \(a\), in the usual position between the ends of the sperm-ducts, \(b, b\) : these are less dilated and gramindar than in most
 perian glands, \(d\), \(d\), are

and. blize. caxxali". elongatc and pyriform: their ducts open far forward, nearer the glans penis than the vesical orifice. There is no ossicle: 'the penis is easily pulled out of the prepuce, and the prepuce then secins to be continued all along the penis to the end, and much of the same colour. This is not the same as in a dog, \({ }^{\prime}\) in which the covering of the glans is more distinct in texturc and attachment.

In the (ait the glans penis is heset with callous retroverted papila: they are less numerous and conspicuous in the Tiger and Lion. In all Felines there is a small prostate, limited to the back part of the neck of the hladder: the muscular part of the urethra is long. Cowper's glands are large, and derive their muscular covering from a modification of the 'acceleratores,' of which an external may be distinguished from an internal portion. The 'erectores' arise each hy a hroad tendon from the puhis: anterior to this the 'compressores vena dorsalis' take their origin,

\footnotetext{
- coxxxiv. vol. if. I'. 58.
}
and converge to unite, at the symphysis pubis, in a strong common tendon, which passes over the 'vena dorsalis penis.' 'Two slender fasciculi derived from the 'retractor ani' pass along the bulb aud under side of the urethra to the line of reflection of the prepuce, where they are lost in the skin of the glans: they bend back that part, in the unerect state, and cause the felines to be 'retromingent.'
§ 380. In Quadrumana.-The testcs of tbe Aye-aye (Chiromys) occupy a scssile scrotum: the tunica vaginalis communicates with the peritoneal cavity, but by too contracted a canal to permit any return there of the testes, offering a notable difference from Rodents. There are no vesicular glands; but a moderate sized compact prostate, and a pair of flattened oval Cowperian glands, the ducts of which penetrate the urethral bulb. Besides the ' erectores ' and ' acceleratores,' there is a pair of strong 'levatores penis' arising from a fascia below the symphysis pubis, crossing the vena dorsalis, and inserted by a common tendon into an - ossiculum penis.' The penis, of a subconical form, projects about an inch, in tbe unerect state, it is covered by the thin naked skin of the prepuce, which has a transverse orifice.

In the Slow Lemurs (Stenops Tarsius, Otolicnus, Perodicticus) there are vesicular glands in the form of oval subcompressed bags, with a plicate or honeycombed inner surface: tbeir ducts terminate distinctly from those of the testes. The prostate has a bifid base and compact structure. Tbe Cowperian glands are relatively large. The short penis has an ossicle, and projects, or hangs conspicuously as in Chiromys: the ossicle ends in a terminal process of the glans. \({ }^{1}\) In the Makis (Lemur) the vesicular glands consist each of an elongate cecal tube, bent inward and downward at their free end, witb thin walls and a minutcly rugous inner surface: in other respects the male organs resemble those of Chiromys. Each 'levator penis' arises from the upper part of the crus: they converge above the two - venx dorsales? to a common tendon which runs along the dorsum penis to the ossicle. The glans is large and expands to a free truncate end with the urethra opening near the centre of the disc; the sides of the glans are beset with small callous papille.

The scrotum is more pendent in Platyrhine and higher Quadrumana: the vesicular glands have thicker parietes and a more lobulatcd or ramified form: the prostate is more compact: the Cowperian glands become reduced in size. The penis is prominent or pendulous in all. The glans terminates by a large expansion in Ateles. In Cebus capucinus Cuvier found no
median septum dividing the corpus cavernosum: it is present in all Catarhines, but degenerates into a 'pectiniform' partition anteriorly. In Macacus Cynomolgus the vesicular gland, fig. 529, \(e\), is large and lobulate, its duct is long and unites with that of the testis, \(c\), some way before the latter terminates in the urethra. The prostate, \(d\), is large and compact. The remnant of the protometra, \(b\), rescmbles the 'sinus prostaticus' or third lobe of the prostate in Man. Cowper's glands are applied to the back part of the urethral bulb. The ac-


Accessory glands and protometra, Macacu: Cynomolgu. corxxix' celeratores muscles surrounding the bulb do not advance between the erectores penis: these arise from the sclerous covering of the crura corporis cavernosi, not from the ischia. Two small 'levatores penis,' after the usual disposition for compressing the 'vena dorsalis,' terminate in a tendon inserted into a small 'os penis.' In the Mandril (Papio) the vesicular glands are so large as to appear, invested with peritoncum, in the pelvis: they consist of numerous cæca which terminate the subdivisions of branches given off by one main central tube or duct. The prostate, also, is partially subdivided into lobules. The testes, larger than in Man, sligbtly project, one on each side the base of the penis. In Apes as well as Monkeys, the 'frenum preputii' is absent, and an ossiculum penis present. Crisp found it one-third of an inch long, but gristly at both ends, in the Chimpanzee. \({ }^{1}\)
§ 381. In Bimana.-Here the testes pass, two or thrce months before birth, into a pendulous scrotum; the serous canal of communication becomes obliterated, and the tunica vaginalis is an independent short scrous sac. All the accessory glands are well developed and differentiated, but of moderate proportions. The penis is pendulous and without a bone: Sverrumtoron of Man, magn. the prepuce has a 'frenum.' The spermatozoa, fig. 530, have an ovoid or almond-shaped body, subcompressed, vicwed sideways, with a filamentary vibratile appendage, averag\({ }^{1}\) cclexiv', p. 48.
ing from \(\frac{1}{500}\) to \(\frac{1}{600}\) of an inch in length. They are conveyed, with the fluid in which they move, by the spermducts to the beginning of the urethra. The ducts are slightly enlarged, chiefly through thickening of their walls, near their termination, fig. 531, \(f\), as they pass along the inner sidcs of the vosicular glands, \(v\); they again contract to communicate, each with the duct of the gland of its own side, at \(d\). The vesicular gland is a fusiform multilocular bag about two inches in length and three quarters of an inch in greatest breadth. The lower attenuated end penetrates the prostate between the lateral, \(p\), and medial, \(c\), lobes, and after joining the vas deferens, the conmon duct terminates at the side of the urethral depression called ' sinus pocularis', fig. 532, g, g. Each - vesicula' is invested by a fascia, on removal of which, with some maceration and dissection, it is shown to consist of a main tube with, commonly, three or four cercal diverticular appendages. This tube bas a much smaller calibre for a short distance from its junction with tbe vas deferens than elsewhere. The narrow portion is straight, and is commonly called the duct. The vesicular glands are found to contain a glairy mucus, deepening to a brownish colour soon after death, and containing stray spermatozoa. The prostate, figs. 531, 533, p, is a more compact glandular body surrounding the neck of the bladder and beginning of the urethra, deriving its name from its position in front of the vesicular glands. It is surrounded by a dense fascia, wbich adheres firmly to the glandular substance. This is of a lightish brown colour, and very firm texture. It forms two lateral lobes, of an ovoid shape, between which is a small middle lobe. It is composed of minute canals with blind follicular beginnings, which unite together to form ducts, opening in an oblique manner on the prostatic portion of the urethra. Their orifices are situated around the most elevated portion of the verumontanum, in the form of a crescent, fig. 532, e. The depression, or 'sinus,' in front of this valvular
fold receives the combined vesicular and seminal ducts, \(g\), \(g\). A small style passed into it, as at \(f\), penetrates a pyriform sac in the middle lobe of the prostate, which is the remnant of the protometra: it is exposed by removal of the glandular covering, at \(e\), fig. 533. Cowper's glands are rounded bodies, about the size of an ordinary pea; of a solid texture, a palish red colour, and conglomerate. The lobules arc connected together by areolar tissue, and are surrounded by a fibrous capsule: they are composed of elongate follicles, from the fifticth to the twenty-fifth of a line in length, and about the thirty-sixth of a line


Verumontanum, Man. in breadth. Their slender ducts, of about the eighteenth or sixteenth of a line in diameter, usually coalesce into a single excretory duct. The ducts of each gland run parallel for the distance of half an inch beneath the mucous membrane of the bulh, and approaching each other, they pierce the urethra hy two exceedingly minute orifices.

The penis consists of the crcctile tissues called ' corpora cavernosa ' and 'corpus spongiosum,' the latter inclosing the urethra and expanding at its hind end into the 'hulb' and at its fore and into the glans.' The ' corpus cavernosum' forms in Man more than two-thirds of the bulk of the penis: it is a lengthened subdepressed cylinder, with a median groove both above and helow; the upper groove lodging the dorsal vein, arteries, and nerves, and the under one the corpus spongiosum. Anteriorly the corpus cavernosum tcrminates in an oblong and rounded extremity, which is received into a depression on the posterior surface of the glans; posteriorly it is attached to the ischiopubic rami by its two crura; and above it
is connected to the symphysis puhis hy means of a strong triangular fascia, the 'ligamentum suspensorium penis.'

The 'corpus cavernosum' is composed of a cellular structure enclosed in a strong sclerous tunic, from the inner surface of which are given off numerous hands, ' trabeculæ,' which converge towards the middle line of the inferior wall; they are most abundant in the middle line of the organ, wherc they form a septum between the two lateral halves of the corpus cavernosum: but this becomes incomplete or 'pectinate' anteriorly. The so-called eellular structure of the corpus cavernosum consists of a plexus of dilated and freely intercommunicating veins, the interspaccs of which are occupied hy contractile tissue: the fibres heing unstriped and with a general arrangement transversely to the axis of the penis.

Besides the 'erectores penis' and ' acceleratores urine,' there is a remnant of the 'levatores penis' reduced to the function of - compressores venæ dorsalis;' and occasionally a small fan-shaped muscle, 'ischio-hulbosus,' may he defined in the interspace between the hulb and crura penis, having a slender attachment to each ischium, and expanding upon the hulh. The prepuce is connected to the glans on its under part by means of a narrow fold, with some sclerous tissue, termed the 'frænum præputii.' At the hase of the prepuce, where it is reflected over the glans, open the small lenticular representatives, called -glandulæ odorifere,' of the preputial follicles of lower Mammals.

\section*{B. FEMALE ORGANS OF MAMMALS.}

The ovaries retain, as in lower Vertehrates, their ahdominal po-


Section of Human Ovartum ; pat size* cexlyi". sition; hut are relatively small in Mammalia, and consist of a dense areolar 'stroma,' which, with the ovisacs therein developed, is inclosed in a firm sclerous ' tunica albuginea,' fig. 534, a. The ahdominal aperture of the oviduct is wide, and, as a rule, •fimhriate;" but the canal quickly contracts, usually to a diameter like that of the spermduct, and, after a certain course, suddenly expands, or opens, into a 'uterus.' This may remain distinct from its fellow; but a prevalent mammalian characteristic is a blending of the uteri, to terminate hy one valvular orifice in a "vagina;' the confluence extending, hy degrees, in different species, until a single uterus results. The vagina, as a rule, is single, and usually
terininates hy a 'vulva ' distinct from the vent. The 'elitoris' is single. The variations in the efferent and subordinate parts of the female organs are greater and more numerous in Mammals than in other Vertebrates, and witb female sexual organs are associated functional mammary glands: marsupial pouches are superadded in most Lyencephala.
§ 382. In Monotremata.--The female organs here consist of two ovaria, the rigbt much smaller than the left, two oviducts, two uteri, an urogenital passage, and a elitoris.

The ovaria correspond in situation and surrounding attacbments with the testes in the male; and the oviducts and uteri exhibit in their elosely convoluted disposition an analogy with the spermducts.

The left ovary, fig. \(535, f\), is an irregular, semi-elliptical, flattened body, witb a wrinkled and granulate surface in the unexcited state; but becomes thicker, with the surface studded by elevations formed by the ovisacs in different stages of development, at the season of sexual excitement. At this period usually two ovisacs, as in the figure, are conspieuously larger than the rest, and present eaeh a diameter of about two lines. The right ovary, \(f^{\prime \prime}\), is a narrow, thin, generally elongated body ; sometimes broader, witb a finely granulated surface. It is often scarcely to be distinguished from the ovarian ligament to which it is attached. This ligament, \(i, i\), arises from the posterior parietes of the abdomen, behind and a little on the outer side of the kidney, and passes along the edge of the broad ligament to the fallopian extremity of the oviduet, where it divides into two; one portion is attached to the side of the ovary, the other to the posterior margin of the fallopinn orifice: after a course of an inch they again unite, and the ligament is continued along the anterior part of the uterus to its cervix, where it is insensibly lost. The two separated portions of the ligament support a large pouch of peritoncum, which forms the ovarian capsule; the wide anterior orifice of the oviduct is also, by means of this ligament, prevented from being drawn away from the ovary.

The efferent canal of the ovarian products is divisible into an oviduct or fallopian tube, \(d^{\prime}\), and an uterus, \(d\). The size of the latter is nearly cqual on both sides, but the right oviduct is mucb shorter than tbe left, and eorresponds with the abortive condition of the ovary. The external serous coat of the oviduct is loosely connected to the inuscular coat by filamentary processes of areolar tissue, among which numerous tortuous vessels ramify. The museular coat is thin and compact, and is most readily demonstrable


Femafe organg of generation, atural stze, Ornlthorhynchns. bxxry,
in the uterus. Tbe mucous coat is thin and smootb in the oviduct; it is thick, soft, plicated, but not villous, in the uterus.

The left uterus in a female with a large ovary, shot in the month of September. was two inches long, from four to five lines in diameter, and about a line thick in its parietes; it became suddenly contracted and thinner in its coats to form the oviduct, which presented a diameter of about two lines, slightly enlarging to within an inch of the extremity, which forms a wide membranous pouch, \(l^{\prime \prime}\) opicning into the capsule of the ovary by an oblong orifice or slit, \(e\), of eight lines in extent. The edges of this orifice were entire as in tbe oviducts of Reptiles, not indented as in the fimbriated extremity of the Fallopian tube in higher Mammals. The entire length of the oviduct. and uterine tube, when detached from their connections with the mesometry, was nine inches. The right uterus and oviduct of the same specimen exhibited similar differences in diameter and structure, but was shortcr, measuring only six inches in length.

The thickened parietes of the uterine tube depends chiefly on an increase of the inner membrane, which, at the cervix uteri, presents deep and close-set furrows: these, as the canal widens, are gradually lost, and the surface becomes more or less smooth. In the oviduct, the inner surface is smooth on leaving the uterus, then becomes finely reticulate, and in the terminal dilated part becomes again smooth. The cervix uteri makes a valvular projection analogous to an os tinca on each side of the commencemont of the urogenital canal, just beyond the orifice of the urinary bladder. There are two orifices on each of these prominences: the lower one is the termination of the ureter-a bristle is represented as passing through it in fig. 535 ; the upper or anterior orifice is the os uteri, m. In young or virgin Ornithorhynchi this orifice forms scarcely any projection into the urogenital canal, and it is divided by a narrow septum. The urogenital canal, \(c\), is one inch and a half long, and threc or four lines in diameter, but capable of being dilated to as great an extent probably as the pelvis will admit of ; the diameter of the bony passage being seven-tenths of an inch. It is invested with a muscular coat, the external fibres of which are longitudinal; the internal, circular. The inner membrane of this part is disposed in longitudinal ruge more or less marked, but presents as little the character of a secreting membrane as that of the vestibule, being smooth and shining; the orifices of a few minute follicles are situated in the interstices of the rugæ near the orifice of the urinary bladder.

The common vestihule, \(b\), is ahout one inch four lines in length, and varies from half an inch to an inch in diameter: it is lined hy a dark-coloured epithelium. The rectum opens freely into it posteriorly, as indicated hy the prohe \(b^{\prime}\). On the sternal aspect of the vestihule there are a series of longitudinal fihres, which extend from its external orifice to that of the urogenital cavity, the office of which is to approximate these orifices; and in this action certain ohlique fihres assist, while at the same time they close the rectum.

On the sternal aspect of the urogenital canal, and close to where it joins the vestihule, the clitoris is situated, which is consequently about an inch and a half distant from the external orifice of the vestihule. It is inclosed in a sheath upwards of an inch in length, and ahout two lines in diameter, of a white fibrous texture, and with a smooth internal surface, and this sheath communicates with the vestibule about a line from the external aperture. The clitoris itself is a little flattencd hody shaped like a heart on playing cards; it is ahout three lines long, and two lines in diameter at its dilated extremity, where the mesial notch indicates its correspondence of form with the hifurcated penis of the male.

At the hase of the clitoris are two small round flattened glands, the homotypes of Cowper's glands in the male, which open into the sheath or preputium clitoridis.
§383. In Marsupialia.-In this order the female organs consist of two ovaries, two oviducts or fallopian tuhes, two uteri, two vaginæ, an urogenital canal, and a clitoris.

The ovaries are small and simple in the uniparous Kangaroos, fig. \(538, a, a^{\prime}\); tuherculate and relatively larger in the multiparous Opossums, presenting the largest size and most complicated form in the Womhat, fig. 536. In Macropus they are lodged within the expanded orifice of the oviduct, or 'pavilion,' near the upper or antcrior extremities of its two principal lohes. These are of considerahle extent, and their internal surface, which is highly vascular, is beset with rugæ and papillæ. In the Dasyures and Petaurists the ovaries are elliptical, subcompressed, and smooth. In the Virginian Opossum the ovary consists of a lax stroma remarkahle for the numher of ovisacs imhedded in it, the largest of which are the most superficial, and give rise to the tuhercular projections on the surface. In the Womhat, fig. 5.36, each ovary, hesides heing lodged in the pavilion, as in the Kangaroo, is inclosed with the pavilion in a peritoneal capsule: it is hotryoidal in form, resemhling the
ovarium of the bird. Numerous ovisacs in different stages of growth project from the surface, the largest presenting a diameter of eight lines, fig. 536, \(a\); but the structure of these ovisacs, the character of the stroma in which they are imbedded, and the dense albugineous tunic by which they are inclosed, bespeak their strictly mammalian type. The oviducts contract, beyond the pavilion, \(b\), to a greater degree than in Monotremes, and both by their slenderness and the thickness of their coats more nearly rcsemble the spermductss, they bave, also, usually a more or less tortuous course, as shown in the Opossum, fig. 537, and Kangaroo, fig. 538, b, b. Their expansion into 'uteri' is more gradual than in higher Manmals. The uteri are fusiform, relatively longer in multiparous, fig. 537, than in uniparous, fig. 538, species. The muscular coat is of moderate thickness, exceeded by


Ovariunt andaviltom, Wumbat. Natural slege. the innermost, owing to the abundance of lax areolar and vascular tissue which supports the smooth delicate lining membrane, which is usually thrown iuto many folds. Each uterus communicates with its own vagina by a valvular prominence, or 'os tincer.' The vagina are of remarkable length in Marsupialia, and folded or otherwise developed, so as to adapt these passages to detain the foctus after it hitw been expelled from the uterus for a longer period than in other Mammalia.

These complications vary considerably in the different marsupial gencra. On a comparison of the female orgaus in Didelphys dorsigera, Petaurus pygmaeus, Petaurus taguanoides, Dasyurus viverrinus, Dillelphys Viryiniana, Macropus mojor, and Hypsiprymnus murinus, I find that the relative capacity which the uteri bear to the vagine diminishes in tbe order in which the
abovenamed species follow, while the size of the external pouch increases in the same ratio.

In Didelphys dorsigera the uteri, fig. 537, c, c, rather exceed the unfolded vagine in length. Each vaginal tube, \(e, e^{\prime}\), after embracing the os tincæ, \(d\), is immediately continued upward and outward, then bends downward and inward, and, after a second


Female organe, Didelphy dorsigers. Lxxv \({ }^{t}\).
bend upward, dcscends by the side of the opposite tube to terminate parallel with the urethra, \(h\), in the common or urogenital passage, \(f .{ }^{1}\) In Petaurus the vaginæ, when unfolded̃, are a little longer than the uteri: they descend close together half-way toward the urogenital passage, and there terminate blindly without intercommunication. From the upper part of these culs-de-sac the vaginæ are continued upward and outward, forming a curve, like the handles of a vase, then descend, converge, and terminate close together, as in the preceding example. \({ }^{2}\) In Dasyurus viverrinus and Didelphys Virginiana the mesial culs-de-sac of the vaginæ descend to the urogenital passage, and are connected to it, but do not communicate with it or with one another: each canal is, then, coutinued outward from the upper end of the cul-de-sac, and, forming the usual curve terminates parallel to the orifice of the urethra. The vaginæ in the Dasyures are smaller in proportion to the uteri than in the Virginian Opossum, but of a similar form. \({ }^{3}\)

In the Wombat (Phascolomys) each uterus communicates with a separate and large vaginal cul-de-sac, the lining membrane of which is increased by irregular rugæ and papillæ: the terminal portion of cach lateral canal has a thick muscular coat. The urogenital canal is lined by a thick epithelium, and its surface is

\footnotetext{
\({ }^{1}\) zx. vol. iv. p. 151, no. 2734 c. \(\quad\) _x. vol. iv. p. 152, no. 2734 ع.
\({ }^{3}\) xx. vol. iv. p. 154, no. 2738 A.
}
broken up into countless oblique rugæ and coarse papillæ, betraying a certain regularity in their arrangement: the surface immodiately around the uretbral orifice is comparatively smooth.

In Macropus major the vaginæ, fig. \(538, e, e^{\prime}\), preponderate in size greatly over the uteri \(c, c^{\prime}\); and, the septum, \(e^{\prime \prime}\), of the descending cul-de-sac being always more or less incomplete, a single cavity, \(e\), is thus formed, into which both uteri open; hut however imperfect the septum may be, it always intervenes and preserves its original relations to the uterine orifices, \(d, d\). In the specimen examined by me, this part of the vagina was not continuous by means of its proper tissue with the urogenital canal, but was connected tbereto hy areolar tissue. \({ }^{1}\) In Halmaturu's Bennettii I found an aperture of communication between the median cul-de-sac and the urogenital canal; \({ }^{2}\) and, as the same structure bas been observed in two otber specimens, \({ }^{3}\) it is doubtless normal, at least, after parturition. The fact, however, does not justify the conclusion that the lateral vaginal canals convey cxclusively the semen for impregnation, and that the median canals, which, as a rule, are closed and distinct from.each other, serve only to transmit the foetus to the urogenital passage. In Hypsiprymnus muritus the type of construction is the same as in the great Kangaroo, but the mesial cul-de-sac of the vagina attains a still greater development: it not only reaches downward to the urogenital passage, but also expands upward and outward, dilating into a large chamber, wbicb extends beyond the uteri in every direction. From the sides of tbis cbamber tbe separated portions of the vagina continue downward, to terminate, as usual, in the urogenital canal.

In Peranceles obesula the uteri are wider in proportion to their lengtb than in the Kangaroos. Eacb communicates with a vagina, expanding into a cæcum with semitransparent walls, and greatly surpassing the uteri in size: the cæca suddenly contract near the ora tince, to form long and slender vaginal canals, whicb converge, hut terminate separately near the vulva. The urethra is of corresponding length and tenuity; its orifice is near those of the vagina, the urogenital passage having the least extent in this genus of Marsupialia.

In all, the structure of the uteri is distinct from that of the vagince. The muscular tunic of tbe uteri is thicker, and consists of an outer stratum of longitudinal fibres, and an inner one of

Removed by dissaction in the preparation, xx. vol. iv. p. \(157, N_{0} .2740 \mathrm{c}\), as in that from which fg. 538 was taken. \({ }^{2}\) cexunri" p. 106.
" ccxury". p. 599, and ccruy". p. 146.

circular fibres. The lining is well organised, not deciduous: it is soft, and disposed in many irregular folds, but, when these are effaced, has a smooth surface: this is a distinct but delicate layer with minute pores, and is connected to the muscular coat by an abuudant tissue, consisting of finc lamella stretched transversely between the muscular layer and the smooth membrane, the whole being of a pulpy consistence and highly vascular, especially in the impregnated state. The vagine are lined with a laycr of cpithelium, which is readily detachable, even from the middle cul-dc-sac. The inner surface of the culs-de-sac in the Opossum is smooth, but in the lower part of the single cavity in the Kangaroo and Potoroo it presents a reticulate structure. The lining membranc in the lateral canals in all the genera is disposed in regular longitudinal folds, a disposition which characterises the true vagiaa in most. In the Kangaroo, as in the other Marsupialia, the lateral canals communicate with the common or urethro-sexual cavity without making a projection; but at the distance of three-fourths of an inch from their termination there is a sudden contraction, with a small valvular projection in each, fig. 538, \(n, n\). By those who consider the cul-desac and lateral canals as a modification of the corpus uteri, these projections may be regarded as severally represcnting an os tinceæ; but they do not exist in the Opossums and Petaurists, in which there is simply a contraction of the vaginal canals at the corresponding part ; and in both thesc and the Kangaroo, the true uteri open in the characteristic valvular manner, \(d\), \(d\), without the slightest appcarance of a gradual bleuding with the median cul-de-sac.

The clitoris is situated in a preputial recess near the outlet of the urogenital passage: it is simple in those Marsupials that have a simple 'glans penis,' but is bifid in those which have the glans divided: and in the Opossum each division of the 'glans clitoridis' is grooved.

The marsupial type is repented in one of the rarer anomalies of the fcmale organs in the Human species: in which not only the uterine cavities are distinct, but the os tince' of each opens into its own vagina, fig. 539.
§ 384. In Rodentia.-This order offers transitional steps from tbe foregoing type to the more common 'uterus bicornis,' with single os tince and vagina. In the Biscachia (Lagostomus trichodactylus) the two uteri are distinct, and each opens into a separate canal formed by a longitudinal septum continued about one-tbird down the vagina. \({ }^{1}\) In the Capybara, Sciuridee and Leporida, tbe two ora tince of the separate uteri open into the fundus of a common vagina, fig.540, \(h, i\).


In the Beaver tbere is one large promineuce, like an 'os tincæ,' but the uteri terminate thereon by separate orifices. In Murida, tbe Aguti, the Paca, the two uteri blend into a short common cavity, with one opening into the vagina: they are connected together for some extent beyond the confluent cavities, or true 'corpus uteri.' Tbe ovaries, which are elongated, subcompressed, and with an even exterior, in the unexcited state, fig. \(540, k, l\), become botryoidal when the ovisacs are developed witb ripe ova, fig. \(772, \mathrm{~A}, a, a^{\prime}\).

In the Beaver the 'pavilions' are small and simple: upon these the oviducts are obliquely folded; the uteri are long, straight, and of uniform slender diameter when unimpregnated. The os tince is followed by a series of irregular flat processes, which project from the fore part of the vagina, gradually becoming smaller. The urethra communicates with the vagina near its distal end: the clitoris projects from a notch just beyond the urethra; and in front of the clitoris is the wide aperture common to the two large preputial or 'castor' bags: there are also smaller lobulated masses beyond the bags. In the Rabbit the aperture of the pavilion, ib . \(b^{\prime}\), is more fimbriate and plicate than in the Beaver: it is continued along the border of a shallow peritoneal capsule extending from the further side of the ovary to the border of the broad ligament. From the ovary the remnant of tbe ligament of the primordial kidney ascends to the diapbragm. The oviduct,

\footnotetext{
* ccxri". p. 177.
}
ib. \(c, c^{\prime}\), passes outward a short way beyond the ovary, then suddenly bends back toward the uterus, \(f\) : it is unravelled in fig. 772, . The natural disposition of the efferent canals in the unimpregnated state are shown in fig. 540. The uterine tuhes, \(e, f\), are united for a short distance by arcolar and serous tissue at \(g\); but open separately into the vagina, as shown by the styles, \(h, i\). The longitudinal and circular layers of the muscular coat are as well marked as in Marsupials; but the inner coat has a different and lower structure: it is more homogeneons, and adheres closely to the muscular coat: its inner surface is more or less wrinkled, and is minutely porous, the orifices being those of the irregular canals callcd 'utricular glands,' exuding fluid, and lined by the formified particles or 'cells,' which likewise adhere to the free surface of the uterine lining. This, when injected, presents a fine reticulatc structure, with a similar disposition of the superficial capillaries. Near the distal end of the true vagina are two small semilunar folds, with their concavity directed toward the urogenital passage. This is long in Leporidee and a few other Rodents: its commencement is indicated, where valvular limits are wanting, by the opening of the urethra, ih. \(d\) : it terminates close to the rent in all Rodents; and, in the Hare, on the same nude patch of skin on each side of which is the glandular bag, \(q\). The 'preputium clitoridis' opens just within the verge of the urogenital outlet: the clitoris commences by two crura, and terminates by a flattened hifid glans. In the Capybara the urethra terminates close to the vulva, and a groove is continued to the preputium clitoridis, which projects externally. In many Rodents (Arvicola, Lagostomus, Bathyeryus) the clitoris is perforated by the urethral canal. In the Squirrel the vulva is a longitudinal slit upon a conical prominence or 'peak:' in the Porcupine the vulva is a thick semilunar prominence, puckered up internally into longitudinal folds, and opening immediately below the vent. The urethra and preputium elitoridis are close to the vaginal outlet.

The human uterus repeats, as an anomaly, the grade of concentrative dcvelopment attained hy those Rodents in which a short common cavity or corpus intervenes between the cornua and the vagina, as in the instance, fig. 541, given by Artilur Farre in his masterly Article' On the Uterus and its Appendages. \({ }^{1}\)
§ 385. In Insectivora.-In some of these Lissencephala, as in

\footnotetext{
' cexlvi". p. 680.
}
some Rodentia, the clitoris projects externally to the vulva, and is perforated by the urethral canal. The Mole, which exemplifies this structure, fig. 542, \(c\),


Uterue Dicormis, Human Anomaly. Coxlyts. also shows a complete closure of the vaginal orifice in the virgin state, ib. \(1,{ }^{1}\) the vulva afterwards, ih. 2, intervening, at \(n\), between the clitoris, \(c\), and the prominent vent, below the letter \(n\). The canals, severally continued from these apertures, viz. rectum, vagina, and urethra, are all anterior to the pubic bones, consequently outside the pelvis. There is no valvular or other distinction hetween the vagina and corpus uteri : a long, somewhat tortuous, subdepressed

542


Excernal narts, female Mole. LxiII". utero-vaginal canal extends into the abdomen to terminate in the cornua uteri: these are cylindrical tuhes, and descrike three abrupt curves, on quitting the corpus uteri, at right angles therewith. The ovaries are commonly found with a tuherculate exterior, and are inclosed in an almost complete peritoneal capsule. The oviduct pursues a wavy course along this capsule to the uterine 'horn.' The ovarian ligament, commencing near the diaphragm, descends external to the kidney, carrying before it a peritoneal fold. The uterine ligament is continucd from the end of the 'cornu,' and runs along the posterior edge of a continuation of the same fold, or ' mesometry,' to the part answering to the ahdominal ring in the male.

The Shrews closely resemble the Moles in their female organs: there is the same abscnce of os tince and a corresponding length of utero-vaginal canal from which the cornua, fig. 389, \(u\), arcl away at a right angle. In the impregnated specimen figured, the commencing emhryos were lodged in cæcal dilatations of the cornua. In the great-snouted Shrew (Rhynchocyon), the ovaria, fig. 543, \(x\), are placed each near the orifice, o, of a large peritoneal capsule, bordered by the oviduct, \(t\), which slightly enlarges towards the

\footnotetext{
According to Lxirt". p. 1006.
}
utcrus. This commences by a bifid expansion, and is continued without constriction or distinction into a wide vagina with interlocking transverse folds at its uterine half. In Tupaia the clitoris is long but is merely grooved, the groove being continued to the urethral opening just within the vulva. The uterine cornua are short. In the Ledgelog the clitoris projects from a prepuce into a urogenital passage of an inch in lengtl, midway between the vulva and the urcthra : here a slight constriction marks the boundary of the proper vagina. This canal soon becomes rugous; the ruge are nearly transverse, increasing in breadth, and interlocking near the os tincre, which scems to torminate the series. The body of the uterus is about half an inch in length; the cornua not much more. The ovary is tuberculate and furrowed; its perito. neal capsulc is large, with a small orifice near the termination of the oviduct in the uterus. The ovaria are large and elustered, and the uterine cornua long, in the multiparous Tenrec (Centetes); \({ }^{1}\) the vagina has the transverse alternating folds at the uterine half of the canal.

In the Bats the utcrus las two very short horns: the long corpus interi opens by an os tince into the vagina: in Pteropus the vagina extends into a cul-de sac beyond the os tince.
§ 386. In Bruta,-The absence of the valvular or mechanical limit between uterus and vagina, noticed in certain Insectivora, is an inferior character repeated in the present order of Lissencephala. In the Armadillos (Dasypus Peba, e.g.) the uterine walls gradually become thinncr, the cpithelium denser and smoother, and longitndinal furrows finally denote the vagina,

\footnotetext{
I Of the two specimens of Cenietes selosus trhosmitted to me by the Hon. W. R. R:wwon. Treasurer of the Mnuritins, one had brought forth twenty young: he had known an instance of twenty-two at a birth, the more usual number being twelre to eighteen. I ndded dissections of the fotus to the Hunterian Series under the Nu. \(3577, n\), to show the close analogy in form and structure of the male and female orpain in that period.
}

VOL. 111.
which opens into a wide urethra about an inch from the end of the clitoris, the groove of which is continued from the uretbra. The usual subordinate relations of urcthral and vaginal canals are here reversed. The clitoris in Dasypus 6-cinctus is longer than in the 9 -banded species, measuring nine lines in the unerect state: it is of a pointed form, covered with a leaden-coloured integument, and situated an inch anterior to the anus: the vulva is placed on an eminence. From this orifice the urogenital canal extends eight lines, receiving the vagina by a transverse semilunar slit, and being then continued for five lines further without any diminution of diameter, and termiuating in the form of a cul-desac, into which the urethra opens by a very small orifice. In Das. Peba, the urogenital cavity is not separated by a corresponding contraction from the urinary bladder, but is a more direct continuation of it. In. this Armadillo the uterus is undivided; it expands to the fundus, which again contracts to a point, the oviducts being continued from the sides of the fundus: in Dasypus 6-cinctus the uterus is triangular, the fundus expanding into slightly produced angles, from wbich the oviducts are continued. These, in both species, wind round tbe peritoneal capsules of the ovaries, become tortuous, and terminate by fimbriate expanded openings directed toward the ovary, which was subelongate and smooth in both the dissected specimens.

In the Ai (Bradypus tridactylus) the uterus is like tbat of Dasypus 6-cinctus, the oviducts being continued from the angles of the fundus: between the uterus and vagina tberc is as little distinction; and the elongate common canal communicates (in the young Sloth) by two apertures with a short and wide urogenital passage. The ovaria are smoth elliptic bodies, with a greater proportion of stroma than in multiparous Lissencephala: the oviducts, commencing by fimbriate apertures upon the anterior edge of the capsule, pursue a serpentine course in that peritoneal fold to the fundus uteri. The ovarian ligaments are continued each along the margin of a peritoneal fold upward to the diaphragm, and downward to an oval 'parovarium,' or remnant-of unusnal size-of the 'Wolffian body': the unobliterated termination of its duct opens, as in most Lissencephala, on each side the urogenital passage, here very short. In the Unau (Bradypucs didactylus) the rudiment of an uterine septum appears as a longitudinal ridge frem the inner surface of the anterior wall in the unimpregnated state: in this species, also, the utero-vaginal cazal communicates in the virgin animal by two distinct orifices with the short urogenital tract, the outlet of
which is common with the vent. The clitoris is short, and does not project beyond the cloacal aperture. In the great Anteater (Myrmecophaga jubata) the vulva and vent have likewise a common external cloacal outlet.
§ 387. In Cetacea.-The ovaria are narrow and clongate, with the surfacc frequently fissured so as to appear convoluted: the orifice of the 'pavilion' is rarely fimbriate, but the lining membrane is produced into numerous folds, which sometimes project like a short fringe. The uterus is 'bicorn' with a short body: the lining of the 'cornua' is longitudinally plicate: the os tince is promineut: the surface of the vagina has many complex transverse folds. The vulva is a longitudinal fissure, fig. 608, \(a\), anterior to the vent, ib. \(b\) : its labia are composed of soft and yielding integument not loaded with oil: a short urogenital tract is marked off by the entry of the urethra upon a longitudinal ridge of the vagina: anterior to the urethra are two folds, like the 'labia minora,' betwcen which is the clitoris: at the sides of the urogenital passage are the orifices of 'Malpighian canals.' In Bulcenoptera the peritoneal fold forms a wide and shallow sac beneath the ovary : the oviduct dilates at first, then contracts, and after a short wavy course is continued straight to the corresponding horn of the uterus. The lining membrane of this part is longitudinally plicate; the folds subside at the bcginning of the 'corpus uteri,' but again reappear, and arc continued upon broader transverse or circular productions of the lining. The third of these, progressively increasing in depth, represents the 'os tincæ:' just beyond this, at the beginning of the vagina, is a semicircular fold, also multiplicate longitudinally : it is followed by four other transversc folds progressively increasing in width: beyond these the longitudinal plicæ gradually subsidc. In Hyperoodon about ten oblong processes surround the entry of the oviduct into the uterine horn, into which they project : the uterine body presents a few large smooth ridges and obtuse processes. The 'os tince' is divided into five tubercles: about six inches intervene between these and the first transverse fold of the vagina: between these folds the membrane is produced into smaller wavy and longitudinal ruga. In Delphinus delphis. and in Phoccena the entry of the oviduct into the uterine horn is not defended by processes of the lining mombrane. The longitudinal and transverse productions of the uterine and vaginal inner surfaces resemble those of the Whale. The 'larger folds of the vagina appear like a succession of ora tince.' 1
§388. In Sirenia.-In both Halicore and Rhytina the vagina, fig. 544, \(o\), is characterised by longitudinal ruga: the body of the

544


Uterus of Dugovg. cexivili", uterus, \(c\), is relatively longer than in Cetacea, and, in the young unimpregnated Dugong, is wavy: the cornua diverge at right angles, are more slender, and less arched: there is a welldeveloped - os tincæ.' The vulva is situated further in advance of the vent. In Rlaytina Stcller describes the clitoris as of a hard texture, an inch and a half long, situated at the anterior broader part of the vulva, which is eight iaches anterior to the anus.
§389. In Proboscidia.-In a half-grown female Elephant (Elephas Indicus, Cuv.), the ovaria are small oblong bodies, with an irregular tuberculated exterior and large proportion of stroma: the ovarian apertures of the oviducts are provided with numerous long and slender branched processes, like a loose tassel. Each tube makes a long bend upon itself around a deep and narrow ovarian capsule, and maintains a slightly tortuous course to the uterus. The body of the uterus is very short; the cornua are long and wide; their inner surface is broken by a few slight transverse puckerings on the concave side. The body of the uterus presents two large semilunar folds, and the os tincas is represented by three sinilar suceessive and alternate folds, whiclr form the boundary between the uterus and vagina: the latter is divided from the urogenital canal by a constriction, in which, viewed from the urogenital side, there appear three small apertures: the middle one leads to the vagina; the lateral ones to the mucous sinuses, called 'canals of Malpighi.' The internal surface of the vagina presents a few slight and irregular ruga ; those of the urethro-sexual canal affect a more regular, and in some places a penniform, arrangement: the urethra terminates immediately bcyond the constrietion. The elitoris measures fifteen inches in length. The two crura are attached to the rami of the os pubis: they are of a dense cavernous texture, and are joined together to form the body of the clitoris: this is inclosed in a strong ligamentous capsule. After the junction of the crura the clitoris descends along the perineum, with its under
or posterior surface applied to the urogenital canal ; two muscles, answering to the levatores penis in the male, converge and unite upon the upper or anterior part of the clitoris, and send their comenon tendon through a sheath to terminate near the glans: this is composed of a vascular corpus spongiosum.
§ 390. In Perissodactyla.-The ovaria, in Rhinoceros Indicus, are included within a large peritoneal sac, communicating with the general abdominal cavity: they are compact, oblong and subcompressed. The oviducts commence by wide orifices, having a richly fimbriated margin: their diameter at the expanded end equals two-thirds of an inch, but they gradually diminish in size as they pass in a slightly tortuous course along the parictes of the ovarian capsule towards the uterus: just before they enter the cornu their diameter does not exceed one-third of a line. They terminate in tbe extremity of the cornu upon a valvular protuberance about the size of a pea, which is divided into four or five processes. 'Phe ' cornua uteri' are each seventeen inches in length: the 'corpus uteri' only an inch and a half. The cornua are occupied by close-sct longitudinal folds: tbe inner surface of the corpus is smooth. The vagina, about sixteen inches in length, is divided by a constriction from the urogenital tract, which is thrce inches long. The upper or uterinc third of the vagina is occupied by broad transverse folds, the lowest of which is most extensivc. About an inch above this fold, or nearer the uterus, a sccond and smaller fold is formed, wbich also descends from the upper and lateral parictes of the vagina, but passes across in an oblique direction: then follow in quick sucecssion a serics of shorter but equally broad semilunar folds, which become alternate in their relative position as they approach the uterus, so as to cause the cavity of the vagina to assume a spiral course: as these valvular folds also assume a thicker, softer, and more vascular texture, it is by no means easy to determine where the vagina ends or the uterus begins.' The structure resembles that in the Tenrce and some other Jissencephala. The urcthra opens into the urogenital passage just beyoud the vaginal constriction. The lateral apertures of the 'Malpighian canals' are about an incb and a half from the vulva. These canals expand, and then divide and subdivide, terminating in blind ends near the begimning of the vagina." The 'preputium clitoridis' and nrogenital canal open externally by distinct but approximate narrow clongate orifices: the vulva opens about five inches from the vent.

In the Tapir the ovaria are small subcompressed oval bodies, in a widely open peritoneal pouch; the oviducts have a tortuous course along the pouch near its margin to the uterine horns, which are long, and longitudinally multiplicate within : the body of the uterus is but two inches long, the 'os tince' not very prominent: the vagina is long; a constriction divides it from the urogenital passage, which is short. The clitoris and Malpighian eanals resemble those of the Rhinoecros.

In the Mare the ovaries, of an elongate reniform figure, are inclosed and concealed in large peritoncal sacculi, fig. 574, \(z\), to the mouths of which the fimbriated extremities of the oviducts are attached. The inner surface of the pavilions are characterised by numerous narrow, close-set, minutely plicated laminæ. The oviducts have a wavy course to the horns of the uterus, which are a little longer than the hody or common cavity; short oblique wayy folds of the lining membrane, much developed in the impregnated state, fig. 575 , \(t\), project into the interior : 'a few similar folds are present in the hody of the uterus, together with others which are broader and disposed more longitudinally at the cervix. The os uteri, ib. \(l\), is denoted by the sphincterie thickening of the muscular coat and the contraction of the canal; but there is little or no valvular projection into the vagina. Of this canal, \(k\), the inncr surface is increased by numerous irregular longitudinal folds: a constriction defines the vagina from the urogenital passage, ib. .d; the urethra, ib. \(e\), opens near the constriction, behind a rugous prominence or flap, ib . \(f\). The orifices of many follicles are dispersed over the comparatively smooth surface of the urogenital passage. The trilobate 'glans clitoridis,' \(\mathrm{ib}, a\), projects from its preputium close to the antcrior margin of the vulva. It is provided with erectores' muscles and a 'plexus retiformis': the sphincter of the uro-
 genital passage is very powerful. In the Filly the communication of the vagina with the urogenital canal is divided hy a longitudinal septum or 'hymen.' The Zebra and Ass closely agree with the Mare in the structure of the female organs.
§ 391. In Artiodactyla. - The ovaria of the Sow, fig. 545, are large oblong hodies with an irregular and tuberculate surface: when the ovisacs enlarge, the stroma is scanty in proportion. Each ovarium is inclosed within a peritoneal sac, near the aperture of
which it has a pedunculate attachment. Tbe posterior wall of the sac appears to be formed by the wide and deep pavilion, the margin of the abdominal opening of which is almost entire; the inner surface of the pavilion is augmented by many long but narrow and highly vaseular folds, which radiate from the beginning of the contracted part of the oviduct upon the expanded pavilion. The uterine cornua are long. The numerous and irregular processes and wrinkles which characterise the inner surface of the horns of the uterus gradually subside in the body as this approaches the vagina, and pass into two or three series of thick and soft ridges of the lining tissue. The os uteri is denoted by a series of close-set, narrow, longitudinal folds, but there is no valvular projection or 'os tince.' In the true vagina the longitudinal folds become fewer, and gradually subside toward the line of separation between the vagina and urogenital passage. The urethra opens between two longitudinal ridges, but the surface hoth of these and other similar projections in the urogenital passage is broken by numerous fine, wavy, and oblique furrows. The clitoris projects from the anterior angle of the vulval labia. In tbe Peccari the vaginal folds toward the uterine end are so arranged as to give a spiral curve to the canal, like that in the Tenrec and Rhinoceros. Usually one ovisac enlarges, at the heat, in each ovary, or there may he two in one ovary, the Peccary producing not more than two at a birth.

In the uniparous Camel the ovary is a comparatively small subcompressed oval body with a smooth and even cxterior: it becomes furrowed and subtuherculate in older specimens, or at the heat. The greater part of the capsula ovarii appears to be formed hy the fimbriate aperture of the oviduct, which is of very large size, and is supported hy a broad fold of peritoneum; the pavilion as it approaches the contracted part of the duct has its inner surface provided with many broad parallel folds: the oviduct is disposed in a series of four oblique festoons, and is then continued in an unconvoluted course toward the uterus.

The cornua arc of moderate length, and describe each a regular semicircular curve: they have a smooth internal surface, beset with utricular pores, without trace of cotyledonal processes. The corpus nteri is short: the cervix is occupicd with a series of oblique hut nearly transverse folds, wbich do not quite complete a circle. Three of these folds are seen from the vagina concentrically disposed around the beginning of the uterus, which has no defined 'os tince.' The commenccment of the wide vagina presents a smooth and even interual surface. The clitoris commences by two crura, and is
eontinued in a tortuous and somewhat spiral course to the preputium elitoridis, to one side of whieh it is adherent: the extremity of the preputium forms a conieal promincnce external to the anterior margin of the urogenital canal. The 'plexus retiformis' forms two large hodics.

In the Pigmy Musks or Chevrotains (Tragulus) the ovaria are smooth ohlong hodies with a somewhat angular contour. The oviduets pursue a sealloped course along the edge of the hroad ligament, and terminate in an expanded elongated pavilion at the outer part of the eircumference of the eapsula ovarii. I found the eornua of the uterus are unequal in size; the right was the largest in the specimen examined; its inner surfaee was smooth, the utrieular pores generally diffused, without any appearanee of cotyledonal processes, implying an uniform and stunted villosity of the foctal ehorion, as in the Camel tribe. \({ }^{1}\) The inner surface of the vagina has many parallel longitudinal folds, the abrupt termination of which indicates the heginning of the uterus, there being no os tinca. The vulva is close to the vent.

Iu horned Ruminants the lining of the cornua uteri shows smooth prominences, devoid of utricular pores, ealled "caruncles' or eotyledonal proeesses, fig. 546, \(e, e\), increasing in number with the size of the species. In Cervus rufus and \(\dot{C}\). caprealus there may be from four to six in each eornu, longitudinally disposed: in the Giraffe there may he eighty. In the Cameline group we have seen that the greater part of the capsula ovarii is formed hy the expanded fimbriated aperture of the oviduct itself, whieh is of very large size. In Deer, Antelopes, Bovines, and Ovines the ovarium, ih. \(k\), is lodged in a depression or sacculus of the hroad ligament, whieh is more or less deep, and has its apertures more or less contracted in different species. In the Giraffe this sacculus is wide and deep, and incloses almost the whole of the ovary. The fimbriated extremity of each oviduct is expanded upon the outer margin of the ovarian capsule, as in fig. \(546, i, i\); the inner surface of the pavilion is beset with numerous fine oblique strix, and is further increased hy narrow folds of lamina converging toward the contracted opening of the duct. The oviduct forms three or four wavy folds, and is then continued along the walls of the wide ovarian capsule to the extremity of the uterine horn, which makes an ahrupt curve to meet it. Each cornu hecomes bent in a spiral form when distended with fluid: four longitudinal rows of compressed caruncles project from the inner surface. The eervix of the uterus is occupied hy two circular series of close-set,

\footnotetext{
cexrxvi. rol. ii. p. \({ }^{135}\), Note.
}
longitudinal lamellar processes, with their free margins eonverging to the eentre of the eanal. Above these the inner membrane of the uterus sends off several thicker processes similarly arranged. The 'os tince' is a large transversely oval prominence, having the orifice of the uterus in the centre, and marked by numerous finc rugr, which radiate from this orifice. The vulva or 'peak' in the Giraffe resembles that of the Deer, and the other horned Ruminants, in coming to a point below, within which is the clitoris. From the vulva to the orifice of the urethra, the passage is five inches long in the Giraffe: the proper vagina is lined with a smooth and polished membrane, which is disposed in numerous finc and small longitudinal ruge.

In the Bison (Bison Americanus) the ovaria are smaller than in the Giraffe, and the peritoneal sacculi, or capsules, are deeper, and have a more contracted aperture; they are situated wholly external to the ovary, with their apertures turned toward those bodics. The fimbriated pavilion is extended along the external border of the opening of the ovarian sac. The smooth caruncles of the utcrus are softer, thicker, and more obtuse than in the Giraffe, and are less regularly disposed. Scries of longitudinal laminæ are disposed on transverse folds in the cervix uteri; the uppermost are narrowcr and longer; other series of shorter, broader, and thicker folds intervene between them and the plicated os tituce. The longitudinal folds of the vagina are also more developed than in the Giraffe.

In the Rein-deer (Cervus Tarandus), the ovaria are small, simple, snooth, ovate bodies, with the larger cnd attached to the fimbriated aperture of the oviduct; this is situated external to the ovary, between which and the rest of the oviduct the peritoncum is developed into a wide but shallow sac. The oviduct, after a few slight folds at its commencement, is continued straight to the utcrus. The cornua are unconnected with each other for the first half of their cxtent : the first of the cotyledonal processes commences near the orifice of the oviduct, is in the form of a compressed clongated fold of the lining membrane, and extends in the direction of the cornu, with its lower extremity projecting frec for the extent of half an inch; the succecding caruncle, which begins where the other ends, is also elongated and flattenecl, but is shorter and broader; the third is much shorter, but thicker and broader; the fourth, whicb is at the commencement of the common utcrus, is the smallest. The caruncles of threc other rows have similar proportions. In the cervix utcri the lining membrane is produced into numerous
close-set longitudinal laminæ, supported on six successively larger transverse processes, the two last of which project into the vagina, and form the os tince. The vagina exhibits at its commencement some longitudinal ruga; but the rest of its inner surface is almost smooth.

The cornua uteri in the Goat and Sheep, fig. 546, \(g\), are relatively longer, more tortuous, and expand more gradually from the ends of the oviducts than in the Deer and Cow; their point of confluence is marked by the style \(f\). The structure of the corpus and cervix uteri rescmbles that in the Bison. The groups of laminæ there present the appearance of a number


Orarla, oviducts, and uterwe, skeen.
of successive ora tincæ, \(\mathrm{ib}, c, b\). In the virgin Ewe a filamentary band, crossing the constriction between the urogenital canal and vagina represents the 'hymen.' The canals of Malpighi open into the urogenital passage, near that constriction. The crura clitoridis are embraced by 'erectores:' the glans projects just within the 'peak ' of the vulva.
§392. In Carnivora.-In the Seal (Phoca vitulina) the ovaria
are inclosed in the peritoneal capsules, situated close to the ends of the cornua uteri. The orifice of the eapsule is chiefly formed by the fimbriate pavilion. The cornua continue distinet sonve way after they are externally joined together, the actual 'corpus uteri,' or common eavity, being very short. The inner surface of the cornua is beset with thick soft eminences, ebiefly in the longitudinal direction, which fall into longitudinal ridges as they approach the corpus uteri. This part opeus into the vagina on a well-developed round os tince. The vagina is lined by a loose usually longitudinally plicated membrane: it is separated, at the immature period, hy a well-marked constriction from the urogenital canal. The urethra opens into the beginning of this canal upon a mammillary prominence. The clitoris projects' from a small semilunar depression, just within the verge of the anterior part of the urethro-sexual canal: it has an ossicle. The rectum terminates close to the opposite side of the vulva, and a common cloacal whincter muscle embraces hoth apertures.

In the White Bear (Ursus maritimus) tbe ovaria are completely inclosed in a reflected capsule of the peritoneal membrane, like the testes in the tunica vaginalis: a small opening, however, leads into the ovarian eapsule at the part next the horn of the utcrus. The fimbriated orifices of the oviducts are situated elose to this-aperture: the ducts pass round the eapsule in a tortuous course to the uterus. The two cornua uteri communicate with a short and wide corpus uteri, between which and the vagina there appears to be no very distinct boundary: a broad transverse rugous projection of the lining membrane holds the place of the os tince. The vagina is separated from the urogenital canal by two transverse semilunar folds, continued one from each side of the longitudinal emineuce upon which the urethra opens. The lining membrane of the urogenital canal is chiefly remarkalble for its dark colour and sharply defined rugæ, which are mostly longitudinal, but in some places have an ohlique or penniforn arrangement. The clitoris lies concealed in a deep preputial eavity, attashed through its whole length to the anterior or under part of the uretbro-sexual canal: it has an ossicle. In Ursus labiatus the inner surface of the cornua uteri is marked ly obtuse, depressed, irregular processes, on which are utricular pores. The body of the uterus offers a very contracted aren; it terminates lyy a small circular papillose ridge in a short but willer canal, which traverses a similar but much larger prominence, or os tinex: these valvular projections are minutely plicated. The lining membrane of the ragina presents unany
small, irregular, transverse ruge at its commeneement, but these gradually pass into the longitudinal direction at its termination in the urogenital canal, which is by a corrugated valvular fold.

In the Ratel (Ratelus mellivorus) the lining substance of the uterine horns is disposed in thiek longitudinal and oblique folds. The os tinex is a double circular prominenee. The beginning of the vagina is beset with numerous minute obtuse ruga, which become larger and more longitudinal as they approach the urogenital eanal: into this the vagina opens by a bilobed valvular fold. The inner surface of the urogenital passage is smooth.

In the Bitch the capacious capsules of the ovaria have a small aperture at the part nearest the uterus. The fimbriated beginning of the oviduct is attached to the exterior boundary of this aperture opposite the ovarium; the tube itself passes in a wavy course round the anterior part of the capsule to the uterus. The cornua are long, slender, compressed tubes, with numerous flat eminences on the inner surface : they are joined together externally for nearly two inches before they communicate with the body of the uterus. The interior of this part presents a few smooth, longitudinal elevations of the lining membrane. The os tince is a smooth, thiek, simple prominence. The true vagina is of considerable length, with longitudinal ruga: the urethra opens between a small transverse fold and the triaugular flattened clitoris, beyond which is a second transverse crescentie fold with its coneavity oppositc that of the preceding.

In the Civet (Viverra Civetta) the ovaria approach nearer to the globular form than usual. They are situated in shallow capsules, on one side of which the oviduet commences by a large elongated aperture. The cornua uteri are long, slender, compressed, straight canals. The corpus uteri is equally simple, but very short; the vagina is long, with a longitudinally rugous inner surface. The urogenital canal opens externally on a prominent vulva, above which there is a semilunar cutaneous depression, which receives the ducts of two large scent-glands.

In the Leopard (Felis Leopardus) the ovaria present an elongated, elliptical, flattened form, and are attached by one edge to the ovarian ligament: the peritoncal pouch is large and wide, with an opening extending its whole length. In the Hyæna the ovaria have a more compact oval form, and are more completely inclosed in the peritoneal capsules. The fimhriated aperture of the oviduct is extended in the Leopard along one side of the margin of the pouch; the ovary itself forms the opposite houndary. In the Hyæna the pavilion forms a smaller proportion of the
margin of the eapsule. The oviduct runs a short and tortuous eourse along the anterior part of the ovarian eapsule to the horn of the uterus: both cornua present, in the unimpregnated Leopard, the form of simple, straight, narrow, flattened tubes, with a smooth and even internal surface, and they open into the common uterine cavity half-way between their external union and the vagina. The os tinex is very prominent, and is beset with numerous short papillose processes: in the Hyæna it is not papillose. The vagina in the Leopard is a narrow canal, with a few smooth longitudinal ruga internally, which terminate abruptly at the beginning of the urogenital passage : in the Hyæna the vagina is wider with more produced longitudinal folds. The internal surface of the urogenital passage is beset with coarse papillar, the larger ones being aggregated in longitudinal groups; at its termination projects the clitoris: and at the sides of the passage, in the Leopard, are the orifices of two large glands. The prepuce has no ossicle or cartilage in the Viverrine or Feline Carnivora.
§393. In. Qundrmmann.-The reappearance of Lissencephalous characters of the female organs in the lowest members of the present group indicates their derivation and divergence from some antecedent eominon souree. The smonth-brained Lemuride with gyrencephalous proportions of cerebrum show a common uterovaginal elongate cavity, as in certain Bruta, and an external perforate clitoris, as in Inscctivora.

In I'croslictirus, Lichanotus, Otolicnns, Tarsius and Stenops (both St. gracilis and St. tardigradus), the ovaria are small oval bodics, in adults often presenting a granulate exterior ; always suspended in a depression; which is a rudiment of the eapsule of the broad peritoneal liganent. The oviducts eommence by a fimbriated extremity exterior to the ovaries, and pass in front of those bodies in a tortuous course to the horns of the uterns. These are short and wide, and begin by large obtuse extremities; they are lined by a smootl, thick, and seemingly villous membrunc. Niter the junction of the cornua the common uterine canal presents internally a smocther surface, but begins to fall into a number of fine longitudinal ruge: it is continued into the vagina wichout any line or mark of distinction; the same embryonal eharacter, as in Dasypus and Bradypus, being liere persistent. The rugue are more strongly developed in this canal, which terminates by a round opening, fig. 547, \(b\), half an inch anterior to the rectum, ib. \(a\). Immediately in front of the vagina is the celitoris, ib. \(c\); it is a large and prominent body, perforated, like the penis in the male, hy the urethral caual, whieh opens upon a glans cleft
by a vertical fissure, and inclosed above and at the sides by a crescentic prepuce. The urethra is consequently of unusual length in these small Quadrumana, as it is in Moles and Shrews. When the cercbrum begins to show deep and definable gyrations a higher type of female organs is indicated. The uterus is differentiated from the vagina by an os tincer in the Aye-ayc, and the clitoris is distinct from the urethra. Moreover the vulva opens


Rectum, vagina and urethra, Stenopa tardigradus, Lxix'. at about one and a half inch distance from the vent. The uterine horns are relatively longer than in most other Lemurida. The os tincex appears trilobate through fission of the anterior valve or 'lip.' The vagina shows the usual provision for dilatation in the longitudinal folds. The urethral orifice defines a urogenital tract about one-third the length of the vagina: the preputium clitoridis opens by a transverse crescentic fossa anterior to the urogenital outlet: the crura clitoridis embrace the urogenital passage before uniting, on its fore wall, into the body of the clitoris: the glans is subbilobate. \({ }^{\text {b }}\)

In the Mongoose and other species of true \(L e-\) mar, the uterus communicates with the vagina upon a distinct valvular prominence or os tincæ; but the clitoris is situated more within the verge of the vulva than in Chiromys, and is perforated by the uretlira. The ruga of the vagina are well developed, and are of two kinds; the stronger ones are longitudinal, in the interspaces of which are smaller transverse or oblique folds: these assume a penniform arrangement near the outlet. The clitoris is inclosed in a large and thick internally plicated prepuce. The external labia are continued from the dorsum of the clitoris; within

\footnotetext{
' ccxur'. p. 97, tab. 3, figs. 2 and 3,
}
these there are two smaller folds, or ' labia minora,' continued from the sides of the clitoris to the opposite part of the vulva; and on the internal surface of each of these folds there is a thick longitudinal proccss of membrane projecting like the 'caruncula myrtiformes, into the cavity of the vagina.

In Platyrhine. Monkeys the uterus is long and narrow, with a truncate fundus, the angles of which are not produced into cornua: it begins to show thicker muscular walls. The os tincæ is bilabiate: the urogenital tract is relatively longer than in Lemur, cqualling that of the vagina. The clitoris is of unwonted length, and is pendent outwardly, like the penis of the male, in the SpiderMonkeys (Atelcs): it is not perforated hy the urethra; this opens upon a longitudinal fold extending from the constricted limit of the proper vagina to the vulva.

In Catarhincs the urogenital tract is always much shorter than the vagina, and the uterus is long and slender. In Papio Mormon the distended elitoris is three inches in length: the glans is smooth: the inner surface of the proper vagina is ohliquely and transversely rugous: the external lahia become mucli swollen at the heat. In hoth Baboons and Macacques the tunics of the uterus are thinnest at the fundus, the angles of whieh are slightly produced, like a last indication of cornua. At the cervix therc are seen, besides the longitudinal folds, two bulbous processes of the lining membrane; helow these a large os tince, with a remarkably irregular surface, projects into the vagina. This canal is lined hy a dense epithelium, and presents a few large longitudinal, and numerous small, compressed, transverse and oblique ruge, the margins of which are crenated. A transverse line divides the vagina from the urogenital canal, at the commencoment of which is the termination of the urethra and also the orifices of the glandular sinuses, called canals. of Gürtncr or Malpighi. In Macacus Silenus, Hunter compares the eonstriction with a caruncular prominence at the heginning of the urogenital tract to the "hymen': the "glans clitoridis' is sub-bifurcate. In the Green-Monkey and other species of Cercopithecus, the ovaria are compressed, and approach the triangular form; the oviducts enter the angles of the fundus of a simple undivided uterus: the ccrvix uteri is occupied by several irrcgular longitudinal ruga; the internal surface of the vagina presents a few oblique rugre, The urcthra, in Cerc. Sabaus, terminates two-thirds of an inch within the vulva, upon a longitudinal prominence, on each side of which there is a transverse ridge dividing the vagina from the urogenital parsage: immediately beyond the constriction therc are several
small obliquc plications of the lining membrane. The clitoris is impcrforate; on each side of it there is a tumid process of integument, making a kind of prepuee. From thesc processes two ridges pass backward to the sides of the vulva, of which they constitute the labia, and between these there is a groove running from the clitoris to the urethro-sexual canal. In the tail-less Apes the fundus uteri acquires increased breadth; the gencral walls-are thicker than in Monkeys; but the entire organ is longer and more slender than in the buman subject.
§ 394. In Bimana.-The ovaria of the adult female are oval, subdepressed bodies, fig. 548, \(f\), suspended by the layers of peritoneum continued from their surface to the 'broad ligament,' within which

is a cord of sclerous tissuc passing from the uterine end of the ovary to the womb, and called 'liganentum ovarii,' ib. \(h\) : a process of the pavilion connecting these to the opposite end of the ovary is called 'tubo-ovarian ligament,' ib. e. Tbe depression of the 'broad ligament' between ovarium, \(f\), and oviduct, \(c\), shown by raising the former, answers to the 'capsula ovarii' of lower Mammals. The anterior surface is less convex than the posterior one. 'The ovisacs expand in a dense tissue or 'stroma,' fig. 534, inclosed in a sclerous tunica albuginea: with the adventitious tunic which the ovisaes dcrive in thcir enlargement from the stroma, they form the cavities called 'Graafian vesicles.' In the young adult female the surface of the ovary is smooth: it afterwards bccomes searred by the cicatrices of ruptures, caused by discharges
of ova, of which a recent instance had occurred in the ovarium, fig. 549.

The remnant of the Wolffian body, noticeable in most lower Mammals in the form of a group of parallel wavy tulbules extending from the ovary betwecn the layers of the broad ligament, is constantly present in the human subject, and is termed' parovarium,' fig. 550, \(a, b, c, d\), the terminal carcum becoming enlarged, as at \(f\), to form the so-called 'hydatid' of


Ovnry after recrut diacharge of unimiperghated ov um, Huntal; ; bre, slac. cextyi". the broad ligament: contiguous cæca, \(b\), have a tcudency to become dilated: those at the opposite end bccome atrophicd, \(d\), as does likcwise the duct \(e\), the terminal portion of which, known as 'Gärtncr's canal' in lower Mammals, can seldom be recognised in the human

female. The 'pavilion' or abdominal aperture of the oviduct (' Fallopian tube,' Anthr., fig. 548, \(d\) ) is richly provided with a fringe of irregularly crenate folds radiating from the beginning of the canal: the duct dilates bcyond this orifice, and then gradnally contracts to almost capillary minutencss: the surface of the lining membranc of the tube is augmented by the folds continued from the fiubriv, and chicfly longitudinal in direction; these subside about an inch from the uterus, where the oviduct again bcgins slightly to dilate: whcre it enters the nterus the longitudinal improssious terminate abruptls: the epithelium of the lining

\footnotetext{
vol. ItI.
}
memhrane is ciliate. Such is the structure of the human oviduct, as shown in the preparation, No. 2823, A, xx. vol. iv. p. 189; but there are varieties, as in fig. 550. A remnant of the primordial oviduct, or 'duct of Müller,' is constant, in the form of the pedunculate hydatid, fig. 550, \(i\).

The human uterns, of the shape and dimensions shown in the sections, figs. 551 and 552 , is more compact, more muscular, than in Quadrumana, has a broader and more convex fundus, a more marked constriction hetween the incuhating and transmitting parts, and these are more distinct in their respective structpres. The former, fig. 551, uc, which is analngons to and homologous with


Cavity of arimpregmated aterns, IHuman; mat. pize cexuvi".

552


Cavity of uteras, as slanwa by lomeitudinal secton from before back ward, II uman; what slze. ccrlvi".
the 'cornua uteri' of brutes, is termed, in Anthropotomy, the 'body': the part, ib. cc, which answers to the 'corpus uteri' in hrutes, fig. \(546, b, c, d\), is termed 'cervix uteri.' 'The relations above enunciated receive an interesting confirmation in the occasional anomaly of the human utcrine structure shown in fig. 541.

The cnlargement for the lodgment of the foetus and its appendages is limited to the incubatory part, the inner surface of which in the unimpregnated womh is smooth, and by contact closes the cavity, as at \(i\), fig. 552. The cervix, \(i, p\), has its inner surface increased hy numerous plicate folds and furrows; in many instances diverging from an anterior and posterior medial longitudinal
ridge; and here a slender fusiform cavity, occupied by secretion, is maintained.

What is called the 'lining memhrane' of the uterus is a layer of substanec, fig. 570, including formified eorpuscles or ' nuclei,' fusiform fibres, and amorphous matter traversed by the irregular tortuous canals, ealled 'utricular glands or follieles,' and by capillary blood vessels, which form an angular network, fig. 553, on the surface, the 'utriculi' opening in the centre of the mesles. This substance is readily shed as 'decidua,' and renewed. At the 'cervix'a true 'lining. membrane' bceomes differentiated, composed of basilemma, fibrous and vascular tissucs, follicles, and papillæ, the free surface showing a precipitate of tessellated epithelium. The 'os utcri' is a transversely elliptic convex protuheranee, upon which the womb communicates with the vagina by a transverse fissurc. It is directed obliquely backward, and when divided, as in fig. 552 , presents an - anterior lip,' \(a\), and a ' posterior lip,' \(p\). The posterior commencement of the vaginal canal, \(f\), overarching the 'os utcri,' is ealled 'fornix.' The peritoneum is continued over this part as far as the line or reflection upon the rectum, \(r\). Anteriorly, the peritoneuin is refleeted from


Capillarfes on the surface of the lining substance, 耳umen uterut. ecxivi". the uterus at the beginning of the cervix, which, from \(b\) to \(b\), is connected to the urinary bladder hy areolar tissue. The round ligament of the uterus consists of fasciculi of unstriped fibres, continucd from those of the angles of the 'fundus uteri,' fig. \(548, g\), inclosed by peritoneum, and continued to the internal inguinal ring: liere it expnnds, and separates into an inner fasciculus lost in the tendons of the internal ohlique and transversalis, a middle one in the upper column of the external abdominal ring, and an external one to the infcrior colnme. It is a rudimental homotype of the cremaster of the male in its primitive in verted state. Antliropotony cxtends the term 'ligament' to the different shects or folds of peritoncuin continued or reflected from the uterus. One of thesc ineloses the ligament of the ovary continued upward into the remnant of that of the primordial kidney. The vagina is a subdepressed cylindrical canal, commencing as in fig. 5.52, and continued to near the pulval outlet, where it is bounded anteriorly by the prominence of the vestihule on which the urethra opens, fig. \(\overline{5} 54, u\), and posteriorly by the usually crescentic fold, which more or less constricts the distal orifice of
the vagina, ib. va. The inner surface of the vagina presents numerous close-set, transverse, often verrucose, ruge, somctimes diverging from opposite longitudinal tracks, as columnæ rugarum,' on the fore and back parts of the walls: toward the vulval end of the canal the rugr bccome broken up into shorter prominences, or 'leaflets.' This part of the vagina is surrounded by a 'eonstrietor' musele, fig. 554, \(b\), between whieh and the inner

554


External temale parts, Human. coxnvin". membrane, ib. \(v a\), there is, on eaeh side, a gland, \(y\), which sends its secretion by the duet, \(d\), into the urogenital passage, between the hymen and nympha: it is ealled the "vulvo-vagiual' gland, and answers to 'Cowper's' in the male. The urogenital passage rarely exeecds an ineh in length: it includes the prominence or 'vestibule,' ib. \(v\), upon whieh the urcthra opens; the elitoris, \(c\), with its preputium, \(p c\); and the pair of highly vaseular folds, \(n,{ }^{1}\) eontinued from the clitoris downward to the lower boundary of the passage. The vulva is ehiefly composed by the 'labia,' ib. \(l\) (the right one has been removed in the figure), which are lateral folds of tegumentary and 'dartoid' tissue, including fibrous and adipose substanee. The outer part is hairy skin, the inner layer is smooth, vaseular, pinkish in colour, and furnished with many muciparous and sebaceous follicles. Above their upper eommissure is an eminence of fibrous and adipose tissue, covered by integument which, at the age of puberty, becomes clothed with hair. The labia are homotypes of the serotum: the clitoris is a miniature representation of the penis, and has its 'crura,' 'body,' 'glans,' ' suspensory ligament,' 'erectores muscles,' and closcly eonformable vaseular structures, with the addition of large contiguous venous plexuses. Its nerves are equal in size to those of the penis.

These, called 'nymphre' are of unusual length in some low varieties (Hottentot, Boschismen) of the human species.

\section*{CHAPTER XXXVIII.}

GENERATIVE PRODUCTS AND DFVELOPMENT OF MAMMALIA.
As the leading forms of the Mammalian spermatozoa have been already given, and as their development does not differ in any cssential degree from the process described in Vol. I. pp. 589-592, I proceed to notice the correlative act which is truly characteristic of the present class.
§ 395. Ovulation in Mammalia.-The ovum in Mammals, characterised by its extreme minuteness, was recognised soon aftcr the microscope came into use. De Graaf \({ }^{1}\) (1672) discovered it in the oviduct of the Rabbit. Haller, \({ }^{2}\) unsuccessful in this quest, lent his authority to discredit the statements of the Dutch anatomist; but Cruikshank \({ }^{3}\) (1797) confirmed and established thcir accuracy. Neverthcless, \(u p\) to 1824, the Mammalian ovum was known only as it appeared in the oviduct.

Prevost and Dumas, indeed, twice detected a less pellucid spherical corpuscle, a millimeter in diameter, in the ovarian or Graafian follicle, and deemed it very probable that thence was dcrived the oviducal ovule.4 Von Baer (1827) raised the probability to scientific certainty by a series of observations of the ovarian ovum, made in the Bitch, Cow, Sow, Ewe, Rabbit, and also in the Human fcmale. He deemed, however, this ovarian orule to answer, not to the entire ovum of lower Vertebrates, but to the 'germinal vesicle' of such; the fluid of the Graafian vasicle he homologised with the ' yolk,' and its lining membrane with the 'membrana vitelli,' so that the 'Graafian vesicle' was still to Von Baer, as to Prevost and Dumas, the 'ovum of the ovary.'s Soon followed, however, an almost simultaneous series
\[
\text { celvi". }{ }^{2} \text { cCIVII". } \quad \text { CCLVIIt". } \quad \text { cCIIX }{ }^{\prime \prime} \text {. }
\]

Vesicula ergo Graqiana cum ad ovariun gesteratimque ad corpus maternum respiciomus, oยum sane est mammalhum. Sed evolutionem quod attinet, vehemeuter diseropat a religuorum ovo mimalium, quorum ori mucleus integer ex ovario devehitur, fetui nascituro non sedem tantum prebiturus sed in ipsum potius fetum transfurmundus. In munualibus vero vcsicula innata vitellum magis excultum continet ot ratione ad fotum genitisrum habita verum sese probat ovum. Ow fetale dioi possit in ovo matcrno, Manmalia ergo habent ovum in oro unt, si hac dicendi formula, uti licot, orum in secunda potontin.:-P. 32. 'Quapropter in vesicula Grafiana describenda
of observations \({ }^{1}\) by which the 'germinal vesicle,' the ' germina spot,' the yolk, and yolk-membrane, were determined in the minute opaque sphere; and thus was the ovarian egg of the Mammal finally made known.

The ovisac and ovum appear later in the ovary than do the seminiferous tube and spermatoon in the testis. The first-formed elements in the fetal ovary are


Formation of the ovisue, Dog, Celaki", those called • cells' and 'cellnuclei': next appear roundish groups of such primary cells, rather more opaque than the rest of the previously uniform mass, fig. 5.55, A. A film soon condenses round these purposive grouns, ib. \(\mathbf{b}\), upon the inner surface of which forms an -epithelial precipitate from the fluid and granules of the interspaces of the contained primary cells: within the 'ovisac' thus formed a larger riucleate cell becomes visible, which is the beginning of the ovum. As the ovisac expands the proportion of fluid to the formified particles increases, and the latter are attracted to the contiguous surfaces, some to that of the ovisac, which thus becomes lined by a thicker layer of cells, others to the ovum, accumulating around it. With the enlargement of the ovisac, the stroma ovarii' 'condenses around its delicate membrane, fig. \(5 \overline{5} 6, b\), to form the 'theea folliculi' of Baer. This vascular covering of the ovisac, ib. a, with the proper wall, ib. \(l\), constitutes the 'Graafian vesicle or follicle.' The stratum of nucleate cells lining the ovisac is termed 'membrana

\footnotetext{
voce ovali somper usus sum, quia resicula Graafiana ipsa ovum refert, respecto ovario, ex ovolo autem, fit ovum fetale.' . . ' Ex guo concludo: quo diutius in corpore materno fetus foventur, eo magis jam prinitus exculla videtur ovi vesicula innata, que in mammalidus eo pervenit ui omnes ovi virtutes in sese recipiat at relique oei pat tes \(7^{\prime a r w i}\) momenti extranea quasi fant.' ccxlxx". p. 33. [The italics are V. Buer's.]
cCL". cCLi", CCLHi".
}
granulosa,' those which surround the ovum itself form tbe 'proligerous disc,' ib. \(e\), and the mass of cells thereto adhering is the 'cumulus.' The 'hyalinion,' or proper tunic of the ovum, thickens into the clear substance ealled 'zona pellucida,' \(f .^{1} \quad\) The cells inmediately around the ovum, as it ripens, elongate and become pyriform, with the pointed end attached to the 'zona': those of the cumulus diverge irregularly into the fluid intervening between them and the 'membrana granulosa' of the ovisac: but the four groups, defined hy Barry \({ }^{2}\) as 'retinacula,' ib. d, and fig. \(559, g\) 2, may be an exceptional disposition.


Gratlan vastele and ovum, Enbbit; ragign. CIX.

The ripe ovarian ovum, frced from its cellular precipitate, fig. 557, is inclosed in the thick transparent structureless 'hyalinion,' \(a\) : its vitelline contents are opaque through the ahundance of granular yolk-substance, \(b\) : in this is the 'germinal vesiele,' with its nucleus or ' macula,' ib. \(c\) : it is more readily seen when the yolk is discharged from the ruptured ovum under pressure, as at \(b\).
§ 396. Ovipont.-The maturation of ova occasions the 'rut' or 'heat': in many brutes it is annual; in the Ferret twice a ycar'; in the domestic Rabhit, Cat, Hog, Bitch, it may recur three


Mammallan ovarian ovum; magn. coovirs. times a year or oftener : in the Hruman female it is menstrual. The number of ovisacs and ova which ripen at each rut varies according to the multiparity or uniparity of the species: in the sow, e.g. fig. 5.5, there may be from four to six or more in each ovary; in the Ornithorlhynchus, fig. 566 , there are two only, and these limited to the left ovarium; in the Inman female there is rarcly more than onc. The rut involves a determination of


As hero shown it looks like a 'zone;' but is a bag, not a belt.
- cIx.
blood to the ovarium, and especially to the swollen ovisac and its adventitious coverings: a thinuing of these takes place at the most prominent part, to which the ovum tends: blood is extravasated into the ovisac, which,


Ovom, with timien granulnes, of the Rablite, In the aet of eacaphg from a ruptared Graman follicle cox'. partly by absorption, partly by pressure, yields and gives issue to the ovum, fig. 559. This happens whether the male have access to the female in heat or not. In the Human kind the ovipont concurs with and probably occasions the menstrual discharge. \({ }^{1}\) The uninpregnated ovum may escape, as an impregnated one has sometimes done, into the abdominal cavity : but, save that it probably perishes in its norinal progress outward, it might be said that a woman lays an egg every time she men-struates-an egg resembling in all essential struetures that of the bird, but not exceeding \(\overline{1}_{\frac{1}{8}}^{5}\) th of an inch in diameter. \({ }^{2}\) Something like a sanguineous discharge has been observed in Quadrumana; but the more constant concomitant of the rut in that order is the swelling and vascularity of the external parts of generation. In the Mare an opaque white secretion is ejected per vulvam at the heat.
§ 397. Corpus luteam.-After the escape of the ovum, with other contents of the ovisac, the walls of that cavity become thickened and altered in colour : in most Mammals they are partially everted at the ruptured orifice, fig. 566, \(b, b\). In the Cow and Sheep such altered 'Graafian follicle' assumes a brickred colour; in the Sow a yellowish brown; and in the Woman the brighter colour led to its being called a 'corpus luteum.' In her the walls of the distended ovisac, compressed by the tunica albuginea and surrounding stroma, are thrown into delicate folds, fig. 560: the blood-clot which may have remained after the escape of the ovum is progressively absorbed. The plicated ovisac then contracts upon the cavity, and by the time the suc-

\footnotetext{
celimit, ceciry \({ }^{\prime \prime}\). cclví.
In cccvix. the diameter of the mature orarian ovum is giren, as being, in man \(\frac{1}{1 R 0}\)

}
seeding ovisae with the ripening ovum has begun to protrude from the surface of the ovary, the old ovisae has lost its yellow colour, with much of its size, and has retired inward. This movement, with the collapse of the wall, depresses the cicatrix of the

aperture; and by these successive shrinkings and cicatrisations of the burst ovisaes, the ovary becomes marked by pits and furrows in advanced life. If thc expclled ovum be not impregnated, the changes of the ovisac into the yellow convolute cavity, then into a small white stcllate body, may occupy two months in the Iluman subject; but, if the maturation of successional ova be delayed by impregnation and its consequences, the first change gocs on to a greater degree, and the 'corpus luteum' is not obliteratcd in less time than from thirtcen to fourtecn montbs: the inner coat, or original ovisae, is more thiekened by a larger deposit of yellow oil-granules; it becones morc deeply plicated, is then compacted into a yellowish mass, and gains an adventitious white lining membrane, fig. 561. Rarcly until after full gestation and delivery is the cavity obliterated: it is then represented by a stellate lincar figure surroundcd by the 'corpus luteum,' which is ultimately absorbed.


Bectub of Bunnm ovary with ' curpual luteum," after hupregumtiou. coxivi".
§ 398. Impregnation.- - Ifter coitus the spermatozoa find their way to the Fallopian tubes, or oviducts, and might come into contact with the ovarian ovum, through the opening in
the ovisac, prior to its expulsion, hut they have never been traced so far. They were first seen, hy Martin Barry, to have penetrated the 'zona pellucida,' in a Rabhit's oviducal ovum,


Oviducal owum of Renlobit, jenetrated lay spermatomoa: magn. 350 diam. (conMrnmed min colatio.) fig. 562. No definite single pore or ' micropyle' for the entry of the spermatozoon has been detected in that delicate evanescent tunic of the Mammalian ovum. The 'germinal vesicle,' or 'germ-cell,' disappears as snch. A somewhat more opaque "embryonal cell' succeeds, which may be, or includes, a combination of the nuclear matter of the sperm-cell with that of the germ-cell. Then follow the initial steps, figs. 563-565, which Barry's capital discovery showed to be the same essentially in Mammals as in all lower animals; and the entire yolk under-

\section*{563}


Ovum, more advanced in the oviduct, Fablit; magu. 350 diam. cCLX1" goes the cleavage-process in its combination with the progeny of the emhryonal cell. Most of these initial steps are taken in the course of the impregnated orum through the oviduct.

While in this narrow tube the ova are rolled to and fro by its peristaltic actions in a transparent fluid more or less abounding with spermatozoa; and the more of these get access to the yolk the more certain and complete is its segmentation. With the formation of the embryo-cell the yolk hecomes separated by fluid from the 'zona pellucida,' and hegins to rotate therein, as indicated by the arrows in fig.


Ovan from the uterine half of the , ovidurt, Rabbit; matgil. 320 diam. celxis". 562; one or two minute granular or oillike bodies may appear in the surrounding fluid. \({ }^{1}\)

A division of the primary embryo-cell, with mutual repulsion of the two secondary ones, is followed hy cleavage of the entire yolk, through attraction round each secondary cell, fig. 563, of the paxticles contiguous thereto. A repetition of this process issues in the four divisions of the germ-yolk, fig. 564 ; then in the cight, as in fig. 565 ; and so on until the whole is worked up into a

\footnotetext{
\({ }^{1}\) cclxi", ccxlix. for the same phenomena in Acephala (Unio and Anodon), p. 526 ; in Gastropods, p. 566.
}
mass of finely nueleate eorpuseles; amongst whieh the qualities of the parent embryo-cell, due to impregnation, are thus equally distributed.

The eight fold eleavage of the yolk has been observed three days after impregnation in the Rabbit, four days in the Guineapig, and ten days in the Bitch : always in ova toward the uterine end of the Fallopian tube.

In the Bitch the emooth surface of the zona pellucida beeomes irregularly floceulent, as if a granulo-mucous substanee had been deposited thereon: in the Rabbit the ovum acquires a thick adventitious layer of albumen, fig. \(565, a\), before entering the uterus: in the Guinea-pig the


Orum from uterime end nithe niduct, with the molditith of a layer of albunien, Rabble; magu. B50 dinm. COLXI". zona eontinues smooth; and, after entering the uterus, on the fourth diy, it grows fainter as the mulberry state of the yolk is there attained, and it disappears when the germ-mass is eompleted. The act of impregnation being thus consummated, ulterior ehanges with manifold modifieations attend the development of the ovum in different Mammalia.
§ 399. Development of Monotremata.- The ripe ovarian ovum, though large in proportion to that in higher, especially placental, Mammals, is very much less than in Birds or Reptiles. Its external eoat is thick, smooth, highly refraeting-a true • zona pellucida : the germinal vesiele is \(\frac{1}{250}\) th of an inch in diameter : the larger proportion of vitelline matter, rich in granules and oil globules, is the chief distinetive eharacter of the monotrematous ovum as a Mammalian one. I found two ovisacs with sueh mature ova in the left ovary of a female Ornithorhy \(n\) ehus, killed in September. In a specimen killed on the 6 th of ()etuler (Yas River, New Sonth Wales), the left ovary presented two discharged and altered ovisacs. The ova from these wore situated at the upper part of the left nterus, and at the distanee of about a line from each other. Each was spherical, aurl measured two lines and a half in dianeter; the germ-mass, originally pale, had deepened to a yellow enlour in the preserving liquor. The outer tunic had received no adventitious covering, lut retained its smooth and polished exterior, and had not contracted any adherence to the uterine parietes. Each ovum was
imbedded in the soft, thick, plicated, smooth-surfaced, and wellorganised lining memhrane of the uterus. In a second Ornithorhyncluns, shot in the same locality, on the 7th of October, the ova, fig. 566, \(c, c\), from the two discharged ovisacs, ih. \(b, b\), were situated a little helow


Left uteras Impregnated, Ornithorhynchus. Lxxvir'. the middle of the left uterus; they were also spherical, each three lines in diameter, of a lighter colour than the proceding, specially at the upper part, from the suhsidence of the contained vitelline or germinal mass: they were smooth, and rolled freely out of the position where they were lodged. In a third specimen, shot on the evening on which the first specimen was obtained, the uterine orum had the same spherical form, smooth extcrior surface, and freedom from connexion with the uterus; hut was of a lighter colour, owing to the increased quantity of its fluid contents, to which its greater size was chiefly attributahle. It measured three lines and a half in diameter, and was situated in a depression or cell a little helow the middle of the left uterus. The lining membrane of the uterus was much thickened and highly vascular in each of the ahove specimens. In all these ova the contents were of two kinds, viz. a greyish sub-transparent fluid, and a yellowish denser mass, which varied in thcir relative proportions as ahove-mentioned: in the largest ovum, the yellow mass, germ or yolk, occupied ahout one-third of its cavity, while in the smallest it constituted four-fifths of the whole mass. The memhrane, which may he the hyalinion or 'zona pellucida' of the ovarian ovum, hut which I would still, as in 1834, call ' chorion,' \({ }^{\prime}\) offers a moderate degree of resistance when torn open, and yields equally in every direction when separated from the yolk, the rent margins curling inwards like the coat of an hydatid. This memhrane is of a dull greyish colour, inclining to brown, slightly transparent, and more polished upon its iuner than upon its outer surface. The fluid,

\footnotetext{
This term siguifies the 'outer tunic' of the uterine ovum: it may be 'zona' or something laid upon the zona, or something superseding the zona, such as the animal layer of the blastoderna, or the outor or vascular layer of the allantois.
}
answering to that which appears between the yolk and zona pellucida after impregnation in the Rabbit's ovuin (fig. 562 , marked by the arrows), occupies a situation analogous to that of the albumen in the egg of the fowl, but bad not become coagulated by the action of the spirit in which it had been so long immersed : it divides the ehorion, fig. 567, \(a\), from the vitelliue membrane, ib. \(b\) : this membrane, fig. 568, \(a\), is thin, smooth, and transparent; adherent to parts of its inner surface was a thicker granular layer, answering to the 'blastoderm,' or germinal stratum, fig. 568, \(b\). In cach of the above impregnated Monotremes \({ }^{1}\) the discharged ovisaes, fig. \(566, b, b\), were of an elongate flaskshaped form, about three lines in length, and two in diameter, with the margins of the orifice, through which the ovum and granular substanec had

 Ormithorliznchas. laxyil. passed, everted, with a slight contraction, resembling the neck of』 flask, below the aperture. On compressing these ovisacs, small portions of coagulated substance escaped. When longitudinally divided, they were found to consist of the same parts as the ovisae before impregnation ; but the theca, or innermost parietes of the sae, was much thickened, and eneroached irregularly upon the empty *pace, so as to leave only a cylindrical passage to the external opening.

On the 8th of December Dr. Bennett discovered in the subterrancan nest of an Orni-


Portion of the witclline mem. lunge ant germhal atmatum, Q"ulthorin'uchug Inxtyí* thorhynchus three living young, naked, not quite two inches in length, fig. 600. On the 12th of August (1864) a female Echillna hystrix was eaptured in the hollow of a prostrate - cotton tree,' in Colac Forest, Victoria Prorince, Australia \({ }_{1}\) having a young one, fig. 603, e, with its head buried in a mam. mary or marsupial fossa, ib. c. This young one was naked, of a bright red colour, and one inel two lines in length. Between the condition of the uterine ornm, as in fig. 567, and that of the (probably new-born, or recently born) young Monotremes, abovemeutioned, I have not hitherto received materials for further elucidating the development of the fæetus in this singular group of Mammals: whether cleavage of the yolk takes place prior to the

\footnotetext{
I rxxyu'. I was indobted to my oid fitend and fellow-stadent, Gronge Bunsett, nuw 1 F.In.s, for the nbore mentioned specimens.
}
entry of the ovum into the uterus still remains a matter for observation. The young of both Ornithorhynchus and Echidua will be described in the chapter on the Manmary organs.
§400. Development of Marsupialia.-On the 27 th of August (1833), a female Kangaroo (Macropus major), captive in the Gardens of the London Zoological Society, received the malc. She stood witb ber fore-paws off the ground; the male mounted, more canino, embracing her neck with his fore-paws, and retained his hold during a full quarter of an bour: during this period the coitus was repeated tbree times, and on the second occasion much fluid escaped from the vulva. The male was removed from the female in the evening of the same day, and was not afterwards admitted to her. On September the 2nd, six days after the eoitus, I examined the pouch of tbe female; and this scrutiny was repeated every morning and evening until the birth of the young Kangaroo had taken place. It happened in tbe nigbt of Oetober 4 , thirty-eight days after the coitus. On the morning of the 5 th of October, I found the young in the pouch, pendant from the tip of the left upper nipple, of the size and shape sbown in fig. 606: it will be described in a subsequent chapter.

The ovarian ovum, in the Kangaroo, agrees in all essential points with that of placental Mammalia: the main modification is the greater proportion of vitelline substance, and the smaller proportion of the surrounding fluid in the ovisac. In a female Macropus Parryi, the ovum from the largest ovisac of the left ovarium measured \(\frac{1}{10}\) th of a line in diameter, the germinal vesicle \(T^{\frac{1}{4}-0}\) th of a line in diameter. We are at present ignorant of the ebanges that take place in the development of the ovum between the period of impregnation until about the twentietb day of utcrine gestation. At this time, in the great Kangaroo ( \(M a\) cropus major), the uterine fortus, fig. 537, measures eight lines from the mouth to the root of the tail; the gape of the moutb is wide; the tongue large and protruded, fig. 569 ; the nostrils are small round apertures; the eyeball is not yet wbolly defended by the palpebral folds; the visceral cleft reduced to the meatus auditorius externus is not provided with an auricle; a posterior cervical fissure was cither unclosed, or the delicate cicatrix had given way in the manipulation of the foctus. The fore-extremities are the largest and strongest; they are each terminated by five well-marked digits; those of the hind legs are not yet developed. The tail is two lines long, thick and strong at the commencement; impressions of the ribs are visible at the sides of the body: the membranous tubc of the spinal marrow may be
traced along the hack between the ununited elements of the vertehral arches; posterior to the umhilical cord there is a small projecting penis, and hehind that, on the same prominence, is the anus. This foctus and its appendages were enveloped in a large ehorion, ih. \(i\), puckered up into numerous folds, some of which were insinuated hetween folds of the vascular lining membrane of the uterus, hut the greater portion was collected into a wrinkled mass. The entire ovum was removed without any opposition from a placental or villous adhesion to the uterus. The chorion, fig. 567, \(a, a\), was extremely thin and lacerable, and showed no trace of villi on the outer surface. The membrane, ib. b., extending from the umhilicus to the inner surface of the chorion, was highly vascular. The feetus was immediately enveloped in a transparent amnios. On turning the chorion away from the feetus, it was found to adhere to the vascular membrane; hut they could he separated from each other, without laceration, for the extent of an inch; at this distance from the umbilicus the adhesion was closer: and here the umbilical membrane terminated in a well-defined ridge, formed by the trunk of a bloodvessel. When spread out, as at \(b, b\), fig. 569 , its figure was that of a cone, of which the apex was the umbilical cord, and the hase the 'vena terminalis.' Three vessels diverged from the umbilical cord and ramified over it. Two werc continuations of the terminal or marginal vein: the third was the arterial trunk. The amnios, ih. \(c\), was reflected from the umbilieal cord, and formed, as usual, the immediate investment of the fortus.

The umbilical cord measured two lines in length and one iu diameter: besides the threc vessels above-mentioned, it ineluded a simall loop of intestine; and from the extremity of the latter a filamentary process was continued to the vascular membrane. On tracing the contents of the cord into the abdomen, the two larger vessels, filled with coagulated hlood, were found to unite; the common trunk then passed hackward beneath the duodenum, and after heing joined by the mesenterie vein, went to the under surface of the liver, wherc it penetrated that viscus: this was conscquently an omphalo-inesenteric or vitelline vein. The artery was a branch of the mesenteric. The membrane, therefore, upon which they ramified answered to the vitellielc, i. e. the vascular and mucous layers of the germinal membranc, which spreads over the yolk in oviparous animals, and which constitutes the so called 'umbilical vesicle' of the emhryo of placental Mammalia. The filamentary pedicle which connected this membrane to the intestine was given off near the end of the ileum.

At a later period of uterine development, when the foctus, measured in a straight line from the mouth to the root of the tail, is ten lines in length, the urachus expands into a small allantois, fig. 569, \(d\), of a flattened pyriform figure, and finely


Uterlne foetus, membinnes and apmendages, bachopus major, (Tine foetns is magnfled twice the nathyal size.)
wrinkled external surface. This bag insinuates itself between the amnios and chorion, carrying along with it two small hypogastric arteries and a veia, but not establishing by their means an organised and vascular surfaee of the chorion by which a \({ }_{\mathrm{I}}\) lacental attachment is formed between the ovum aud the womb. The
allantois depends freely from the end of the umbilical eord, and has no connection at any part of its circumference with the adjoining membrane. Its office, as in the Batrachia, is apparently limitcd to that of a receptaele of urine. The vitellicle or 'umbilical vesicle' presented the same large proportionate size and vascular structure as in the first described foctus. The chorion which enveloped this fœetus and its appended saes was adapted to the eavity of the uterus by being disposed in innumerable folds and wrinkles. It did not adhere at any part of its surface to the interus, but presented a modification not present in tbe chorion of the earlier foetus, in being partially organised by the extension of the omphalo-mescnterie vessels upon it from the adherent vitellicle. The digits of the hind legs were distinctly formed in this embryo.

In some smaller kinds of Kangaroo an ovum from each ovary may he imprcgnated, and two embryos be simultaneously developed.'

Rengger gives the following aecount of the generation of a species of Opossum (Didelphis Azara) :-‘ The foctuses are developed in the cornua utcri, and not in tbe lateral canals. Some days after impregnation they have the form of small round gelatinous corpuseles, which do not appenr, even when examined with a lens, to have any communication with the mother, but a red line indicates the first commeneernent of development. Towards the end of gestation, when the foetuses have attained the length of six lines, they are seen to be enveloped in a membrane and provided with an nmbilical eord, which is united to the uterus' (chorion?) 'by the medium of many filaments. The head, the four cxtrcinities, and tail are recognisable with the nakcd eye, but those footuses which are nearest the Fallopian tubes are gencrally least advanced. In gestation they make the eircuit of the lateral canals, in which they are found to be deprived of their fretul envelopes, and to have no communication with the parent by means of the umbilical eord; whilst one foetus was found in this situation, two others were still in the body of the uterus. (vaginal cul-de-sac?), 'from which the umbilical cords were not yet detached. At this period a slight enlargement of the

\footnotetext{
1 Two hate not been found in the same uterus, Mr. Collie, Surgeon, R.N., states, - I have jnst now procured grarid nteri (of the Macropus Bruni) in which two fatuses seom to bo arrived nt, or rery near to, the termination of the period of gestation. One of them, which was about one-hnlf largor than the body of the common wasp, has protruded through an opening inudvertently made in the uterus, and is distinctly seen through its transparent membranes and the liquor amnii,' - Zoological Journal,' rol. \(\therefore\) p. 240 .

Vil. 111.3
}
uterus and lateral canals was the only change perceptible in them.' \({ }^{\prime}\)

As aeeomplished Naturalists eontinued to helieve and affirm that the young of the Marsupialia quitted the womh and were reeeived into the pouch 'in the condition of a gelatinous ovum eomparable to a Medusa,' \({ }^{2}\) I deemed it requisite to anatomise the rare instanee of the uterine foctus of the Kangaroo, in order to demonstrate the eonditions of the respiratory, circulating, digestive, and renal systems. From the ercum, which was given off from the returning portion of the umbilical loop of the intestine, the large intestine passed backwards to the spine, and was then hent, at a right angle, to go straight down to the anus. The stomach did not present any appearance of the saeeulated strueture so remarkable in the adult, but had the simple form of a earnivorous stomach. The liver consisted of two large equal and symmetrically disposed lobes. The vena porta was formed hy the union of the vitellinc with the mesenteric veins. The diaphragm was perfeetly formed. The vena eava inferior was joined, ahove the diaphragm, by the left superior cava, just at its termination in a large right auricle. The ventricles of the heart were eompletely joined together, and hore the same proportions to each other as in the adult, - a perfeetion of structure whieh is not observed in the embryos of ordinary Mammalia at a corresponding period of development. The pulmonary artery and aorta were of nearly the same proportionate size as in the adult: the divisions of the pulmonary artery to the lungs were at least douhle the size of those observable in the embryo-sheep three inches in length: the duetus arteriosus, on the eontrary, was remarkahly small. The aorta, prior to forming the descending tronk, dilated into a hulb, from which the carotid and subclavian arteries were given off. The lungs were of equal size with the heart, being ahout a line in length, and nearly the same in lieadth : they were of a spongy texture and of a red colour, like the veins, from the quantity of hlood they contained. This preeocious development of the thoracic viscera is an evident provision for the early or premature exereise of the lungs as respiratory organs in this animal : and on aceount of the simple condition of the alimentary canal, the chest at this period exeeeds the ahdomen in size. The kidneys had the same form and situation as in the adult. The supra-renal glands were half the size of the kidneys. The testes were situated helow the kidneys, and were one-half

\footnotetext{
From the Analysis of Rengger's 'Säugethiere von Paraguay' in the Bulletin dps Sciences Nat. tom. xxi. p. 469.
\({ }^{2} \cos \mathrm{Xiv} \mathrm{v}^{\prime \prime}\). p. 342.
}
larger than those glands, the superiority of size depending on their large epididymis, with the adherent remains of the Wolffian body. They continue within the abdomen for six weeks after uterine birth." The nervous system alone is embryonic, fig. 585. §401. Development of Lissencephala. - In Lyencephala, of which the uteri undergo least change of dimensions during the characteristic brief gestation, those tubes have the definitely organised and persistent lining membrane described, pp. 679, 685.

In the placental Mammals of which the uteri undergo wholly or locally great and rapid ehanges of size and capacity the lining of the incubatory part is less differentiated. In some it is but remotcly allied to the class of membranes called 'mucous': canals so lined are habitually traversed by the matters they have to convey. The transmitting function of the womb is seldom exercised in the course of life, with long intervals of rest: its lining has a higher, organising, office: it differs from mucous membrane in the absence of 'suhmucous areolar tissue' (p. 439, fig. \(361, c, d\) ), or any such medium of eonnection with, or reception of, vessels from the muscular coat: it is a pulpy substance, in which corpuseles or nuclei abundantly, and fibre-cells nore sparingly, formify: it receives directly from the flcshy substance of the wonb its vascular supply ; and is perforated by

 coxhivi". the minute canals, sparingly exuding fluid, termed 'uterine or utricular glands.' A ciliate epithelium may be distinguished on the free surface in most Mamnals; non-ciliate cell-deposit occupics more or less of the ' itriculi.' These, in fig. 570, are indicated by the pale tortuous

\footnotetext{
\({ }^{2}\) Lxxv'. p. 887 (1834). Such is the difficuity of giving np a stiange or ' telling' statement, which has once gained curreacy, that wo read:-w' Los petits ne se développent pas comme d'ordinaire dens la poche utérino, mais sont promptement expulsés au drhora, ut naissont dans un état d'imperfection tello qu'on no peut les comparer qu'à des embryons à peine ébruchés. Cr sont des petits corps gélatineux, informes et incapubles de mouvement, dont les divers organes ne sont pas encore distincts, et dont l'exiatence serait impossible si la nature n'avait assuré leur couservation par des moyens particuliers.' cclxv". Even M. Pouchet, usunlly so conscientiously accurate, writes: -- Le produit de la génération qui, en arrivant là (the pouch), n'est qu'un simple ovale encoro buigné do fluides albumineux, so tronve posé sur les tétines.' (ccxer". p. 262, 18.41). My observations on the Kangaro wero confirmed by those of Meigs on the Opossum (cclxxvin". 1847).
}
lines \(a b\); the dark fine lines represent injected capillaries, continued directly from the fibrous walls of the uterus, \(a\) c. Such pulpy vascular substance, compared by John Hunter to 'coagulable lymph, \({ }^{1}\) is rapidly formed, readily shed, speedily renewed: it grows with the needs of the growing embryo or foctus, as the medium for bringing into requisite relation with the circulating system of such the motber's blood.

In the uterus with a non-caducous and well-organised lining membrane the chorion or outer coat of the ovum continues smooth and unvascular, at least, until the foctus and appendages have advanced to the degrce shown in fig. 569. But in the deciduate type of lining substance there is a reciprocal preparation


Eterine osa, Rabbit. cocrin. of the chorion for intimate connection therewitb in the form of willi, or long filamentary vascular processes, extending from more or less of its outer surface, fig. 571 , cho.

In the very small proportion of the placental series in which the early phascs of development in utero have been traced, so much diversity has been recognised as to warn against too hasty generalisations.
In the Rabbit, hefore the ovum enters the uterus, it has received from the oviduct additional layers, ib . \(\boldsymbol{A}, \mathbf{B}\), which, either in combination with, or substitution for, the hyalinion, become the medium of applying the capillaries of tbe foctus to those of the mother continued into the decidua. When the factal appendagcs have attained, in this Rodent, the stage they exhibit in the Marsupial, fig. 569-viz. the formation of the amniotic bag, fig. 571, a, the inclosurc of the unconverted germ-mass, or yolk, by a vascular vitellicle, \(b\), and the out-budding of a small allantois, \(c\)-the embryo is hy no means so far advanced. The ventral parietes of the thoracic-ahdominal cavity are not formed, the bilocular heart is

\footnotetext{
\({ }^{1}\) In the indication of the various definable parts of tbis deciduous substance a vocabulary of terms has becn created; e. g. ' non-placental uterine mucous membrane,' 'uteroplacental mucous membrane,' "persistent;' or ' non-decidnous serotina,' 'deciduous serotiza,' 'fimbrim of decidua serotina,' 'membrana decidua,' 'decidua reflexa,' rags,' 'tags,' \&re.
}
exterior to it; neither lungs nor diaphragm have yet appeared; the parallel columns of the neural axis indicate the primary brain-vesicles, by receding from each other in the long cephalic expansion; a few pairs of protovertebre show their beginnings at the sides of the myelon, and there is no trace whatever of linus. The ovum has wholly sunk into a bed of the decidu-ously-developed lining substance of the womb. Before the Marsurial stage of the foetus has been reached, ehanges have taken place in the environnient of the embryo, and the growth of the abdominal parictes having reduced the wide aperture, shown in fig. 571, c, to a navel, the embryo with its amnios has sunk into the vitcllicle, the trunks of the vitclline artery and veins becoming concomitantly elongated. The allantois comes in contact with that part of the chorion beyond the 'vena terminalis,' and, having fulfilled the main purport of its elongation by transporting thereto the allantoic or so-called 'umbilical' vcssels, \({ }^{1}\) it collapscs, and leaves them to their work of organising the foctal portion of the placenta. The maternal portion is developed upon a whitish area of the inner surface of the uterine horn at the side where the mesometry, fig. 572, \(q, g\), is attached. The gravid uterus of the Rabbit, ten days after pregnancy, presents the appearance given in this figure: the foctus in its chorion chiefly adheres to the preformed maternal dise at the mesometral side, as shown at \(d\) : it is not, however, lodged in a generally expanded segment of the uterine tube, but in a special dilatation thereof, \({ }^{\text {a }}{ }^{1}\) prended, as it were, to the free side of the tube, \(d,{ }^{2}\) the normal canal of which coutinues mainly to subserve the lodgment of the placenta. This, in the Rabbit, is an oblong lobulated dise; \({ }^{3}\) I have found it consisting of five lobes or cotyledons: in the Hare it is morc compact and subcircular, and about two inches in dianetcr toward the close of gestation: the inner surface and margins are red, the rest yellowish with red spots, when uninjected: the outer surface is subeoncave and uneven, the inner

\footnotetext{
This is an ambiguous term, applied to different structures which are connected with the navel : e.g. to the ritellicle, ns ' umbilical sae;' its vessels being distinguished by the Girevk term for navel. I shull here, as in Vol. II. (p. 263), call the omphalomeenteric vessels 'vitelline' and the umbilical vessels 'allentric,' in reference to the two primitive lengs with which they are respectively connected.
\({ }^{9}\) This is claracteristic of most multiparous Lissencephala, 0. g. Shrew, fig. 389, \(u\); Rat, xx. rol. v. p. 117, nos. 3466, 3467 ; Guinea-pig, ccuxu". tab. v. fig. 10 , in which the normal cmanl of the uterus is obliteruted by the accumulated deciduous substance: -'Später, wenn dio Flächen und Rändor des Schleimhautschwulstes bereits miteinander versubmolzen, die llöhlo đes Uterus mit der sich đurch sio hindurchziehenden Epithelinlröhre verschwunden ist.' ib. p. 30.
\({ }^{2}\) xx, vol. in. p. 168, no. 3472.
}
surface convex and tubercular. The navel-string, one inch in length, expands, after reflection of the amnios, and is lost in the


Gravid uterus, A, multiparous; D, uniparous, Mamnal ; C, early uterine ovim. cccyin.
allantois, which reaches the circumference of the placenta: folds of the allantois are reflected from the main trunks of the allantoic
vessels, and partially divide its eavity. The ehorion reeeives vessels from the vitelliele as well as from the allantois. Gestation in both Hare and Rabbit is 30 or 31 days: but the new-born Hare is more advaneed, the eyes being open. The Rabbit is born blind.

In the Guinea pig (Caria Cobaya, L.) the uterine ovum, when the subdivisions due to eleavage-proeess have coalesced into the germ-mass, has lost the hyalinion, and is surrounded by the cells, nuelei, molecules, so-ealled 'epithelium,' \&e., formified from the fluid of the amorphous lining matter of the womb, from which the impregnated germ-mass is searcely, if at all, distinguisbable (5th or 6th day): fluid accumulates in the centre of the germmass, which now assumes the form of a cylinder with obtuse ends, and may be said to be lodged in an 'utrieular eanal' of the dccilua. When this substanee has filled the part of the uterine hom eontaining the cylindroid ovum, the end of this, next the mesometral side, begins to reeeive vessels from the deeidua, and to be attached to sueh commencement of the maternal placenta: the opposite or free end of the ovum is the seat of tbe initial steps in the formation of the embryo.

The cylinder expands into a sphere (12th day), the remaining gerin-mass forming the wall of which bas become differentiated into a serous or 'animal' layer toward the eentre or eavity of the ovum, and into a peripheral, 'vegetal' layer ; \({ }^{1}\) both expanding to form the tunic of the ovum, everywhere in contact witb the thick surrounding bed of decidua. The fundamental structures of the embryo rise from the part of the serous layer next the free side of the uterine horn, and project into the eavity of the orum, toward which the dorsum of the embryo is turned. A vascular layer is developed between the serous and the inner side of the vegetal layers, the normal relations of the primitive germinal strata being thus reversed. Bloodvcssels extend from the widely open abdonen or ventral surface of the embryo upon the vascular layer of the ovum ; and, as the growing abdominal walls eontract to an ' umbilieus,' the embryo sinks into, or enters, the eavity of the ovum, with which it is in communication by vitelline vessels, fig. \(573, b\), defining a vitellicle by the 'vena terminalis,' ib. \(c\), (14th dry). Very early a knob of nueleate cells, which seem to form the eandal end of the embryo, are developed into an allantois, which eonveys allantoie vessels to the attached mesometral side of the ovum, to ramify in the maternal placenta, ib. \(f\), tbere formed

The microscopic clanmeters of these two layers are given in figures 36 and 37 , tab. iii. ccexu".
out of the accumulated decidual substance (15th day): after fulifling that office the allantois disappears, or is represented by the delicate sheath inclosing the trunks of the allantoie arteries and veins, ib. \(d\). The amnios, \(a\), in the meanwhile, has becn completed: and the embryo, so inclosed, is suspended freely within the cavity of the vitcllicle, which, by disappearance of the primitive vegetal laycr, is now dircetly surrounded by a dcposit of decidua, fig. 573 , \(i\), becoming thinner as the foctus and its vitellicular membrane expands ( 17 th day). Through this order of development it secms that the relative position of the embryo to its appendages is the reverse of that in the Rabbit, fig. 57. The mesometral mass of decidua forms a well-defined thick circular placenta, ib. \(f\), lobulated on the inner free surface by furrows affecting a radiate but anastomosing disposition, to the centre of

573


Diagrammatic section of embryo of Gulnea-pig, with ice vitelline and decldual membranes and placenLiB. COLXII"。 which pass the allantoic vessels. These, however, began on reaching the decidua, to organise a distinct placental mass, ib. e, which might be termed the foetal portion: it, however, receives maternal vessels from the larger and first formed decidual placenta, ib. \(f\). The proportions of these placentr become reversed as the foetus grows. The uterine veins, before quitting the placenta, form an annular sinus around the portion \(e\), and then penctrate the decidual parts, \(f, g\), and the uterus. The allantoic vessels also ramify not only in \(e\), but also in \(f\), between the lobules of which the larger branches pass to gain the periphery.

As the foetus approaches its term the decidual covering of the ovum disappears, or is reduced to mere shreds at the circumference of the placental enlargement, \(f\), which is now much rcduced in size : it receives into a cavity a mammilloid process from the centre of the foetal placenta, to which process converge the uterine vessels from without and the foctal vessels from within, before they ramify to the periphery. The vitellicle still represents the chorion: its arteries form a peripheral 'circulus artcriosus,' parallel with the vena terminalis or 'circulus venosus,' and in the interspace of these vascular circles, fimbriate processes grow ont richly supplied by vitelline vessels and constituting a
third kind of placenta more exclusively related to the nutrition of the foctus. For this grows so quickly and becomes so large, \({ }^{1}\) that the allantoic placenta, serving both for respiration and nutrition, needs the help it ohtains through ahsorption, by the vitelline fringes, of the uterine nutrient matter in which they are bathed. The umbilical cord, as in most Rodents, is very short and thick.

In the Iguti the decidual placenta is still more reduced, little more than the originally traversing maternal vessels remaining on their passage to the later allantoic placenta, which they seem to suspend by a central part, opposite to which, on the other side of the placenta, the foctal vessels proceed. In the Rat the maternal or decidual placenta is cotyloid, and is adapted to a small convex process of the centre of the uterine surface of the buttonshaped foctal placenta; \({ }^{2}\) and, as in the Guinea-pig, the allantois, after laying the foundation of the lattcr, speedily disappears. The like happens in the Water-vole, in which the foctal placenta is small and circular, convex toward the uterus and flat toward the vitelline chorion, which has its attachment limited to the central part of the placental disc.

In the Molc and Shrew the vitellicle is large, and supplies the outer envelope of the ovum with vessels, coalesces with, and seems, indeed, to form it. The allantois, bending to the dorsal aspect of the cmbryo, carries its vessels to that part of the amorphous mass of decidua envcloping the ovum. The early embryo in its amnios thus appears to be suspended by opposite poles formed respectively by the vitelline and allantoic trunks. The allantoic vessels organise the fine villi of the foctal placenta in a small proportion of the thick deciduous mass: this in the growth of the embryo hecomes reduced to a subcircular maternal disc, larger than the foetal one, which is imbedded in its central concave surface. The area on the peripheral convex surface affording the maternal supply of hlood, is small in proportion to the placental disc. The terms 'foetal' and 'materual' relate to the source of the main part of the vascular supply of such divisions of the discoid placenta. The maternal resschs, the orifices of the veins being conspicuous on the arca of placental detaclinent, are continued into the allantoic or foctal button, and the villi of this part extend into the decidual part of the maternal placenta. Beyond this the decidual substance becomes reduced to a very thin layer, traceable over part of the chorion. "The couvexity of the maternal placenta is continued with the lining of the uterus. Such lining is homologous in tissue

\footnotetext{
\({ }^{1}\) Caling in the Guinea-pig for the special expansion of the pelvis shown in Vol. In p. 330 , fig. \(246 . \quad{ }^{3} \mathrm{xx}\). vol. v. p. 117 , no. 3467.
}
with the substance lining the human uterus, but is firmer, and to no part can the term ' mucous membrane' be correctly applied. The placental dise in the Tenrec is subcircular, thickest at the periphery; in all other essential points it agrees with the rest of its order. The main peculiarity of Centetes is its multiparity.' From fuur to six foetuses may be brought forth by the Hedgehog: from twelve to twenty by the Tenrec. The shape of the placenta changes in the course of utero-gestation in Insectivora. When the embryo Hedgehog is from half an inch to an inch in length, it is enclosed in a cup-shaped placenta, as in a nest: this is subsequently spread out and flattened by the growth of the foetus, and converted into a thin, shallow discoid plate, with its concavity applied to the back of the embryo, and with the central part of its convex surface attached to the uterus: the 'button' lies flat upon the maternal portion, and is attached by a wider surface than in the Guinea-pig. In the Mole the placenta is a circular dise at the early period of gestation, and subsequently becomes an oblong flat band, with its long axis parallel to that of the foctus: the linear tract of the uterine surface to which the placenta is attached shows a fine areolar structure, penetrated by the foctal placentary filaments, which are often brought away, as in the Rat, distinct from the maternal structure, like the foctal cotyledon in the Cow. \({ }^{2}\) In the Bat (Vespertulio noctula), the placenta has the form of an obtuse cone. In all the foregoing insectivorous mammals the vitellicle is large. But, in a frugivorous Bat (Pteropus medius, Теmмinoк), I found the vitellicle shrunk to a reniform, compactly folded body, which lay in the concavity of the placenta, between it and the allantois: the placenta was subcircular, discoid, slightly concave towards the foetus, proportionally more convex towards the uterus. The fœetal villi are long, delicate, and branched, giving a flocculent appearance to the small portion of the centre of the dise by which the footal placenta is attached to the womb.

Volant Insectivora, in relation to the exigencics of flight, are commonly uniparous. The uterus of Vespertilio emarginatus,

The chiof of the alleged 'points of difference' of the Tenrec's placental structures from those of other Insectivora, in 'the absence of a yelk-sac, of the allantois as a distinct sac, and of any membrane either decidual or chorionic, on the exterior of the amnios' (ccixvit". p. 291), depend (granting the competency of the observer) on the admitted state of decomposition of the specimen described (p. 287): the 'absence of a yelk-sac,' moreorer, would point from, rather than toward, ' marsupial affinities,' inasmuch as the embryo of the Kangaroo is chiefly remarkable for the large size of such sac, or ' vitellicle.'
\({ }^{2}\) This never happens in the quadrumanous placenta; and the difference is not affected by showing that, prior to severance, the feetal placenta is combined with maternal vessels in the Rat, Mole, \&c.
killed June 20, had a single fretus, half an inch in length. A female of Vespertilic noctula produced, on the 23 rd June, a young one, with an umbilical cord two inches in length.' Judging from observed dates of pairing, the gestation seems to be about forty days. The chief difference from Insectivara is in the larger proportion of the placenta formed by the long arborescent villi organised by the allantoic vessels: the reduced decidua beyond the maternal cake may be traced over a great part of the choricn, which receives, as in other Lissencephala, vitelline vessels. \({ }^{2}\)

According to Carus, \({ }^{3}\) the placenta of the Ai (Bradypus tridactylus) is divided into so many distinct lobes, as to resemble the cotyledonary condition of the placenta in most Ruminants: but there are no corresponding partial thickenings of the lining substance of the uterus like the maternal cotyledons sbown in fig. 546. The so-called placentula, of an irregular oblong, subdepressed form, from \(1 \frac{1}{2}\) to less than \(\frac{1}{2}\) an inch in diameter, and from 30 to 40 in number, project from the endochorion, or inner surface of the allantois, into the intcrior of that sac: they are richly supplied with allantoic vessels: their flattencd outer surface applied, with the uniting layer of chorion, to the inner surface of the uterus, may receive therefiom a medium of ramification of maternal vessels, answering to a decidua serotina. The probability indced is, that matcrnal deciduous substance is interblended with such allantoic lobules of the Sloth, as is the case with the single thin oblong placental dise in Dasypus. The genus Munis offers a third instance of the extent to wbich the temporary structures developed for the behoof of the foctus, and

\footnotetext{
The mother gnawed the cord across and ate the afterbirtb.
A critic of xx. vol, v. pp. 140-45, writes :--. Tho delicate arborescent appearance which is doscribed in the placenta of Pteropus is due, in all likelihood, to tho prolonged maceration in spirit,' \&c. cclavi". p. 310. Tbe Hunterian preparation yielding, according to the Oxford Professor, the above description (No. 3579, Physiol. Sories) is well placed for illustration of this alleged influence in the production of modifications of plarental atructuro. Somo of the specimens had been put into spirit iu 1754, thirty years bofore tho placentn of the Pleropus was so troated; nad both, togetber with otber IInnterinn preparations of placentre, havo been sinco subject to eigbty yeurs of ' maceration in spixit!' But thero was really no need to nssume so special a behaviour of a Mat's afterbirth under macoration, in order to show that ' this placental peculiarity briugs thom, as Linneus did bring them, into the same class as the Primates' (ccixviri. p. 310). No one, now, dreams of leaving Bats among birds. Perbaps, bowover, Dr. Rolloston may mean the same order in the mammalian class. But cerebral, circulating, ossoous and genorutive characters, especially those of the male orgnus, were even tho placental struetures so similar to buman ones as Dr. R. conteuds, would out weigb them, and I beliove will guide all unprejudiced naturalists in juxtaposing tbe winged with thin terrestrial Insectizorn, and in relegating both to the low lissencephalons subclas.
\({ }^{3}\) xhint. p. 21, tab. ix. figs. 15-17.
}
cast off at its birth, are diversified in both form and structure within the limits of a subordinate natural group of placental Mammals. According to Sharpey, \({ }^{1}\) the outcr surface of the chorion is reticularly ridged, like the inner surface of the human gall-bladder, but in a finer degree. The inner surface of the uterus exhibits fime low ridges or villi, not reticulating quite so much (qu. with more open mesbes?). The chorion, also, presents a band, free from villi, running longitudinally along its concavity, and there is a corresponding bald space on the surface of the uterus. The ridges of the chorion start from the margins of the bald stripe, and run round tbe ovum. The vitellicle is fusiform.

The species of the order Bruta are uniparous as a rule: the foetus attains a relatively large size, and the pelvis has a corresponding widtb.
§402. Development of Mutilata.-Tbe Cetacea are uniparous, and still more remarkahle for the large proportional size of the young, at birth : its membranes extend from the division of the uterus corresponding to the impregnated ovarium into that of the opposite side. A general short verrucose villosity of the cborion intus-suscepted by corresponding alveolar modifications tbrough decidual outgrowths of the lining substance of the uterus performs the placental function: the structure is least developed at the terminal blind ends of the chorionic sac, which are almost smooth, and, in the degree in whicb the diffised placenta is thus interrupted at the poles, it may be said to be broadly zonular. Tbe amnotic shcath of the umbilical cord is beset with small pedunculate corpuscles. \({ }^{2}\) In flensing a female Whale (Balcena mysticetus), harpooned in the montb of August, a fcetus escaped from the vulva: it measured 5 feet 4 incbes in length; and was probably far from the full time. No bony pelvic cincture offers a mechanical obstacle to the birth: and the exigencies of a hotblooded air-breathing animal sent from the warm womb into-it may be-an arctic sea, call for muscular powers equal to the evolutions nceded for maintaining contact witb the nipple, and coming to the surface to breathe.

Of the foetal membranes of the Sirenia nothing is known.
§ 403. Development of Unyulata,-Here no envelope of the ovum is superadded to the hyalinion ('zona pellucida'). With this for the outer covering the ovum enters the uterus: it is impregnated in the oviduct, where it mects the spermatozoa; the first stages of cleavage go on there, and the germ-mass is completed in the uterus. In this process the hyalinion tbins away, and finally
disappears. A mass of albuminoid matter aecumulates around the ovum, as in Cavia, but is whiter in colour. It affords material for imbibition, and the germ-mass becorning fluid at, or getting fluid in, the centre, expands into a hollow sphere, the parictes of which become differentiated into two layers: the outer one seems to answer to the corresponding lamina demonstrated by Hunter in the germinal area of the chick; the other to the inner lamina of the same area. \({ }^{1}\) Both layers consist of coberent cells, with some difference as to size and proportion of oil-globules.

The ovum now grows rapidly in length, its opposite poles being prolonged and attenuated. At the point where the two layers or 'membranes' cohere, the embryonal trace appears, its long axis extending at right angles to that of the ovum; the inner or ' mucous' layer is so continued from the margin of the abdominal doprossion as to 'appcar of itself to form the intcstine, existing prior to that part being visible.' \({ }^{2}\) The cephalic expansion and incurvation seems relatively late in Ungulates. Before the amnios is complete, and when the back of the emhryo is still covered by the peripheral part of the scrous layer, when but three pairs of proto-vertebral nuclei are formed, and the cephalic ends of the myelonal cords are only bcginning to diverge, the opposite end of the embryo begins to bud out two proeesses at right angles to its axis, which soon expand into the allantois. \({ }^{3}\) This vesicle rapidly extends between the scrous or animal layer forming the outcr coat of the urum, on the one hand, and the embryo, ainnion and vitellicle, on the other hand ; carrying with it allantoic vessc.s, and hecoming coextensive with the outcr coat. With this expansion that outer coat disappcars, and the ehorion is now represented by the vascular layer of the allantois itself, which has become distinct from its inner or mucous layer. Meanwhile tbe vitcllicle has shrunk to slender proportions, its communication with the intestine beiug reduced by growth of the abdominal walls, and drawn out into an omplalo-mesenteric duct. The vascular layer of the allantois, representing the ehorion, effects its vascular intus-susceptive relations with the utcrine lining in various ways. In most Perisso- and a few Artio- dactyles short villous proccsses bud out from a greater part of the superficies of the ehorion, and a co-extensive minutely alveolar growth of the lining substance of the uterus receives them.

Fig. 574 represents the foctal membranes and appendages

\footnotetext{
xx. rol. 7. p. 20, pl. 59, fig. 7. Lator German Embryologists have called the one 'serous' or 'animn!' layer, the other 'mucons,' 'regetal 'or 'organic' Jaser; but any of these terms can only be auderatood in an arbitrary sense. Soe Vol. II. p. 259, fig. 133.

Ib. p. 20. .cesmin', p. 18 (iu the Roe-buck).
}
attached to part of the abdominal parietes, \(a, b\), with the urinary bladder, \(q\), the fcmale organs, \(s, z\), and rectum, \(p, o\), of an aborted foal. The membrane, \(d, d\), is the amnios which was reflected from the umbilical cord to inclose the foctus; the inner concave surface of the bag, turned toward the parts of the foetus, is characterised by the finely waved disposition of the amniotic vessels. Minute

filiform processes project from the scrous surface of this part of the cord. The urachus, accompanying the umbilical vessels (one artery, two veins, \(b\) ), opens, or expands, into the cavity of the mucous layer of the allantois at \(c\) : this cavity is laid open, showing the part of its wall reflected upon the exterior of the amnios, at \(d d\), and the part continued over the interior of the vascular layer of the allantois, or chorion, at \(g g\) : a portion of its exterior surface is shown at \(h\). The umbilical vessels, continued beyond the end of the urachus to the chorion, seem to form a prolongation of the navel-string, about two feet in length, \(f\), between the amnius and the chorion, around which part of the
cord the inner layer of the allantois is reflected. The vessels of the outer layer branch and spread themselves over it, becoming eapillaries in the clusters of short villosities, and thereby brought into the requisite contact with the maternal eapillaries in the similarly arranged decidual growths, for the interchange and reception of the materials and elements concerned in foetal nutrition. The mucous layer of the allantois lines about half of the amnio-chorionic interspace. Towards the latter period of gestation, the renal excretion of the foetus passing from the bladder along the urachus, deposits near the allantoic orifice of that tube a thick fluid of a reddish colour, of an urinous odour, and which contains uroeritbrin and lippuric acid. The small oval masses, from tbe size of a pea to that of a hen's egg, \(i\), sometimes loose in the allantoic cavity, sometimes adbering to its inner surfacc, are inspissated parts of the allantoic fluid; they have received a special attention from the fanciful import once assigned to them under the name 'bippomanes.' \({ }^{1}\) The chorion, being moulded in great degree upon the uterine cavity, is produced into two 'cornua,' but they are not co-extensive with those of the utcrus. The multiplication of the vascular surface of the ehorionic cornua by fine and deep plicæ iudicates the degree of the placeutary function assigned to these prolongations. In fig. 57.5 the foctus, \(m\), at about the tenth month, is shown, enveloped in the amnios, \(n n\); the entamniotic part of the navel-string, \(o, p\), is continucd to \(q, r\), where the entallantoic part begins, and the allantois is reflected from its urachal pedicle. The endochorionic part of the allantois is seen at \(s, s\); a portion of the exterior of the chorion at \(t: y\) is part of the left uterine horn ; \(z\) is the ovary.

The gestation of the Mare is cleven months and a few days: she brings forth standing, and is fertile to the fifteenth year, rarcly to the eighteenth. The horse is mature at the fourth year, and its average or usual term of life is thirty years, with fair nsage. The Ass brings forth during the eleventh month of pregnaney. The milk appears at the tenth month : in very rare enses the ass may lave twins. The Mare emits a whitish adhesive secretion, 'per vulvam,' during the period of heat. The temporary matcrnal modification of the uterinc lining does not come away with the foctal membranes at birth, but is either absorbed or passed off' with the lochia. The usual smooth surface of the folds of the uterine lining is restored about six months after parturition.

The true nature and position of these bodies were made known by Daubenton, in cerc".

The outer surface of the ehorion of the Tapir is besct with short linear series of small compressed foliate processes, dividing into from three to six leaflets, upon or within which the foctal eapillaries ramify: the inner surface, when the allantoic nonvascular layer or endochorion is removed, is reticulate through the division of the allantoic vesscls, sending off the capillaries to the foliate villi.

The clustered arrangements of the placental capillaries is more marked in the Sow than in the Mare: when uninjected they

appear as white subcircular spots scattered over the outer surface of the chorion: but when the allantoic veins are filled, these are seen to form plexules in the centre of each spot. The uterine veins have a corresponding arrangement. The uterine arterial eapillaries form a fine network, the meshes receiving the villosities which earry the fœotal arterial capillaries; whence it might seem that the nutritiou of the fretus was effected principally at the points of contact of the foctal with the maternal venules,
whilst the respiratory proeess took place at the surface of contact between the foetal and maternal arterial capillarics. The period of gestation of the domestic Sow is about four months; the ohscrved range of variation has been from 109 days to 123 days. The gestation of the Hippopotamus is 234 days. The pair at the Zoological Gaidens at Amsterdam copulated December 1, and the young one was brought forth on July 29, next following.

Camelincs and Chevrotains (Tragulus) have the diffused condition of the placenta as in the Mare and Sow, with some minor modifications of villi and eapillaries: the vitellicle, as in other Ruminants, is relatively smaller than in Solipeds. The urachus dilates, beyond the amnios, into a narrow cylindrical sac transversely extended, or dividing into two slender cornua, entering those of the uterus; it consists of the mueous layer of the allantois, is usually found collapsed, and can hardly be inflated at the last month of pregnancy in the Cow. Laminated deposits from the allantoic fluid are occasionally present, like those called 'hippomanes \({ }^{\text { }}\) in the Mare. A mueh smaller proportion of the space between amnios and chorion is thus occupicd in the Ruminants than in the Equidre, and probably other Perissodactyles.

The villi of the chorion are developed in horned Ruminants on detached and limited localities, corresponding with the prominences of the lining substance of the uterus, fig. 546, from which the deeiduous maternal parts of the placenta grow. The surface of these earuneles, previously smooth, now buds out into retieulate proecsses, moulding themselves upon the chorionie villi, and forming cavities or canals for their inter-susception. These outgrowths are homologous with the 'decidua serotina' of other Mammals, \({ }^{1}\) but they gain a firmer texture, and usually remain attached to the uteras, allowing the foctal villi to be withdrawn from them at birth: they are afterwards shed, or disappear, the earuncle resuming its smooth and even surface. \({ }^{2}\) When the entire caruncle happens to come away, it is not reproduced; a smooth cicatrix remains upon the uterine surface.

Wherever there is placenta there is decidua. The special and temporary work of developments providing eapillary superficies, whether on the part of the mother or foctus, being euded, they

\footnotetext{
\({ }^{1}\) The student must not be seduced into accepting too absolntely Eschricht's dictum: - ' quarum alteri placenta uterinu caduca, alteri uon cadnca est.'
\({ }^{2}\) In xacri', the caruncles aro called 'glabdular protuberances ' (p 544); but it is procisely an that fart of tho utcriue lining whero the utricular glands are wantiug: and the eminences and follicular depressions are peculiar to the period of grestation.
vol. ili.
}
go: they may not be thrown off together, and the maternal decidua may not be shed all at once, but in successive shreds or tags. The long gestation required to bring to due strength the young of the defenceless hoofcd animals before birth, is the condition of the firmer texture, better organization, greater extent, and more persistent character of their - deciduous "structures.

The villi of the foetal cotyledons offer varieties of form and mode of termination, beautifully illustrated by Clift in xxviii. vol. iii., tab. clxxi., and indicated by Home,' as follows:-

terms which, though not strictly accuratc, indicate the degree and way in which generic variety manifests itself in the cotyledonal modification of placental structure.

About eighty cotyledons are developed from the chorion of the Cow ; the surface of the large uterinc caruncles is usually flat or slightly concave. The gestation of the Cow is about nine months (286 days), with a range of variety of about twenty days.

In the Red-deer (Cervus elaphus) gestation is eight months and a fcw days: the rut is usually in the last three wecks of September; the birth in May or early in June. The foetus is long confined to one uterine horn: the mucous layer of the allantois forms a crescentic bag, the horns being prolonged into both those of the utcrus and ending obtusely: it contains a milky fluid, depositing a sediment. The cotyledons are relatively smaller, more oblong, and much fewer than in the Cow. The same may be said of the Fallow-deer, the gestation of which is eight months. Both spccies of Cervus are uniparous, as a rule. The little Roe-deer usually brings forth twins: sometimes both come from one ovary, more often one from each. The gestation here is about nine months ( 280 days). The rut is in July and beginning of August : impregnation and the cleavage-process goes on
as usual, and the ovum, with completed germ-mass, has been found in utero August \(16:^{1}\) here it lies with uncoated hyalinion until the latter half or end of December: the germ-mass remaining four months in a quasi-torpid state. Development is then resumed, and the young are brought forth at the end of April or beginning of May. The contiguous ends of the two elongated ova overlap each other, and as gestation advances the contiguous parts of the exochorion blend together; but each foctus retains its own unvascular allantoic bag and annios.

In the Giraffe there are two kinds of foctal cotyledons: the larger or normal ones are in longitudinal rows corresponding with the disposition of the uterine caruncles: they have mostly a reniform figure, attached to the chorion by a contracted basc: the terminal brancbes of the component villi are finer than those in the Cow, and more resemble those in the Deer. The smaller cotyledons, of irregular form and varying sizc, project from the outcr surface of the chorion in the interspaces of the rows of the larger ones: their villi are proportionally shorter, and in the smallest oncs simple and unbranched, indicating a transitional step to the diffused villosity in the small Musk-deer. I connted 180 cotyledons, large and small, on the chorion of the Giraffe: the umbilical cord is above a gard in lengths

A male and female Giraffe paired, April 1, 1838, and again on the following day, after which the female lost the disposition to receive the male; on June 10, 1839, the udder began to enlarge, and on Junc 19 the young (a male) was born, 444 days after the sccond coitus. The sanc Giraffes paired on March 12, 1840, and aftcr a gestation of 431 days a young male was born. In each cuse the female stood during parturition: the forc-legs of the foetus first appeared, the head and body followed, the mother stooped behind to deposit her burthen safely. In half an hour the young one made cfforts to rise, and in an hour after birth it stood upright. It was born with horns in structure and relative size like those of the dam, \({ }^{2}\) and is the only horned ruminant that acquires these weapons before birth. Concomitantly with the long period of gestation is the unusually large size of the newborn young, which measurcd from the anuzzle to the root of the tail six feet ten inches; from the base of the scapula to the ond of the fore-hoof five feet. The enemies to which such a young Alamnal might fall a prey in its native African wilds indicate the conditions of the unusual strength acquired during the long gestation.
\[
\text { cckxin". p. 10, tab. :., fig. } 8 . \quad \text { "ccrxvi" pl. } 1
\]

The varieties of placental structures and modifications in the Ungulate group are not yet exhausted. The chorion of the Elcphant, fig. 577, a, \(a^{\prime}, d\), at about the middle of the pcriod of gestation, forms a transverscly oblong sac, 2 feet 6 inches in long diameter, and 1 foot 4 inches in short diameter, encompassed at its middle part by an annular placenta, ib. \(b, b, 2\) feet 6 inches in circumference, varying from 3 to 5 inches in breadth, and from 1 to 2 inches in thickness: it is partially divided by opposite


Fotal menurancs and placenta, Elepbant.
constrictions into two moicties; it presents the same spongy texture as does the annular placenta of the Carnivora; but the laminate villosities enelosing the foetal filaments enter into its formation in a laxger proportion, and are of a relatively coarser ebaracter. The greater part of the outer convex surface of the placenta is smooth ; the rough part separated from the serotine portion occupied a narrow tract, \(c, c\). A thin brown deciduous layer is continued from the borders of the placenta, for a distance varying from 1 to 3 inches, upon the outer surface of the chorion. Flattened folds of a similar substance could be raiscd from some parts of the surface of the placenta; at other parts the substance formed irrcgular fibrous bands, the fibres extending in the direction of the circumference of the placental ring. The outcr surface of the chorion is for the most part smooth; but at each of the obtuse extremitics of the sac there was a villous and vascular subcircular patch, \(d, d\), the villi being short and graniform, \({ }_{8}^{2}\) th of a line in diameter, or less. Thus the chicf points of attachment of the chorion to the uterus are, at the equator, by the annular placenta,
and at each pole of the elongated sac, by the subcircular villous patch. The umbilical cord, \(f\), formed by one venous and two arterial trunks, and by the slender neek of the allantois, \(g\), with the connectiag cellular tissue and the covering of amnios, is short and somewhat flattened. It measured about 6 inches in length, hefore the division of the vascular trunk, and about 3 inches in circumference. The inner surface of the amnios is roughened by brownish hemispherical granules, from 1 line to \(\frac{1}{1}\) th of a line in sizc, commonly about half a line; the outer surface is finely wrinkled, but smooth. The bag formed by the mucous or unvascular laycr of the allantois is of considerable size, is continued from the base of the umbilical cord, so expanding between the chorion and amnios as to prevent any part of the amnios attaining the inner surface of the placenta. The allantois divides, where the amnios begins to be reflected upon it, into tbree sacculi: one extends over the inner surface of the annular placenta, and a little way into one end of the chorion: a second extends into the oppositc end of the chorion, \(a^{\prime}\); it there bends round toward the placenta, and its apex adheres at that part to the first division of the allantois: the third prolongation subdivides into two smaller cavities, each terminating in a cul-de-sac, encompassing, and closely attacbed to, the primary divisions of the umbilical vessels. The line of adhesion of the amnios to the allantois, where it is reflected upon these cul-de-sacs, measures 3 feet 6 inches.

The primary branches of the umbilical arteries and vein diverge from the umbilical cord in four divisions: they reach, first, the borders of the placenta, and then ramify in its substance and upon the inner surfuce of the chorion, being supported there, and more or less surrounded, by the layer of the allantois called 'cndochonivn.' Upon the endochorionic vessels are developed a number of flattencd, oval, or subcircular bodies, \(e, e\), of a compact, structureless tissue, varying in diameter from an inch or more to half' a line. On separating the chorion from the allantois, these bodies were found to belong entirely to the latter membrane: the vessels upon which they seem to be developed pass on their chorionic side, the bodien adhering to the allantoic side of the sbeath of the vessel: they are most abundant near the placenta, and become wider apart as they approach the poles of the cborion: l connted 120: the smaller ones occur on the free duplicatures of the allantois continucd from the umbilical trunks: in almost every case tlicy are developed on the course of the large vessels, and are restricted, with few exceptions, to that part of the allantois which is in contact with the chorion. Their free surface is
smooth and polished, not villous like the cotyledons of the Ruminantia; from which they likewise differ in projecting inward toward the cavity of the allantois, like the so-called cotyledons of the sloth : they are not mere precipitates of inspissated matters of the allantoic fluid, like the 'lhippomanes' of the Mare.

A male and female Indian Elephant paired Decemher 18, 1863, and at other times up to January 8, 1864, when they were kept apart. For twelve months there was no conspicuous increase of the ahdomen : after that period it was obvious to close inspection, on the left side: then the mammary glands enlarged, with slight occasional oozing of milk; and on August 3, 1865, the young was horn; it stood 2 feet 10 inches high, and weighed 175 lbs. Thus the period of gestation, reckoned from the date of first coitus, is 593 days.

The Hyrax has an annular placenta more suhdivided than in the Wilephant. The venous blood returns from it at three places, the centres of as many divisions of the helt, which, however, are continuous hy thinner portions of placental substance. The villi are imhedded in decidual substance, and the surface of its attachment to that remaining on the uterus is less limited than in the Elephant. The placental zone seems relatively tighter, the ends of the chorion swelling out more, than in Carnivora. The perissodactyle number of ribs-twenty-two pairs, the simple stomach and complex cercal structures, the hoofs of the unsymmetrically tetradactyle fore-foot and tridactyle hind-foot, as in a larger extinct hornless rhinoceros, the close repetition of dental characters in the diminutive existing species, not merely as to pattern of grinding surface of molars, hut of kinds and manner of growth of all the teeth, the incisors heing developed as in Rhinoceros incisivus, \({ }^{1}\) demonstrate the low taxonomic value of the placental character, according to which the Hyrax, as well as the Elephant, would he classed with the Carnivora.
§ 404. Development of Carnivora. - In the foetal Cat, ahout the middle of the period of gestation, the chorion, fig. 578, \(a, a\), is a curved are 6 inches in long diam., by 2 inches in short diam., with ohtuse ends; it is girt in the middle hy an annular placenta, \(b, 1 \frac{1}{2}\) inch broad: the zone is concave transversely within, of a mingled grey and red colour when uninjected: the chorion on each side of the placenta is slightly folded, and of a reddish colour. The foetal surface of the placenta is lohulated:

\footnotetext{
He must have counted much upon the ignorance of his auditors or readers who could affirm that the "Hyrax hangs by Rhinocros mainly by the pattern of ite molar teeth.' \(\operatorname{cCLX} \mathrm{z}^{\prime \prime}\). p. 111.
}
the maternal placenta or serotine decidua is present, and can be separated as a distinct layer. \({ }^{1}\) The mucous layer of the allantois expands from the uterine extremity of the umbilical cord upon the vascular layer (chorion or exochorion), forming broad duplicatures about the allantoic vessels outside; the trunks

578


Fcotur with membrate and placenta, Cat. cxxim'.
of these are in the free margins of the folds, and at the opposite margins the folds of the non-vascular layer of allantois recede and spread over the vascular layer or chorion, to which they colere. The vitellicle, \(d\), extends into the pointed horns, \(f\), \(f\), between amnion and placenta, at right angles to the latter: it is attacbed by a slender pedicle, \(g\), to a loop of small intestine: it usually contains a yellowish liquid, with some small loose fimbriate precipitates. In the amniotic liquid crumbs of meconium occur toward the end of gestation. The navel-string is very short. The Cat is in heat, for about ten days, before she is a year old; and is prolific to the ninth year: bringing forth at least twice a year in the wild state, and three or four times in domesticity. The

\footnotetext{
' xx. vol. p. p. 141, no. 3565.
}
gestation is fifty-five or fifty-six days; and she brings forth usually from four to six young.

In the Lioness the exterior of the placeuta is marked by anfractuosities like those of the brain; the inner surface is divided into small irrcgular eonvex lobes by deep sulei. In the zonular placenta of the Dog the maternal portion cannot be defined and separated as in the Cat: the uterine surface to which the placenta adheres presents a finely reticulate substance, the meshes being formed by orifices of apparently utricular glands, aggregated in the interspaces of larger alveoli, scattered over the surface with intervals of between half a line and two lines. When the foctus has attained a length of five or six inches, this alveolar decidua has acquired a thickness which makes it recognisable as the maternal portion of the placenta. The period of gestation of the Wolf, Jackal, and Dog is 63 days:

A modification of the annular placenta, analogous to that in the Elcphant, obtains in some Carnivores, e. g. the Weasel tribe (fig. 579, Putorius Furo); two portions of a subcircular form, A, B, appear as a double placenta, but they are united by a much thinner tract, c , also receiving ramifications of the allantoic vessels. The umbilical cord, one-third of an inch in length, goes to one of the cotyledons, whence the vessels extend to the other. The omphalo-mesenterie duct expands into a pyriform vitellicle, five lines in length. The Ferret produces from five to eight young; she has usually eight teats; has a six-weeks' gestation, and produces twice a year. In the Martens the placenta is undivi-


Fatus and Piacenta Putorius Furo. cxxat" ded (Mustela martes, M. foina, \&c.); the decidua serotina siuks into its substance along a narrow tract at the middle of the outer surface of the zone, as in the Elephant: they bring forth, commonly, twice a year, hut are less prolific than the Weasels. The navel-string is very short: the allantois is more elongated; a trace of vitellicle may be seen in a small bilobed yellowish patch, upon the inner surface of the placenta, where the navelstring ends.

In the Hyæna the decidnous substance becomes fused with the chorionic placental processes: it is moderately thick, spongy,
tomatose, non-coherent: the foctal processes penetrate cavities in the decidua apparently homologous with the utriculi of the human uterine lining, and having as little the structure of true follicular glands. The original deciduous capsule of the ovum is reduced to a very thin layer of mueous substance, exterior to the placental zone.

Scals bave rarely more than two young, and more commonly but one, at a hirth. In the latter case the foctus and its membranes are limited to one horn of the uterus, not extending into the opposite horn, as in Cetacea. The placenta is zonular, in four or five continuous or connected divisions. In Phoca vitulina the diameter of the zone parallel with the long axis of the ovum is between two and three inches. In parturition the sclerous tissue of the symphysis puhis hecomes relaxed, allowing divarication of that part of the pelvic areh, which, consistently with the reduced hind limbs, is smaller than in land Carnivores.

The gestation of the Bear ( \(U\). americanus) is seven months: the young, usually two in number, are horn as well shaped as in other Curnivora, hut are more naked: the eyelids are closed, and so continuc for about four weeks. From some information I have received respecting the ladger, it would seem, like the lioe, to have a long gestation in proportion to its size. The young, as with the Bear, are blind at birth.
§ 405. Development of Quadrumana.-The Makis (Lemur) have sometimes one, commonly two, rarely three young at a birth. A pair of the Lemur albifrons, captive at the Jardin des Plantes, Paris, eopulated December 23, and afterwards repeatedly for five or six days : the female hrought forth April 13, after a gestation of fifteen weeks. The new-born young was cowcred with very short hairs, and had its eyes open. \({ }^{1}\)

The Marmosets (Hapale Jacehus) resemble Lemur in the number of young: the gestation is three months: the young is naked at birth, except upon the head, and gets elothed in three or four weeks. In Callithrix sciureus the long twisted umbilieal eord is chicfly in connectiou with a cireular thiek discoid placenta: but some of the branches of hoth the two arteries and two veins extend (as it seemed to Schroeder von der Kolk) \({ }^{2}\) to a smaller and thinner circular villous tract, like a second plaeenta at the opposite end of the ehorionic sac.

The llowler (Mycetes seniculus) has a single placenta, also cireular, diseoid, from which the foctal blood is returned by two
\({ }^{2}\) IL. p. b5, pl. 6, fig. 1. Rudolphi found the placenta single in Hapale Jutcchns.
umhilical (allantoic) veins: the cord, as in Callithrix, is attached to the margin of the placental disc. Hapale, Nocthora, Callithrix, and other small kinds of Platyrhines are monogamous. Larger platyrhinc Monkeys (Mycetes, Cebus, e.g.) are polygamous: three or four females are usually seen with one male. Cebus is usually uniparous: the gestation is five months: the placenta single, discoid, thick; the umhilical cord with two veins and two arteries: the maternal and fottal portions of the placenta are expelled together, the foetal villous part does not come away separately, as is sometimes the case in Lissencephala. The villous and cellular structures are still more intimately hlended in oldworld Quadrumana. In the tailed Catarhines, which, as a rule, are uniparous, the placenta is double, the two being distinct and apart, usually disposed upon the right and left sides of the uterus. In fig. 580, where they are exposed in the green Monkey (Cercopithecus sabeus) the following parts are indicate:- \(\alpha\) peritoneal coat of uterus, \(b b\) muscular coat, \(b^{\prime}\) thicker portion at the cervix uteri, c os tincce, \(d\) glandular rugæ of cervix, \(e\) cavity between cervix and decidual lining of uterus, \(f\) decidua, \(g\) chorion, \(h\) amnios, \(i\) umbilical vessels associated in gronps of two arteries and one veiu, on their way to the cord, \(k, k\) amniotic surface of the two placentr, \(m n\) amniotic sheath of cord, dissected to show the two arteries and one vein: oclitoris, \(q\) hair covering the lahise, \(r\) diverging branches of umbilical vesscls on the proximal placenta, \(s, s\) vessels extending to the distal placenta \(t, v\) interplacental area. In the prognant Macacus rhesus dissected hy Hunter \({ }^{1}\) the two placentæ were contiguous, and each of more ohlong form than in fig. 580. The placenta shows a combined cellular and filamentary villous structure. The filaments include the capillary loops of the fœetal vessels: but instead of lying freely in alveolar cavities of the maternal placenta, they are connected or entangled with the fine cellular structure which receives the hlood from the uterine arteries: the uterine veins have stronger and more definite coats than in the human placenta: the decidua is also denser and more coherent, and the layer between the uterus and placenta is thicker. Each placenta consists of smaller lohes united at their edges: in the fissures lie the veins, or sinuses, from which the venous hranches are continued. \({ }^{2}\)

In Semnopithecus nasicus the two placentæ are more remote than in Cercopithecus, and the distal one is smaller than that from which the umbilical cord is continued: this is divided into five lohes. Two placentæ have heen ohserved in a species of Hylobates:

\footnotetext{
+ xery. p. 71.
}
but in the Chimpanzee the placenta is single. In all old-world Quadrumana the umbilieal vein is single, as in Bimana. Where any trace of vitellicle bas been detected in Quadrumana, it has been very small.
§406. Development of Bimana.-The lining substance of the


human uterus, when an ovum is impregnated, augments in thickness, fig. 570, and seems to degenerate into a pulpy spongy mass, into whieh the ovum sinks on entering the womb: its position is shown, diagrammatieally, in fig. \(572, \mathrm{~B}, e\) : but the special ehamber in which, at first, it lies loosely, is exhibited in fig. 581: here, bristles are introduced at the orifices corresponding with those of the oviducts, and pass out at the beginning of the cervix uteri,
where the decidua cuds. The utricular canals become dilated and tortuous, and are still lined (or formed) by epithelial cells: but formifaction is active in the production of diverse defined corpuscles from the 'granule' up to the colossal 'fibre-cells,' fig. 416.

At the fourth or fifth month the decidua becomes condensed to a thinner layer, and detached


Decidual lining substance of human aterus, shed in abortion. cexcyi". from the muscular wall of the uterus by a new, soft deposit, which takes on the utricular character of the original lining substance, and remains after parturition.

The primary changes of tbe impregnated human ovum have not been observed. It cannot be doubted that the germ-mass is due to the clearage process. Whether the outer coat continues to be tbe hyalinion when tbe ovum passes into its deciduous nest; wbether the hyalinion then gives place to an expanded 'animal' layer of the blastodcrm; or whether this be superseded by the vascular layer of the allantois-are conjectural possibilities suggested by observed facts in lower Mammals, and awaiting proof. This is certain, that when the amnion is completed, the intestine formed, and the vacancy of the ventral walls contracted to an umbilicus, the remnant of the vitellicle is reduced to a crumpled yellowish subcircular corpuscle, \(1 \frac{1}{2}\) line in diameter, adherent to the outside of the amuion, and connected witb the intestine by a long filamentary omplalo-mesenteric pedicle, accompanied by a vitelline vein and arteries. The vascular layer of the allantois has formed, or organised, the chorion: its unvascular layer is disposed like a scrous membrane between the ammiou and chorion, and maintains a connection for a time with a filamentary uracbus, expanding within the pelvis into a urinary bladder. The growing ovum pushes the frce wall of its decidual chamber into the uterine cavity (traversed by the bristles in fig. 581), and, filling it, reduces it to a narrow 'hydroperionic space." The layer of dccidua so pushed in seems to be reflected upon the ovum, and is termed 'decidua reflexa or 'decidua ovuli': the thicker layer lining the womb is the 'decidua
vera," or 'd. uteri.' Long and large villi extend from the chorion into the dccidua, and at this period (latter half of the first month) there may be traced, upon its inner surface, orifices of canals that lead into the uterine sinuses. The maternal blood already flows freely into the maternal chamber, and, after passing cverywhere anong the villi, is returned into the uterine veins. Thus a temporary placenta is formed analogous to the diffused form described in Crtacea and certain Unguluta. But soon the villi increase in length and size on the side of the chorion next the uterine wall, and decrease on the opposite side, which becomes smooth or bald; this, pressing upon the hydroperionic space, finally obliterates it, and arrests the flow of blood to that part of the circumference of the chorion. On the other part, ncxt the uterine wall, a circular space is left, like a meniscus, round the circumference of which decidual growths pass from the uterus to attach themselves to the chorion, and form the margin of the true placenta; then, as the uterus enlarges, concomitantly with the cxpansion of the ovum, a decidua, called 'serotina,' is reproduced to form the basis of the maternal placenta, from which septal processes extend grouping the developed villi of the chorion, or foctal placenta, into lobes. Witl the further grow th of the placenta these lobes become usually more and more confluent, the fatal also becomes more blended with the maternal part, until a strueture results, as exposed in the section of the placenta and plaeental area of the utcrus, fig. 582.

The line, \(u\), \(u\), indicates the extent of the uterine wall; \(u d\) is 'decidua scrotina;' \(d p\) deciduous septa, \(p\) placenta, ch chorion, nm umnion, \(v f\) fotal blood-vessels, \(v, v\) villi, us uterine venous sinuses, \(a, a\) uterine 'curling artcries.' The two foctal arteries (allantoic or umbilical) communicate by a cross branch near the placental end of the funis, beyond which they spread in large branches over a considerable part of the free surface of the placentr, and subdivide dichotomously in the chorion, two or thres tinces, before they penctrate the placental substance to ranify in the villons processes called 'placental tufts." The stems of thesc are rooted in the chorion, and are tough and fibrous. Each tuft consists of an outer coriaceous and an inner soft tissuc: a distinction which is continued to the terminal rilli, fig. 583, as slown in the end of one from a stale placenta in which the inner vascular substance had shrunk away from the outer epithelial sheath, il). \(b\). From the third to the sixth month the arterics of the villi terminate in a rich capillary plexus at their periphery, ib. a. The veins from the capillaries unite
to accompany the arteries along the centre of the villi, emerge from the substance of the placenta, about sixteen in number,


Section of humbn uterus and attached placentia at soth week of gestation. cexcrip.
with a less tortuous course than the arteries, converging to the root of the funis and ultimately uniting to form a single umbilical


Villl of taft of fretal dart of plarenta, at six months; magn. ocxlvi". vein. After the sixth month the capillaries of the villi begin to disappear. The uterine arteries, fig. 582, \(a\), about the size of a crow-quill in the later months, have a tortuous or curly course, and they ultimately pour their blood into the large venous sinuses, ib. us. These are most numerous upon the inner side of the decidua constituting the uterine surface of the placenta, passing obliquely through that layer into the uterine wall; some extend into the decidual septa, and some lead to the marginal channel termed the - circular sinus \({ }^{\text {. }}\).

In Bimana the placenta is relatively thicker and smaller than in Quadrumana, and is attached to a relatively more contracted area of the womb than in the tailed kinds.


At the end of pregnancy the fore part of the abdomen is occupied by the uterus, fig. 584, the fotus being commonly carried in the position there represented.

Nine months is the usual period of gestation in Bimana; but occasionally birth occurs at the eighth or even the seventh month, and the infant has been reared.
§ 407. Development of Mammalian Brain.-Limitation of space compels me to conclude this chapter with a brief notice of some of the more specially mammalian modifications of foetal formation.

The initial steps in the development of the nervous system of the Mammal closely correspond with those of the Reptile and Bird (vol. II. figs. 39, 135). The brain of the Kangaroo, a fortnight after birth, fig. 585, A, B, has not advanced beyond the condition of that of the embryo ehiek at the fourth day of in-

585


Brain of new-born Eangaroo; magn. \(\overline{5}\) times. LXXXT \({ }^{2}\). eubation. Hanging motionless from the teat, like a foetus from the navelstring, its eerebellum, ib. A, c, has not transcended the filmy fold of the cold-blooded saurian type; but expansion has begun at the base, b, \(c\), of what are destined to become the mammalian lateral lobes. \({ }^{1}\) The mesencephalon constitutes the main part of the brain: it is a large oblong vesicle, in which the optic lobes, ib . \(d\), begin to be faintly marked off from the 'thalamal ' part, \(e\), overlying the crura cerebri. No organ of the young air-breathing Marsupial offers a greater contrast to that in the new-born placental Mammal than the retarded brain. In form it has got no further than that in the six weeks embryo sheep, but it is firmer in texture: gradually advancing along the Mammalian route, its developmeut stops at a certain point. The superincumbent mass of cerebellum expands, accommodating its ultimate sheet of grey matter to the cranial chamber by transverse folds; and the lateral lobes stretch out into appendicular lobes, fig. 74, \(e\). The optic lobes, in their growth, show no disposition to special lateral expansion and divergence (as in the bird, vol. II. figs. 42, 44), but swell into a pair of elosely united hemispheres: the special mammalian addition is due to growth of neurine in the fore part of the 'valvula vieussenii' between the 'processus a cerebello ad testes,' which proceeds in Marsupials and all higher Mammals to add a second pair of tubercles (' testes ' of anthropotomy) to the optic lobes (' nates' ib.). Into the eavity of the small hemispheric vesicles, fig. 585, \(g, i\), the 'corpora striata' first bulge, and are soon followed by the hippocampal protnberances: with the former appear the transverse fibres of the anterior commissure, with the latter those of the hippocampal commissure. In Marsupials this is the sole addition to the transverse connections of the hemispheres common to lower Vertebrates: in Placentals, devclopment of the commissural system proeeeds to establish the supraventricular mass called 'eorpus callosum.' But this is not neeessarily accompanied by inereased development of the cerebral lobes: the Lissencephala retain the lyeneephalous
superficies and proportions of the superincumbent masses of the prosencephalon. In the Gyrencephala tbese extend backward over the mesencephalon, and more or less of the cerebellum: from the lissencephalous condition transitorily shown by the buman foetus, fig. 125, the middle lobes, \(d\), progressively grow into posterior ones, finally extending in Archencephala above and beyond the cerebellum, and acquiring the proportions and conditions of the posterior horns of the lateral ventricles and 'hippocampi minores' peculiar to and characteristic of the buman brain.
§ 408. Development of Mammalian Skeleton.-The notochord early begins to show a series of dilatations answering to the later intervertebral spaces. \({ }^{1}\) In the embryo bead the blastemal coverings of the piers of the anterior cephalic hromal arch (maxillaries) project fieely, and appear as processes of the second (mandibular) arch: only the proximal parts of the third (byoidean) arch are indicated by indentations, and the piers do not project frecly. The chief developmental mammalian modification arises from the proximity of the precociously and rapidly growing appendages of the acoustic sense-organ ('ossicula auditûs') peculiar to the class: accompanied witb a reduction of the proximal part of the mandibular arch to the support of the tympanum, and with a slight forward dislocation of the distal part of the arch. In Monotremes the tympanic (vol. ii. fig. 197, 28), large and well-ossified in the blind and naked young, has its growth arrested and diverted by the rapid and excessive growtb of the malleus, whicb becomes ancbylosed to the tympanic by its long process, \(o\), whilst its 'manubrium,' \(e\), gives attachment to the radiating fibres of the muscle of the car-drum. The incus, \(b\), is represented by a small and early confluent epiphysis. The collumelliform stapes \(d\) is relatively small as iu other Mammals. The brse of the mandible extends inwardly to join the tympanic, and its articular surface is also extended outward, as in the Bird: the conformity with tbe Chick in the relations of both tympanic and mandible to the primary and transitory cartilaginous hremal arcb, and the plain homology of the ossicle, \(b\), with the better developed incus of higher Mammals, are decisive against the revival of lacichert's ill-founded conclusion as to the homology of the Mammalian incus with the os quadratum (tympanic) of Birds and Reptiles. In the mammary Kangaroo the tympanic, embracing by an upper bifurcation the hind part of 'Meckel's cartilage,' develops a convexity below adapted to the inner side of the

VOL. III. ссскхии".
3 c
ascending ramus of the mandible, and a smooth joint-like surface, fitting into the upper concavity of the inverted angle, answering to the persistent inncr articular part of the condyle in birds. \({ }^{1}\) The fourth hæmal arch is close to the occiput in the Ruminant, and retrogrades as the neck is lengthened out by vertebre interposed between head and chest. It retains, in Cetaceans, almost the typical position exemplified in Fishes.

The common ossification of articular ends of bones from centres distinct from that of the shaft is a mammalian developmental eharacteristic. The ultimate confluence of the 'epiphyses' (vol. ï. p. 297) with the 'diaphysis' indicates maturity of growth : but in this relation there are differences in the same skeleton and in different species. In Man the epiphyses of the limb-bones toward which the 'arteriæ nutritiæ' run (p. 619) first eoalcsce with the shaft; those at the distal end of the humerus and proximal ends of the two antibrachials, e. g., at puberty, those at the opposite ends of the same bones at the twentieth year. The proximal epiphysis of the femur coalesces ahout the eighteenth year, the distal one at the twentieth; the proximal epiphysis of the tibia joins the shaft about the twenty-fifth year, the distal epiphysis five years earlier. The epiphyses of the vertebral bodies coalesce about the twenty-first year in Bimana, hut they continue distinct for a much longer proportional period of life in Cetacea. Epiphyses and short bones of limhs, those of the carpus and tarsus, c. g., continue cartilaginous some time after the shafts of the long hones are ossified, as shown in fig. 586. This figure also exemplifies the carly manifestation of ordinal characters; the inner digit of the pclvic limb, iu the foetal Monkey (Cercopithecus sabæus) already shows hy its relative shortness and divergence from the others that it is destined to oppose them, and to terminate the member hy a prehensile hand: while, from the earliest manifestation of the digits of the same linh in the human embryo, the 'hallux' by its proportions and parallelism with the other toes indicates the destination of the answerable
From foetal lower timls; nat. slze.
a, Monkey, b, Man, cclexvir".
part to hecome a plantigrade foot, perfected to sustain and move the body of an erect Biped.
§ 409. Membrana pupillaris.-The differences in degree of indi-
vidual development attained at birth parallel, in Mammals, those in Birds expressed by the terms altrices and precoces (vol. ii. p. 265). The hoofed quadruped enters the world with the use of all its senses; in a few hours can follow the dam, and keep pace with her if she sees eause for flight : the feline is born blind and helpless; some days elapse ere the eomnsissure of the eyelids is unsealed. Corresponding steps in the human organ of vision are eompleted before lirtl. At the fifth month of foctal life the pupillary aperture is very wide, and is oeeupied by a rieh layer of looped eapillaries supported by a production of the membrane of the aqueous humour, fig. 587, A.

587


Membrara pupillaris, Human fatus, cy". As the iris is developed the pupil contraets and the vessels of the pupillary membrane diminish in size and number; so that at the eighth month only a few vessels are seen erossing the transparent membrane, as at B. Shortly befure birth, or for a week after, a mere shred of the membrane may be deteeted, as in C and D, and these are soon absorbed.
§ 410 . Futal circulation. - The early stages in the development of the vascular system elosely correspond, in Mammals, with those in Birds (vol. ii. p. 263, fig. 136): the steps in the establishment of the aortie arch, with their relations to conditions of primary branehes eharaeteristie of speeies, and to rare anomalies, have been explained at \(\mathrm{pp} .534-537\); here, therefore, there only remain a few words to be said of the foetal eharacters of the eireulating system.

The blood of the foetus, after passing through the ramifieations of the allantoie arteries, fig. \(588, \mathrm{U}^{\prime}\), u , in the plaeenta, returns by the allantoie vein, \(u\). This, on entering the abdomen, passes ubove and superfieial to the duodenum, within the peritoneal fold ealled 'suspensory ligament' of the liver, to the great fissure of that organ, where it earries part of its blood direetly, by the 'ductus venosus,' \(d\), to the post-eaval, \(v\), and part is distributed by the branehes of the portal vein, L , through the substance of the liver, and is then conveyed by the hepatic veins, \(l\), into the general eurrent of the returning blood. Thus, the right auricle
of the heart, \(k^{\prime}\), receives not only the blood which has circulated through the body of the foetus, but also that which has passed through the placenta, consequently a mixture of venous and arterial blood; - the blood in the precaval, \(v^{*}\), being entirely venous, that in the post-caval, \(v\), being mixed. A part of tbis blood so accumulated in the right auricle
 passes into the lcft auricle, \(h\), by the 'foramen ovalc,' \(f\), in the septum auricularum, and it is chiefly the blood from the postcaval which takes that course. The rest of the blood entering the right auricle passes into the right ventricle, \(\mathrm{H}^{\prime}\), and thence into the pulmonary artery: but very little blood is sent to the collapsed lungs, for a passage of communication continues from the pulmonary artery into the descending aorta by retention of part of the third primitive arch, fig. 420, forming the 'ductus arteriosus,' fig. \(588, \mathrm{D}\); thus the greater mass of the blood, which in the adult would have proceeded to the lungs, is in the foetus immediately transmitted to the aorta, A. This, after its origin from the left ventricle, delivers almost all the blood expelled by the contraction of that cavity into the carotid and subclavian arteries, while the ductus arteriosus passing between the trunk of the pulmonary artery and the descending aorta directs the blood which passes through the right ventricle to the lower regions of the body. In this mauner the upper regions are supplied with the most arterialised part of the blood from the left side of the heart and aorta, while the purely venous blood is propelled from the right ventricle througb the pulmonary artery and ductus arteriosus into the descending aorta, and consequently into the lower part of the body, and by the allantoic arteries to the placenta. The circulation in the foetal Mammal thus offers a close and interesting analogy to that in adult Crocodilian Reptiles (vol. i. p. 512).

The foramen ovale in the septum of the auricles, the ductus arteriosus passing from the pulmonary artery to the aorta, the ductus venosus leading from the allantoic vein to the post-caval, and the allantoic (umbilical) vein and arteries, are the structural peculiarities of the mammalian foctal circulating organs. These
passages are all closed up, and the allantoic vessels obliterated at the navel, after pulmonic respiration is established at birth.
§411. Definition of Male and Female Organs.-In the Manmalian as in other vertebrate embryos the urogenital parts, before showing distinetion of sex, appear in a seemingly more complex or multiplex condition than when perfeeted at a later stage. As in fig. 589, we recognise the basis of the true or persistent kidneys, \(a\), with their duet, \(e\); the antecedent deeiduous kidney, or 'Wolffian' hody, \(b\), is here on the wane, with its exeretory duet, \(f\); the beginning of the essential genital gland is marked \(c\), the adrenals, \(d\), and the tubes ealled 'ducts of Miiller,'g.

In the male Mammalian embryo the duct, \(f\), becomes connceted by a white granular proeess with a similar one from tbe gland, \(c\), on the inner side of the Wolffian hody: by the union of these offshoots is formed the epididy.. mis, and the gland \(c\) ean then be de-


Erogenital parte of Embryo, Exxiv. termined as the testis: the duets, \(g\), shrink and are metamorphosed into the protometra. In the female there are not such converging growths between the duct \(f\) and the gland \(c\) : the duct \(f\) shrinks with the Wolffian body, and is reduced to the remnant reeoguisable in the adult as a 'canal of Malpighi.' But the tube, \(g\), rises above the Wolfian body, expands as at \(e\), fig. 590, and afterwards opens at \(f\). As the Wolffinn body atrophies, the duet, \(f\), fig. 589, hegins to be tortuous in the male, and beeomes 'spermduet'; while \(g\) shrinks: but, in the female, \(g\) widens, and beeomes, as in fig. 591, oviduet, \(c\), and uterine horn, \(b\) : lout the distinction is late in the Ruminant embryo.

In the human embryo at


Urogenital organg, Fetal Shcen. ccoxxi". three montlis, the lower or distal portions of \(c, c\), fig. 592 , have dilated and become fused into the uterus, \(a\), whieh still shows
the indent of its primitive division. The remmant of the Wolffian body, \(e, e\), is long recognisable as the 'parovarium.' The ovaries, \(d, d\), are smooth and elongate; the round ligaments, \(b, b\), are relatively large.

In certain inalformations morc or less of the primitive condi-

591


Female organs, fortal Deer. cccaxin*

592


Female organs, Human fares of threc montlis. ccexxi"。
tions of the genital organs are retained, and give rise to 'hermaphrodite \({ }^{7}\) states of the parts. In fig. 593, a, a, are the testes with which the ducts, \(f\), in fig. 589, had effected their union,


Genital organs of Hermaphrodite Goat, the male parts predonimatang. cexxxix". and hecome 'vasa deferentia,' fig. \(593, d, d\) : \(b\) is a comhination of epididymis with the ahdominal ends of the ' mullerian ducts,' \(g\), figs. 589, 593, here continuing closed and having become adherent to the mass including a remnant of the Wolffian hody. Devclopment of the mullerian ducts has, however, proceeded to a definition of the oviduct or fallopian tuhe, fig. 593, \(g\), and of the uterine horn, \(f, f\), with the hody of the uterus and vagina, \(e\) : it is normally reduced to 'protometra,' in fig. 525, c.
§412. Descent of testes.-In all Mammals, save the true testiconda, a preparatory structure is established for either periodical or pcrmanent withdrawal of the testes from out the ahdomen.

In the human foetus this structure, called 'gubernaculum testis,' fig. 594, consists of a central axis of soft gelatinous substance rife with nucleate cells and surrounded by fibrous tissue, which soon cxlibits the striped characteristic of voluntary muscle. Some of these fibres rise from the hottom of the scrotum, 10 , and traverse the abdominal ring, 6 , here diagrammatically indicated in CurLING'B excellent article ccxlii's'; by 'Poupart's ligament,' 7, 7 : a sccond series of fibres, 9 , arise from 'Poupart's ligament,' and, with the pubic fibres, \(s\), seem in many Lissencephala to be an inverted part of the internal oblique and transversales muscles: the whole, inclosed by aveolar tissue, and connected hy a fold of

594


Diagrem of the gubornaculum and testicto previon to the doscent, coxbil".


Diagrara of the testicle immediately after lts ayrival in the scratum. costin".
peritoncum to the psoas muscle, extends to the testis, 2. This 'gubernaculum 'shrinking or contracting, or both, hetween the fifth and six months of human gestation, draws the testis from below the kidney, 1 , to the abdominal ring, 6 , where it rests to the end of the seventh month. During the eighth month it traverses the inguinal canal, and by the end of the ninth month lins reached the scrotum, where it is commonly found at birth, with the remnant of the scrotal part of the gubernaeulum, fig. 595, 2. The iliac, 4, and the puhic, 5, portions of the muscular tissuc have now hecome the 'eremaster': the bag of peritoncum, 3,3 , carricd out with the testis, 1 , is converted, by ohliteration of the neck, into 'tunica raginalis testis.' In scrotal Mammalin, as a rule, it remains pervious, and it communicates widely with the ahdomen in periodical testiconda.

\section*{CHAPTER XXXIX.}

\section*{mammary and marsupial organs.}
§413. In Monotremata.-In a female Ornithorhynchus, shot in December, and of which the 'corpora lutea' indicated that she had recently brought forth young, the mammary glands formed an ohlong flattened mass on each side of the ventral parietes of the abdomen. Each gland was composed of hetwecn one hundred and two hundred elongated subcylindrical lobes, fig. 596, converging to a small oval areola, fig. 597, in the abdominal integument, situated hetween threc and four inches from the cloaca, and about one inch from the medial line. The lobes are rounded and enlarged at their free extremities, and hecome narrower to about one-third from the point of insertion, where they end in slender ducts, fig. 596, \(\alpha\). Almost all the lobes are situated at the outer side of the areola, and consequently converge toward the mesial line of the ahdomen : in fig. 596 they are exposed by reflecting outward the skin. Betwcen the gland and the integument the panniculus carnosus is interposed, closely adhering to the latter, hat connected with the gland by loose cellular membrane. This muscle is here a line in thickness, its fihres are longitudinal, and, separating, leave an clliptical space for the passage of the ducts of the gland to the areola. On the external surface of the skin, when the hair is removed, this areola can only be distinguished hy the larger size of the orifices of the lacteal ducts, compared with those for the transmission of the hairs. The orifices of the ducts thus grouped together form an oval spot, five lines in the long and three in the short diameter. Neither in this nor any other of the many specimens in which I have dissected the mammary glands was the surface on which the ducts terminated raised in the slightest dcgree beyond the level of the surrounding integument.

In a full-grown female, killed in August, in which two enlarged ovisacs indicated the preparation of ova for impregnation, the mammary gland was reduced to the size given in fig. 598 : diverging tracts of cellular shcaths with fat indicated a previous seasonal enlargement.

Mercury injected into the suhstance of a lohe diffused itself

in minute globules through the parenchyma, and at a distance of an inch it entered a central duct, down which it freely ran to the areola, where it escaped externally from one of the minute orifices just described. This process was repeated on most of the lobes with similar results: the greater part of them terminated by a single duct

597


Manmary arcola, Orulthorbyinclue; nat. size. LXXVI':
opening exteriorly and distiuct from the rest, but in a few instances the ducts of two contiguous lobules united into one, and in these cases the mercury returned by the anastomosing luct and penctrated the substance of the other lobe as freely as that into which the pipe had been inserted.
Some of the lobes injected by the reflux of the mercury through the duct, and of which it was more certain that the glandular structure

bammary gland, Ornithorhznebus ; nat, glze at nob-breeding Beason, Lax.xyi'


Ferminal ducts, and inbe of matminars gland, injected; twice nat, nize, hxxvis
and not the cellular memhrane was filled, were dried, and varions sections were suhmitied to microscopical examination. At the greater extremity they are minutely cellular, the cells communicating with ducts elongating as the lobule grows narrower, dilating, and terminating in a larger central canal, or receptacle, from which the excretory duct is continued. On making a section of the corium through the middle of the areola the ducts are seen to converge to the external surface, but there is no inverted or concealed nipple at this part, as in the Kangaroo. Fig. 599 gives a magnified view of this scetion, with the sectiou of one of the dried and injected lobules. On the first announcement, hy MecKEL, of the existence of ahdominal glands of the size and structure shown in fig. 596, it was ohjected, that they did not possess the characters of a true mammary gland, and that they resembled rather the clustcrs of elongated follicles situated on the flanks of Salamanders, and still more to the odoriferous
scent-glands at the sides of the abdomen in Shrews, which are most active at the season of the rut. \({ }^{1}\) I put this question to the test, first by sbowing the true structure of the mammary lobules, and next by comparing the relative size of the glands with the condition of the ovaria. \({ }^{2}\) The abdominal scent-glands are present in both sexes, and become largest in the male Shrews: but, in the Ornithorhynchus the glands are confined to the female, and vary in degree of development at different periodsin individuals of equal size, attaining an enormous development after gestation and being small at the rutting season. Tbe secretion being conveged outwardly by means of numerous long and narrow ducts indicates its fluid nature, and is contrary to the mode in wbich odorous substances are excreted. The excretory orifices are by no means extended over so wide a space, in proportion, as in the Shrew, hut are collected into one which accords with the size of the mouth of the young animal, and this spot is situated in a part of the body convenient for the transmission of a lacteal secretion from the mother to her offspring.
Compared with an ordinary mammary gland, that of the Ornithorhynchus differs chiefly in the absence of the nipple, and, consequently, of the surrounding vascular structure nccessary for its erection. But the remarkable modification of the mouth in the young Ornithorhynchus removes much of the difficulty which previously attached itself to the idea of the possibility of an animal with a beak obtaining its nutriment by suction. The width of the mouth in the smallest observed Ornithorhynchus, fig. 600, corresponds with the size of the mammary areola; and the broad tongue, extending to the apices of the broad, short, and soft jaws, fig. 601, with the fold of integument continued across the angle of the mouth, are all modifications which prepare us to admit such a co-adaptation of the mouth of the young to the mammary outlct of the parent as, with the combined actions of suction in the recipicnt, and compression of gland in the expellent, to effect this essentially Mammalian mode of nourishment.

The circumstances which first attract attention in these singular objects, fig. 600, are the alsence of hair, the soft flexible condition of the mandibles, and the shortness of these parts in proportion to their breadtly as compared with those of the adult. The integument with which the mandibles are covered is thinner than that which corers the rest of the body, and smoother, presenting
under the lens a minutely granulated surface when the euticle is removed, which, however, is extremely thin, and has none of the horny eharacter which the claws at this period prescnt. The margins of the upper heak are rounded, smooth, thick, and fleshy; the whole of the under mandihle, fig. 601, \(g\), is flexible,


Xoung Ornithorlyynuhus. LXXYYII. and bends down upon the neck when the mouth is attcmpted to be opened. The tongue, ih. \(h\), which in the adult is lodged far back in the mouth, advances in the young


Fesd of young Ornithorbynchus.
animal close to the end of the lower mandible; all the increase of the jaws heyond the tip of the tonguc, which in the adult gives risc to a form of the mouth so ill calculated for suction or application to a flattened surfacc, is peculiar to that period, and consequently forms no argument against the fitness of the animal to receive the mammary secretion at an earlier stage of cxistence. The breadth of the tongue in the laxger of the young specimens was \(3 \frac{1}{2}\) lines; in the adult it is only one line broader; and this disproportionate development is plainly indieative of the importance of the organ to the young animal, hoth in receiving and swallowing its food. The mandibles are surrounded at their base hy a thin fold of integument, which extends the angle of the mouth from the hase of the lower jaw to cqual the hreadth of the hase of the upper one, and must increase the facility for rcceiving the milk ejected from the mammary areola of the mother. The oblique lines which characterise the sides of the lower mandihle in the adult were faintly visihle on the corresponding parts of the same jaw of the young animal : a minute ridge of the inner sides of thesc lines indicates the situations of the anterior horny tecth of the adult.

The exterior nostrils, ih. \(a\), communicate with the mouth by the foramina incisiva, which are situated at nearly three lincs distance from the end of the upper mandihle, and are each guarded by a memhranous fold extending from their auterior
margin: the nasal cavity then extends backward, and terminates immediately ahove the larynx, the tip of the epiglottis extendiug into it, and resting upon the soft palate.
On the middle line of the upper mandihle and a littie anterior to the nostrils there is a minute fleshy eminence lodged in a slight depression, fig. 601,b. In the smaller specimen this is surrounded by a discontinuous margin of the cpidermis, with which suhstance, thereforc, and probahly (from the circumstance of its heing shed) thickened or horny, the caruncle had heen covered. It is a structure of which the upper mandihle of the adult presents no trace, and is ohviously analogous to the horny knoh which is ohserved on the upper mandihle in the foctus of aquatic and gallinaceous Birds. I do not, however, conceive that this structure is neccssarily indicative of the mandihle's having heen applied, under the same circumstances, to overcome a resistance of precisely the same kind as that for which it is designed in the young Birds which possess it. The shell-breaking knoh is found in only a part of the class; and although the similar caruncle in the Ornithorhynchus affords a curious additional affinity to the Aves precoces, yet, as all the known history of the ovum points strongly to its ovo-viviparous development, the halance of evidence is still in favour of the young heing hrought forth alive.

The situation of the eyes, ih. \(c\), was indicated hy the convergence of a fcw wrinkles to one point; hut when, even in the larger of the two specimens, these were put upon the stretch, the integument was found entire, and completely shrouding or covering the eychall anteriorly. The fact is of importance to the question of the mammiferous character of the Ornithorhynchus. For on the supposition of the young animal possessing locomotive facultics, which would enahle it like the young gosling, immediatcly after hirth or exclusion, to follow the parent in the water, and there to receive its nutriment (whether mucous or otherwise), the sense of vision ought certainly to he granted to it in order to dircct its movements. The privation of this sense, on the contrary, implics a confinement to the nest, and a reception on land of the mammary secretion of the parent. The auditory orifices, ib. \(d\), are situated about a line hehind the eyes. The general form of the hody and the cartilaginous condition of the hones of the extremities equally militate against the young Ornithorhynchus possessing, at this period of its existence, active powers of swimming or crecping. The head and tail are closely approximated on the ventral aspect, requiring force to pull the hody ont into a straight line; and the relative quantity of integument on
the back and belly shows that the position necessary for the due progressive motions is unnatural at this stage of growth.

The toes on each of the four feet were completely formed, and terminated by curved, conical, horny claws; but the natatory fold of membrane of the fore foot had not the same proportional extent as in the adult, and the spur of the hind foot did not project beyond its socket in either specimen. In the smaller one, which was a male, it presented the form of an obtuse papilla; while in the larger specimen, although a female, it was more plainly developed and more pointed, fig. 602, \(f\). This circumstance is in exact accordance with the known laws of the development of sexual distinctions, especially of those of secondary importance, such as beards, manes, plumes, horns, tusks, spurs, \&c., which do not avail in distinguishing the sexes till towards the period of puberty.
In the Echidna hystrix the mammary glands resemble in structure and position those of the Ornithorhynchus: but the ducts, when the gland is functionally developed, open into a small tegumentary pouch, fig. 603, c. The gland, ib. \(a\), is of a flattened, subclliptic form. The lobules converge toward the mesial line, in their course to terminate in the fundus of the pouch. Each lobe is a solid parenchymatous body; the duct is more directly continucd from a canal which may be traced about halfway toward the fundus of the lobule; the canal gives off numerous short branches from its circumference, which subdivide and tcrminate in clusters of subspherical 'acini' or secerning cellules. The structure is on the same general plan as that of the mammary glands in higher Mammals, but the cellules are proportionally larger. Each gland consists of about 100 long, narrow, flattened lobes, obtusely rounded at their free ends; they are surrounded by a loose capsule of cellular tissue, and lie between a thick 'panniculus carnosus,' adherent to the abdominal integument, ib. \(d\), and the 'obliquus externus abdominis' muscle, on a plane exterior or 'lateral 'to the pouch. On each side of the abdominal integument, about two inches in advance of the cloaca, and about three inches and a half from the base of the tail, is the aperture, which is longitudinal and directed towards the median line. The skin of the abdomen, where
it begins to be inverted, loses thickness, and at the fundus of the pouch, ib. c, is only half as thick as where it overspreads the abdomen.

I have not hitherto met with any trace or beginning of such abdominal pouches in the various Ornithorhynchi in which I have had occasion to note different phases of the development of tbe ovaria and mammary glands. A warm-blooded air-breatber, compelled to seek its food in water, could not safely carry the progeny


Mammery gland, Douch, and young. Wehtina Hyatrix, ccoxain".
it had brought forth in a pocket beneath its body during sucb quest : all observers have noted the nest-making instinct of the Platypus, and in such temporary and extraneous structures only have the young been hitherto found.

The question remains, whether the marsupial pouches of the Echidua incrcase with the growth of the young? It is certain that they only commence with the growth or enlargement of the mammary glands preliminary to birth. In the young specimen of female Echilna in which the glands were first discovered \({ }^{1}\) tbeir ducts opened upon a plane surface of the abdominal integument. In a nearly full-grown unimpregnated female there was also a total absence of inflected folds of the integument where the mammary ducts terminate. Some movement, perhaps, of these ducts in connection with the enlargement of the mammary lobes, under the stimulus of preparation for a coming offspring, may, with nssocinted growth of the abdomiaal integument surrounding the arcoln, be anongst the physical causes of the first formation of the pouch.

The young Echidna, ib. e, rescmbles the new-born Kangaroo in the proportions of the limbs to the body, in the inferior size and developinent of the digits of the hinder pair, and in the feeblc indication of eyes or eyelids. But the mouth is proportionally " ccexxiri". p. 179.
wider, and has the form of a transverse slit; it is not eircular. Upon the upper lip, in the midline between the two nostrils, is a small protuherance, corresponding to that in the young of the Ornithorhynchus paradoxus, and wanting the cuticle. The tongue is hroad and flat, extending to the 'rictus oris,' but very short in proportion to that of the parent, and of a very different shape. The tail is much shorter than in the young Kangaroo, and shows as mueh proportional size as in the fullgrown Echidna, in which it is a mere stump concealed by the quills and hair. The head is proportionally longcr and more slender in the marsupial fotus of the Echidna than in that of the Kangaroo, and already, at this early period, foreshows the eharacteristic elongation and attenuation of that part in the mature animal. The form of the mouth, as a transverse slit, is a good monotrematous character of the young at that period, since in all true or teated marsupials the mouth of the mammary foctus has a peculiar circular and tuhular shapc. A scarcely visible linear cicatrix at the middle of the lower part of the abdomen is the sole trace of umhilicus. A bifid, ohtuse rudiment of penis or clitoris projects from the fore part of the single urogenital or cloacal aperture, and in advance of the hase of the tail-stump. Of the hrain, the largest part is the mesencephalon, chiefly consisting of a vesicular condition of the optic lobes.

The fore limbs, in their shortncss and hreadth, foreshow the eharacteristics of those of the parent, whieh may be said, indeed, to retain in this respect the emhryonic character with superinduced hreadth and strength. The digits have already something of the adult proportions, the first or innermost of the five being the shortest, the others of nearly equal length, but graduating shorter from the third to the fifth; each digit is tcrminated by a claw: in the hind limb, the second is already the strongest and longest, the rest more rapidly shortening to the fifth than in the fore leg; the innermost, agreeably with the law of closer retention of type in the embryo, though the shortest of the five, is less disproportionally so than in the adult. The young nestles its head and fore-limbs within the marsupial fossa, clinging hy its precocious fore claws to the skin or hairs of that part, and imhibing hy its hroad, slit-shaped mouth the nutritious seeretion as it is pressed hy the muscles acting upon the gland from the areolar outlets of the ducts.
§414. In Marsupialia.--In Marsupials the mammary glands have a more compact form and minutely conglomerate structure than in Monotremes. They are developed on each side the linea
alba at the back of the marsupial depressions, or of the pouch; they are not-fewer than two on eaeh side (Macropus, Hypsiprymnus, Phalanyista, Petaurus, Phascolarctos, Phascolomys); nor more than thirteen, six on each side and one midway (Didelphys virginiuna). The follicles, from the imner surfaee of whicb the milk-cells are detached, are cylindrical in shape, \(\frac{\pi^{1}-1}{6}\) th in. in diameter; grouped in clusters of from ten to twenty on sbort, slender ducts, which enter the sides of larger canals, these uniting to form four or six conical dilatations, from the apices of which as many slender ducts pass to the apex of the nipple. This is peculiar for its lengtb and slenderness wben in usc; but in the young and virgin Marsupial it is much shorter, and lies at the bottom of an inverted part of the skin of the baek of the pouch, which becomes thin and is reflected over the end of tbe nipple, like the prepuce over the glans penis. The mammary glands enlarge after impregnation, and rapidly a day or two before uterine birth; when, partly from-development of the nipple, partly from pressure of the enlarging gland, aided perhaps by the action of its compressor muscle, the sheath is everted and the nipple protruded. The preliminary infolding of the integument provides for the covering of the long nipple, wbich now is pendant at the brek of the pouch. The compressor muscle arises from the ilium between or near to the lower attacbment of the internal ohlique and 'transversalis abdominis:" it passes out of the abdominal ring, bends round the marsupial bone, expands as it turns upward and inward behind the pouch to surround partly by carneous, partly by sclerons fibres, the mammary glands, dividiug into as many insertions as there are glands of its own side. 'This nuscle ('ileo-marsupialis' of Cuvier) is the homotype of the 'cremaster' in the male (p.10); and the chief function of the ossification of the intermal pillar of the abdominal ring (mur supial bonc) is to add the power of the pulley to the compressor of the mammary gland, and effect the requisite cbange in the course of the contractile fibres. In the pouch of a young Marsupial the nipples are indicated by the inconspieuous orifices of the teat-sheaths. Once naturally protruded and the sheath everted, the nipples continue external. In the Kangaroo, after being some wecks in usc, they present a slight. terminal expanwion, fig. 604, \(d\). This part lies in a deep longitudinal fossa on the dorsum of the tongne, \(i \mathrm{~b}\). \(a\); and the originally wide mouth of the utcriuc foetus is changed to a long tubular cavity, with a terminal sub-circular or triangular aperture, just large enough to alluit the nipple, to which the young Marsupial thus very firmly
adheres. In the new-horn Opossum the oral pore is singularly minute, and the mother's nipple has an ohtuse hut.not expanded termination.

In the Phascogale, in which the nipples are relatively larger than usual, and of a suhcompressed clavate form, the young, when grown too large to be carried in the pouch, are dragged along hy the mother, if she be pursued, hanging hy tbe nipples.

604


Nipple, and head of Mammary Fcetus, Kangaroo.

The number of nipples hears relation to that of the young brought forth at a birth; although, from the circumstance of the produce of two gestations being for a short time suckled simultaneously, the nipples are never so few. Tbus the uniparous Kangaroo has four nipples, of which the two anterior are generally those in use: the Petaurists, wbicb bring forth two young at a hirth, have also four nipples; whilst the multiparous Virginian Opossum has thirteen nipples, six on each side and the thirteenth in the middle. In the Didelphys Opossum there are nine nipples, four on each side and one in the middle. The Didelphys dorsigera has the same number of nipples, although six is the usual numher of young at a birth, fig. 605. Iu the Phascogale penicillata there are eight nipples arranged in a circle. The Perameles nasuta has the same number of nipples arranged in two slightly curved longitudinal rows; this Marsupial has three or four young at a birth. In all Marsupials the milk exudes from six to ten minute orifices arranged round the apex. Tbe nipple increases in size with the growth of the mammary footus appended to it.

The development of tbe marsupial pouch is in an inverse ratio to that of the uteri and directly as that of the complicated vaginæ: thus it is rudimental in the Dorsigerous Opossum, which has the longest uteri and the simplest vagina: we may conclude therefore that the young undergo a greater amount of development in the womb in this and allied species; and here, if in any Marsupials, heginnings of a placental structure may be found. In the Kangaroos and Potoroos, which have the shortest uteri and longest vaginal tuhes and cul-de-sac, the marsupial pouch is wide and deep. It is composed of a duplicature of the integument, of which the external fold is supported hy longitudinal fasciculi of the panniculus carnosus converging helow to be implanted in the symphysis puhis. The mouth of the sac is closed by a strong cutaneous
ephincter muscle. The interior of the poueh is almost naked: a few hairs grow around the nipple: it is lubrieated by a brown sebaccous secretion. The mouth of the pouch is direeted forwards in most Marsupials: the reversed position in the Perameles, and Chæropus, where the mouth is direeted towards the vulva, has been already noticed.

In the male Thylacine the rudimental marsupium is retained, in the form of a broad triangular depression or shallow inverted fold of the abdominal integument, from the middle of which the peduncle of the scrotum is eontinued. In the female the orifice of the capaeious poueh is situated nearer the posterior than the anterior boundary of that reeeptaele.

From experiments and observations made at the London Zoological Gardens in 1833, I inferred that in the case of the Kangaroo the fore paws were not used for the transmission of the foctus, but to keep open the poueh ready for its reeeption, the new-born animal being deposited therein by the mouth, and so held over a nipple until the mother


Femanle Didetphy dorsigera, with young and pouch. had felt it grasping the ensitive extremity of the nipple.

This means of removal is eonsistent with analogy ; dogs, cats, miee, all transport their young from place to place with the mouth. In the ease of the Kangaroo, it may be supposed that the foctus would be held by the lips only, not the teeth, on necount of its delieate consistence. There is no internal passage
from the uterus to the pouch :- the mouth of the vagina eannot he brought into contact with that of the poueh, either hy muscular contraction in the living or hy any force of stretching in the dead Kangaroo:-as the young was proved by the result of this experiment not to have the power of itself to regain the nipple, a fortiori we may conclude that it could not transfer itself from the vulva to the interior of the pouch and to the apex of the nipple:-the fore-paws of the Kangaroo would not so effectually protect the tender embryo from the external air as the mouth, nor so safely ensure its passage to the pouch, notwithstanding that they are adroitly used in grasping objects, heing similar, in respect of the extent and freedom of motion of the digits, to the fore-paws of the Rodents.

The new-horn Kangaroo (Macropus major, fig. 606), which I discovered in the pouch a few hours after uterine gestation,
 measured one inch from the mouth to the root of the tail, was quite naked, and covered by a thin semitransparent vascular integument; the place of attachment of the umhilical chord was ohscurely indicated by a longitudinal linear cicatrix. The fore-legs were longer and stronger than the hind ones, and the digits were provided with claws; Nem-born fatus and teft nipples, the toes were developed on the hind-legs; Macropus major. the hody was hent forward; and the short tail tucked in hetween the hind-legs. This little animal breathed strongly, hut slowly: no direct act of sucking could be perccived. Such, after a gestation of thirty-eight days, is the condition of the new-horn young of a species of Kangaroo, of which the adult, when standing erect on his hind-fect and tail, can reach to the height of seven feet.

It has greater powers of action than the same sized emhryo of the sheep; hut less than has the new-born young of the rat. For, although it is enabled by the muscular powers of the "orhicularis oris,' and those of the precociously-developed tongue, to grasp and adhere firmly to the nipple, it seems unahle to draw all the nceded sustenance therefrom unaided. And here the modified 'eremaster' comes into play, being adapted to inject the milk into the small feehle prematurely-born creature's mouth. One cannot suppose that its efforts at suction should always and exactly coincide with the mother's act of injection. And we find, in fact, provision for the required special relation of the larynx to the posterior hares. Thic epiglottis and arytenoid cartilages are
elongated and approximated, and the rima glottidis is thus situated at the apex of a cone-shaped larynx, fig. 604, \(c\), which projects into the posterior nares, where it is closely embraeed by the museles of the soft palate. The air-passage, \(b\), is thus completely separated from the fauces, and the injected milk passes in a divided stream on either side the larynx to the œesophagus.

Thus aided and protected by modifieations of structure, both in the system of the mother and its own, designed with espeeial referenee to each other's peculiar eondition, and affording, thereforc, the most irrcfragable evidenee of creative foresight, the small offspring of the Kangaroo continues to inerease, from sustenance exelusively derived from the mother, for a period of about eight months. During this period the hind-legs and tail assume a great part of their adult proportions; the muzzle elongates; the external ears and eyelids are completed; the hair begins to be developed at about the sixth month. At the eighth month the young Kangaroo may be seen frequently to protrude its head from the mouth of the poueh, and to crop the grass at the same time that the mother is browsing. Haring thus aequired additional strength, it quits the pouch, and hops at first with a feeble and vacillating gait, but continucs to return to the pouch for necasioual shelter and supplies of food till it has attained the weight of ten pounds. After this it will occasionally inscrt its head for the purpose of sucking, notwithstanding another foctus may have been deposited in the pouch; for the latter attaches itself to a different nipple from the one which had been used by its predeccssor.

Dr. Mcigs \({ }^{1}\) reckons the utcro-gestation of a female Didelphys l'irginiana, which bred in captivity, as extending from the 18 th February to the 7 th Marel-a period of seventeen days \({ }^{2}\)-when she brought forth thirtcen young, which wore found attached to as many nipples. The mamme began to enlarge four days prior to birth. On the 6th March she was observed to lay on her side with her nose turned inward between her legs towards the belly, and took seareely any notice of her keeper's hand when introduced into the box: the transit of the footuses was probably in preparatiou or operation at this time. The young, observed on the 7 th, and which were certainly not in the poneh on the 5 th, and probably not until tho night of the 6th, were naked, of a rose

\footnotetext{
In a raluable memoir on the Reproduction of the Opossum. ccaxsyir",
\({ }^{2}\) Dr. Barton computed the utero-gestation of the Virginian Opossurn at from twentytwo to twenty-six days; his female brought farth seren young on the 21st of Narch ; and had horty before that time given suck to five young ones as large as rats, fxxx', p. 320 .
}
tint, each \(3 \frac{1}{2}\) grains in weigbt, and 8-10ths of an inch in length to the end of the tail: adhering strongly to the nipple, sucking actively, and clinging to the fur by the unguiculate digits of their fore-limbs, which they used freely. One survived separation from the nipple one hour and twenty-nine minutes, turned itself over and moved round tbe glass in various directions : respiring by the nostrils twenty-two times per minute, and ejecting bubbles of milk from mouth. The hind-limbs were eacb a mere bud, with feeble indications of toes, without claws. Tbe tongue is very large \(-\frac{1}{3}\) the entire weigbt of the head. The power of suction is such that tbe point of a pencil applied to the oral pore is held so strongly tbat the young can be partially lifted up by it. On March 14 tb the young weigbed 12 grains, showing an increase of weight at the rate of 250 per cent, in seven days: it was now \(1_{\frac{1}{10}}\) incb long. On March 18 th tbe weight was 18 grains: the claws appeared on the bind-toes: the testes had descended into a large scrotum. The eyelids were still sealed, but movements of the eyeball werc visihle beneath the skin. On May 22nd Dr. Meigs found one of the young crawling on the body of tbe dam; its weigbt was 42 grains; the eyes were open. This gave a term of marsupial gestation of 74 days. But tbe young return to the pouch for food and shelter until near the time for reception of a succeeding litter.

In Thylacinus the pouch opens backward, or vent-ward, as in Perameles; and shows four nipples. \({ }^{1}\) In a female whicb carried there tbree young, eacb 1 foot in length from the snout to the end of the tail, the length of tbe pouch was 8 inches; its aperture was \(3 \frac{1}{2}\) incbes wide, and the bag expanded as it extended forward to a widtb of 6 incbes. Tbe teats were 4 inches long. The young were males: the testes had descended into a pendulous scrotum one inch in advance of the cloaca, from whicb the grooved but undivided penis projected: the eyelids were closed, but not adberent. The tongue presented a longitudinal rising, with a medial groove, the rising fitted into a depression on the roof of the moutb bounded by two, parallel, long and narrow palatal bones, recalling tbe condition of these bones in Sauria. In Myrmecobius 'tbe female is destitute of a pouch and has, apparently, eigbt nipples, arranged in a circle.' \({ }^{2}\)

Besides the natural and portable nest, some Marsupials (Didelphys, Phascogale, Cheropus, Perameles) construct artificial ones. Perameles myosurus, e.g. ' makes a compact nest in a hollow of the ground, of grasses and other materials, which assimilate closely
in colour and appearance to the surrounding herbage: ' the nest is generally inhabited by the pair, with tbree or four young, wben these are so large as to quit the pouch.
§415. In Lissencephala.-The fertile and commonly multiparous species of the Rodent order have corresponding provision for the nourishment of the young in the number of nipples. A secming exception is presented by the domesticated breed of S . American Cavy, called ' Guinea-pig.' The prolific power of this well-fed pet is proverbial: they begin to breed at two montbs old, and gestation may be repeated at intervals of two or three months. The first litter consists of four, the second of five or six ; and, as full maturity is gained by the mother, she may bring forth eight, ten, and even twelve young: and yet sbe bas only two nipples to serve them, turn and turn about. The teats are large and prominent, but lodged in a small shallow pouch, one on eaeb side of the hind part of the belly. The mammary glands, however, attain a size more in accordance with the demands upon them: they are not pendant, like an udder, but flat and spread over the abdomen. The wild original (Cavio aperea, Linn.) breeds but once a year, and then has but one or two young. Dolichotis has but two young. Echimys appears to have but two teats, plaeed midway between fore and bind legs: Rennger found two young in the nest at the bottom of the burrow: they were blind The Paca (Cologenys), with commonly two young, has four teats; and this number is not surpassed in Lagostomus, C'ercolabes, Erithizon, Hystrix, Capromys, Helamys, Dipus, and some species of Sciurus (Sc. palinarum). In the Biseacha the anterise pair of teats is \(1 \frac{1}{2}\) iuches behind the base of the forelegs: the posterior pair 2 inches farther back. In the prebensile Porcupine tbe hind nipple is midway between the fore and hind leg, the front nipple midway betwecn tbis and the base of the fore-leg. Both tbese species, the common and the Canadian Porcupines, have usually two at a birth. The mother Coypa usually carries her young upon the back in her frequent traverses of the river she frequents: her teats are easily reached by the young so transported, as they project from the flanks, nearer tbe baek than the belly: the anterior pair are just behind the shoulders: the posterior pair anterior to the haunches. The nipples are rather less elevated than iu the Coyju, in Hydrocharus, wbich swims with the young on her back: they are also lateral in Lagostomus, Octodon, Habrocoma, and Nelomys. \({ }^{2}\) In Octodon tbe foremost nipple, is \(\frac{1}{\frac{1}{2}}\) ineh behind tbe base of the fore-leg: the hindmost pair are

\footnotetext{
\({ }^{1}\) cclaxti". ccexxx". p. 299.
}
inguinal. In the burrowing Mole-rat the anterior nipple is on the inside of the base of the fore-leg, the posterior one at the middle of the inner side of the thigh. Thcre are six teats in Bathyergus, eight in Loncheres, Octodon, and Dasyprocta, ten in Myoxus, and Lepus; twelve in the Rat and Mouse : even fourtcen are said to have been noted in the Agouti, but this is probably abnormal.

The Insectivorous order yields the maximum number of nipples in the mammalian class; as many as twenty-two having been observed in the tropical Hedgehog called Tenrec (Centetes), and the number rarely falls below fourteen. In such multiplication of teats and lactcal glands they extend along the under surface of the body from the pectoral to the inguinal region; and, in some Shrews (Sorex crassicaudatus, e.g.), the last pair of teats projects from the under side of the thick base of the tail. In the common Hedgehog (Erinacens) there are ten teats, three pairs thoracic and two pairs abdominal, ranging from the pectoral to the inguinal regions. The thin and flat mammary glands secm to forn a continuous stratum. In Shrews and Moles the teats are from six to eight in number. In the volant Insectivora they are usually reduced to two, and are pectoral in position, whence Linnaeus was led to avail himself of this, with another outward genital character, to unitc Bats in the same order (Primates) with Apes and Man. But the Sloths have one pair of pectoral teats and mammary glands. Many Armadillos, likewise, have two pectoral teats; to which, in a few kinds (D. novem-cinctus, e.g.), a pair of inguinal teats are added. The two-toed Antcater has two pectoral and two ventral teats. The great Anteater (Myrmecophoga jubata) is limited to two pectoral mammæ. Thc young animal remains with the mother for the space of a ycar, and is carried on her back. In a species of Phyllostoma I have seen two pubic as well as two pectoral teats. The latter in all bats are almost laterally placed, and in Pteropus are axillary : the nipple when iu use bccomes long, compressed, and sub-pedunculate. The Colugo (Guleopithecus volans) has two nipples in each arm-pit: they become large during maternity, for the young cling long to them.

Among Lissencephala the Rodents are most remarkable for nidificatory instincts. The little Harvest-mouse (Mus messorius) builds a round nest, like a Tit's, and attaches it, high up from the ground, to the stems of full grown rye, barley, or other cereal. The nest of the Marsh Hare (Lepas palustris) is formed of a large kind of rush (Juncus effusus), cut into pieces about a foot in length, and is arched over; the foundation of the nest is
usually a tussock surrounded by water, like a lake-dwelling: the number of young is from four to seven.
§416. In Mutilata.-In Cetacea the mammary glands, two in number, are oblong, narrow, flat bodies, lying between the dermal and abdominal muscles, with the subcutaneous blubber between them and the skin. The requisite mass of glandular substance at the suckling season is obtained by horizontal extent, not by thickness, so that they do not project, or interfere with the requisite shape of the natatory animal. Each gland bas a principal duct running in the middle through the whole length of the gland, and collecting the smaller lateral ducts, which are made up of the still smaller ones. Somc of these lateral branches enter the common trunk in the direction of the milk's passage, others in the contrary direction, especially those nearest to the termination of the trunk in the nipple. The trunk is large, and appears to serve as a reservoir for the milk:' it is continued from the hinder and of the gland, and terminates in a nipple conccaled in a cleft, fig. \(608, c\), one on cach side of the vulva, \(a\), and toward the vent, \(b\).


Mammary cieft ditated, oxlalititige the תipple


608


Position of manmary ciefte, Porpolse.

The lateral portions of the eleft are composed of parts looser in texture than the common skin, which is probably to admit of the clongation or projection of the nipplc. On the outside of this there is another small fissure, which gives greater facility to the movements of all thesc parts.

The nipple itself, shown by dilating the mammary fossa in fig. 607, is perforated by numerous lacteal ducts. Hunter thus alludes to the unusual circumstances under which the act of 1 xcis. p. 392.
sucking nust be performed in the present aquatie mammals:As either the mother or young one will be prevented from hreathing at the time, their nostrils heing in opposite direetions, therefore the nose of one must he under water, and the time of sucking can only be between each respiration.' The eonsiderable lacteal reservoir, and the quality of milk it eontains, \({ }^{1}\) relate to this difficulty.

Some stress has been laid on the assistance which the muscles in contact with the mammary gland might afford by compressing the gland and ejeeting the milk accumulated in the dilated receptacle ; 'but,' as I remarked in cxury". p. 594, ' when we consider how great the pressure of the surrounding water must be upon the extended surface of the mammary gland, we may readily eonceive that when the nipple is grasped hy the mouth of the young, and the pressure removed from it by the retraction of the tongue, the milk will be expelled in a copious stream hy means of the surrounding pressure alone, independently of muscular aid.'

In Sirenia the mammary glands, also a pair, are pectoral in position; the teats are prominent and conspicuous at the suckling season. The mother has been seen holding her young to the hreast, with one flipper, and maintaining hoth her own and her offspring's nostrils above water. Tbe resemblance to a hlack woman and ehild has attracted attention, and the appearance of the tail-fin as sbe dived, has served to perpetuate the seaman's faitb in the ' mermaid. \({ }^{1}\)
§ 417. In Ungulata.-The Elephant resemhles the Dugong in the numher and position of the mammary glands and teats, which project between the fore-legs. The young animal compresses the gland with its proboscis as its sucks.

In the unimpregnated Rhinoceros the mammary glands, two in number, form a thin layer expanding forwards beneath the abdominal integument, hetween the dermal and ahdominal muscles. The nipples are two in number and inguinal, are situated 14 inches in advance of the vulva, and \(2 \frac{1}{2}\) inches apart from one another. They are suhcompressed, ohtusely rounded at tbe extremity, and ahout 2 inches in length : about a dozen lactiferous ducts open upon the somewhat flattened summit of each nipple.

In the Marc and Ass the mammary glands, two in numher, are situated between the thighs at a distance of ahout 9 inches in
'The milk is probably very rich; for in that caught near Berkeley with its young one, the milk, which was tasted by Mr. Jenner, and Mr. Ludlow, surgeon, at Sodbury, was rich like cow's milk to which cream had been added.' xerv. p. 392,
front of the vulva. The nipples project, one on each side of the mesial line, an inch and a half apart, ncar the base of the preputium clitoridis; ' the lactiferous ducts open, above the base of the nipple, into a large reservoir, which is divided by an internal septum into two chambers, one situated in front, and the other behind; from each chamber a separate duct is derived, which passes along the nipple as far as its extremity, where it terminates. The orifices are one behind the other, about a line apart. The rudimental nipples, in the male Equida, are concealed within the prominent annular preputial fold of integument, and long escaped observation."

The Tapir has two inguinal nipples. The smaller and more prolific Perissodactyle, Myrax, has four teats, all inguinal in position. \({ }^{2}\)

In the Hippopotamus the two teats are inguinal, small, and round in the virgin female. The Peccari has four teats, two ventral, two inguinal. The Wart-hog (Phacocharus) has six nipples; two inguinal, four ventral: the Water-hog (Potamocharus) has cight nipples, and such is sometimes the number in the wild Sow; but in the domestic breeds the nipples are seldom below ten in number, distributed from the pectoral to the inguinal region.

All ruminants have the mammary glands compacted into a roundish mass, more or less pendulous when in full function; divisible into two glands, each remarkable for its large lacteal rescrvoir, from which the milk is conveyed to cithcr one pair or two pairs of teats; these, when in use, are so elongated as to have reccived the special name of 'udders;' they are always inguinal in position, are hollow and have a contracted tubular terminal aperture.

Moschida, Ovida, many Antelopes, including the Gazelles, Bubalines, with Bubalus moschatus, have but two teats. Antilope dama, A. strepsiceros, \(A\). Oreas, and their allies have four teats. All Cercile, from the great Elk to the little Roe, have four teats; as have also the Camels, Camelopard, and all Bovincs. In some of our domestic cows a supernumerary pair is occasionally devcloped. Behind each teat, in the Gazelle, there is a pouch of skin, opening forward, about seven lines in

\footnotetext{
'Solidunyula mascula mammas non habent. Rai, Synops. method. Anim. quad. \&c. p. 64.
\({ }^{2}\) Schmarar found only this number in \(A_{y}\) fax capersis, as did Ehrenberg in \(B\). Syrincers. Dramarest adds a pectoral paif, but this needs confirmation.
}
depth, reminding one of the pair of marsupia in Echidna, sare that the milk escapes in front of, and not into, the pouches.
§418. In Carnivora.-In the Seal-tribe, including the Walrus, the number of teats does not exceed four. In the Otters (Enhydra, Lutra) only two teats bave been observed, ventral in position. The Mustelide have from four to six ventral teats. Six is tbe common number in Ursidce, two being pectoral and four ventral. In Cercoleptes I found but two ventral teats. Procyon, Meles, Taxidia, Nasua, liave six; Ailurus has eight teats. The palm-cats (Paradoxurus) and Ichneumons (Herpestes) bave four ventral teats. They seem not to exeeed that number in tbe Hyænas; but in the Civets two pectoral nipples are sometimes added to tbe four ventral ones. The felines have usually six nipples, four ventral, and two pectoral; but in the domestic eat cight have been seen. The Canidee, wolf, dog, jackall, fox, bave usually eight teats.
§ 419. In Quadrumana.-In the Aye-aye (Chiromys) there is but one pair of nipples, situated about an inch and a half in advance of the vulva, and one inch apart: they are snb-elongate, obtuse, with about a dozen terminal lacteal pores. To sucb a pair of inguinal nipples some Lemuride (Stenops, Tarsius, Microcebus, e.g.) add a pectoral pair; while in Otolicnus and some kinds of Maki (Lemur catta, e.g.)' two pairs of pectoral nipples have been found.

In platyrhine and catarhine Quadrumana the mammary glands and nipples are restricted, as a rule, to a single pair, and to the pectoral region. In the ordinary quadrupedal progression, the young, with its belly applied to that of the motber, elings back downward, by the fore and lind feet to her flanks, holding on by the mouth to the teat between ber fore-legs. In the seated posture the mother ape holds her young to the nipple by the fore-limbs, iu a very human fashion. The integument covering the mammary gland is not protruded by its enlargement in the form of a hemispheroid 'breast: ' it is covered with lair, like the rest of the body, becomes conical and pendulous, with much elongation of the nipple, as the suckling period is prolonged. In an Orang-utan (Pithecus satyrus), I have observed an accessory nipple on the left side, below the normal one and of smaller size. \({ }^{2}\) From ten to twelve lacteal ducts open upon the apex of the normal nipple in the Orang. Around the base of the nipple open the orifices of sebaccous ducts.
§420. In Bimana the mammary glands, two in number, are

\footnotetext{
\({ }^{2}\) xx. rol. v. p. 208, 110. 3775 A. \({ }^{2}\) Ibid. \(\mathbf{B .}^{2}\)
}
subdepressed cireular bodies, thieker at the middle than at the cireumferenec, which, with the conneeted sclerous, areolar, and adipose tissues, raise the pectoral integument, at puberty, in the form of two large hemispheres or 'breasts;' and, from a little below the centre or apex of each, projects the 'nipple.' The base of the 'breast' corresponds to the interval between the third and the sixth or sceenth ribs. The gland is of a firm texture and pale reddish colour: the seeerning follieles, when injeeted with marcury, are just visible to the naked eyc. Magnified four times, they present the appearance shown in fig. 609. They are aggregated in elusters or 'glandules' of different sizes, suspended by the duet resulting from the union of those of the follieles. The short or stem-

609


Becerning follictes and uithingte lobulea of Human Manmary gland, Iuject ed wrell merenr; ; "lan", four thimes. cclaxxiv', ducts open into a wide eanal, and these, fig. \(610, r, d\), by suceessive unions, form dilated reservoirs of a conical form, ib. \(b, b\), from the apiees of which are continued the

 en, \(n\), and drled. collasmiN",
- strnight duets,' \(a, n\), of the nipple. The gland is enelosed in a selerons eapsule, fig. 611, a, ", fimest wheie it is attached to the derm, whence are continued processes into the substance of the
gland subdividing it, or defining its lobes; and which, from their connection with the tegument, are called 'suspensory' ligaments. Finer processes connect the opposite surface or base of the gland


From a Cooperian preparation of the aclerous frameworiz and attachments of the Humban matumary gland. A bribtle is passed behind some of the stralght or terminal lactiferous ducts. colxxxiv".
with the fascia of the pectoral muscle, \(b, b\). The nipple in the virgin is a rounded cone and nearly smooth; at sixteen years it is slightly wrinkled; at seventeen it has small papillæ upon its surface; from twenty to forty years the papiliz are large;

612

sensitive papilla of the Human nipple and areola ; wat. stze. Colxxxiv" from forty to fifty the nipple becomes wrinkled; from fifty to sixty the nipple is elongated; and in old age it usually has a warty appearance. When in use its extremity expands and shows the circularly disposed conspicuous pores of the lacteal ducts. The papillæ of the nipple, fig. 612, are directed toward its apex. The coloured portion of skin around the base of the nipple is the 'areola:' it expands and changes from a reddish colour to a dark brown, after impregnation. Around the base of the nipple are orifices of complex sebaceous glands. The skin of the areola is covered with papille, like those of the nipple, but of smaller size; they are disposed in circles, directed toward the nipple, so that
they also are opposed to the papille of the lips of the child: being highly vascular and nerrous, they yield, when so grasped, a sensation whieh in followed by erection of the nipple through a fitting arrangement of its vascular tissue. The homotypal gland, in the male, varies from four lines to two inches in diameter. Astley Cooper succeeded in demonstrating its conformable structure to the functional gland in the female: fig. 613 is taken from his preparation. Under special cireumstances and stimuli sueh gland may be developed so as to afford sustenance to


Recuring follete and ducts of the male twammary glud, Injected with quick:llyer; nat. Blze. colxaxiv". the infant, of which more than one case has heen recorded.

The chicf varieties in the female mammary orgaus relate to prolonged periods of lactation, as in those inferior races in whom the dugs become so extended as to permit the nipple to be thrown over the shoulder to the child carricd ou the mother's hack. (iuvier noted an unusual hreadth of the mammary areola in the ' Hottentot Venus.' \({ }^{\text {' }}\)

Anomalies of supernumerary nipples and glands arc rare. \({ }^{2}\)
On a retrospeet of the comparative anatomy of the mammary organs we see that the modifieations of these persistent tributaries to the growth of the young marmal serve as little to characterise groups as do the deciduous nutritive organs at the uterine period of life. A pair of peetoral mammæ would associate together as heterogencous an asscmhlage of species as does the diffused, or even the discoil, placenta. We may, however, discern in part, the uses of mammary modifications; whilst the teleological relations of a zonular, a cotyloid, or a cotyledonal afterbirth can, at best, he but very vaguely guessed at.
§421. Alipose substances. - These are common to all organisms, protozoa, plants, animals. \({ }^{3}\) In Mammalia they exist
\({ }^{1}\) caxixxy".
\({ }^{2}\) Ia the instance narmated in ccrixxxpr". the second nipple on each side was ouesixtl the sizo of the normal one, and situated aear the aaterior margin of the axilla. Whon gently pressed, a milky fluid flowed from several ducts opening upon its extremity. When milk was drawn from the normal bieasts, a small quantity usually oscaped from the superaddod nipples, but thoir flatness prevented the mother snckling hor childen by them.
*Huntrr, who sometimes clothed his fhr-reaching thonghts in paradoxical language, writes:-m' Fat is no part of an animal : for tirst, it is not animal substance ; secondly, na amimal is the sume without it as with it, -it is to be considered as an adventitious mattor; and thirdly, it is found both in regotables and minerals, and, therefore, is a
under conditions which vary in the degree of temperature required for congelation, as 'oil,' 'marrow,' 'lard,' 'spermaceti,' 'suet.' The most solid fats when subject to pressure afford some fluid oil, termed ' elaine,' and when the fluid fats are cooled to about \(32^{\circ}\) they deposit a concrete element called 'stearine:' the temperatures of congelation indicate the varying proportions of elaine and stearine. Whether or not it be in relation to the degree of cold to which the hoofs of some ruminants are subject, in traversing the snows of arctic climes, the oil called 'neat's foot' owes its use in the arts to its maintaining its fluidity below the freezing point. Blubber-oil, which becomes lardy at \(45^{\circ}\) or \(50^{\circ}\) Fahr., and is fluid above \(55^{\circ}\), most abounds in the thick subcutaneous tissue of the Cetacea. The fat of the hog-trihe, horse-tribe, most Lissencephala, Carnivora, Quadrumana, and Bimana, is in the state of 'lard.' It exists as suet and tallow in Ruminants. Spermaceti is peculiar to the Cachalot whales (Physeter, Euphysetes).

Some Rodents, the Harc, e.g., show little or no fat; but it occasionally accumulates in the tame Rahbit. In many Rodents it is limited to the ahdominal cavity and its special peritoneal processes. In the Seal-trihe and Whale-tribe, on the contrary, there is no fat in the abdomen, or in the mesenteric or omental duplicatures of the lining memhrane. The subcutancous areolar tissue to which it is limited in these aquatic mammals has a coarser reticulate structure in the Seals, the Grampus, and Balceneptera, than in the Porpoise, Spcrm-whale, and Baleena. In all Cetacea the containing tissuc is finer upon the trunk, and coarser toward the tail. Fat is subcutaneous in the Hog and human subject, but is also present in the great serous cavities, intermuscular spaces and joints, in variahle degrees.

Fat is to the adult what milk is to the young-a source of nourishment when no other is available. Certain Bovines of the tropics, where during the rainy season luxuriant grasses ahound on plains parched up in the dry season, accumulate fat and other assimilable suhstances in a dorsal hump at the period of plenty, and absorb its contents during that of drought. The Camels, when their food abounds, store up similar superabundant nutritious matters in one (C.dromedarius) or two (C. bactrianus) larger humps: whercby they are able to endure unusual fasts hy re-

\footnotetext{
substance common to every class of matter.' xx. vol. iii. p. 209. The tornary compounds of carbon, hydrogen, and oxygen, discovered in the condition of petroleum and its allies, in mineral strata, are suspected, with good reason, to have origivated in organic bodies.
}
absorbing those accumulations; concluding their journeys across the desert witb the special stores of fat much reduced. Similarly, in other Mammals, when the digestive function and appetite are in abeyance, as in disease, or when food is withheld or scarce, the general fat is absorbed 'to support the actions of the machine.' Hence the need of accumulations of this nutritive material in torpid mammals prior to their falling into that state, as in Marmots, Hedgehogs, \&c. Tbe subcutaneous fat, which forms a thick layer in October, becomes thin in March, yet remains after the fat of the abdomen, mesentery, and about the kidneys has quite disappeared; suggesting, as Jenner remarks, that the external fat also serves as a defence against cold. \({ }^{2}\) The subcutaneous wrap of blubber in the naked Cetacea, serves as the non-conductor of beat, in place of hair.

In Physeter portions of spermaceti nccur in the general subcutaneous blubber, but the main bulk is stored in the vast supracranial basin, in cells of areolar tissue, strengthened by aponeurotic partitions. Tbe purest spermaceti lies in the smallest and most delicate cells: it is the stearic constituent in excess which crystallises on cooling. For economic purposes these masses are separated by pressure in woollen bags from the elaine, then washed with a weak solution of caustic potash, melted in boiling water, and strained. Thus prepared for commerce spermaceti appears as semi-transparent brittle masses of a foliate fracture, soapy to the tonch, with a slight odour and greasy taste: its specific gravity is 943 ; it fuses at ahout \(114^{\circ}\); thep urified crystalline scales deposited from a solution in boiling alcobol, form - cetine.' From the blubber of species of Delphinus a peculiar fatty principle called 'phocenine' is obtained. The characteristic colour of goats' fat is associated with a principle called ' hircin.'

With ordinary stcarine a variable proportion of 'margarine' is always combined, and both these and 'elaine' are compounds of a distinct fatty acid with the sweet principle called 'glycerine.'

\footnotetext{
\({ }^{1}\) Ix. vol. iii. p. 213.
* Ib. p. 216.
}

\section*{CHAPTER XL.}

GENERAL CONCLUSIONS.
§422. Biological Questions of 1830 .-At the close of my studies at the Jardin des Plantes, Paris, in 1831, I returned strongly moved to lines of research bearing upon the then prevailing phases of thought on some general hiological questions.

The great Master in whose dissecting-rooms, as well as in the puhlic galleries of Comparative Anatomy, I was privileged to work, held that 'species were not permanent:' and taught this great and fruitful truth, not douhtfully or hypothetically, hut as a fact estahlished inductively on a wide and well-laid basis of ohservation, hy which, indeed, among other acquisitions to science, Comparative Osteology had heen created. Camper \({ }^{1}\) and Hunter \({ }^{2}\) suspected that species might he transitory; but Cuvier, in defining the characters of his Anoplotherium and Palcothertum, \& c., proved the fact.

In this truly scientific labour the law of the suhordination of the different organic characters to the condition of the whole animal was first appreciated, clearly enunciated, aud its application shown to the reconstruction of lost species from fragmentary remains. The importance of this generalisation may he paralleled with that of the principle of equivalents in chemical science.

Of the relations of past to present species, and the conditions of their succession, Cuvier had not an adequate hasis for a decided opinion. Ohservation of changes in the relative position of land and sea suggested to him one condition of the advent of new species on an island or continent where old species had died out. This view he illustrates hy a hypothetical case of such succession, \({ }^{3}\) hut expressly states:-'Je ne prétends pas qu"ll ait fallu une création nouvelle pour produire les espèces aujourd'hui existantes, je dis sculement qu'elles n'existoient pas dans les mêmes lieux, et qu'elles ont dû y venir d'ailleurs.' \({ }^{4}\)

Geoffroy Saint-Hilaire, whose discussions with his colleague in the - Académie des Sciences ' made its annals of 1830 memorable,
ccxcri'. \(\quad\) ecxcuri. and other authors citod in cxxxix. p. siv.
- crexix. tom. i. p, lxiii.
\({ }^{1} \mathrm{Ib}\).
equally rejecting the idea of new creations, \({ }^{1}\) opposed to Cuvier's inductive treatment of the question the following expression of belief:-‘Je ne doute pas que lcs animaux rivants aujourd"hui ne proviennent, par une suite de générations, et sans interruption, des animaux perdus du monde antédiluvien.' \({ }^{2}\) But with regard to the demonstration of the proposition, of the truth of wbich be could not entertain a doubt, Geoffroy Saint-Hilaire expressly states:-‘Je crois que les temps d'un savoir véritablement satisfaisant en géologie ne sont pas encore venus.'

The main collateral questions argued in these debates, to some of which I listened, and to all the reports and consequent pamphlets relating thereto devoted intense attention, appeared to me to be the following:-

Unity of Plan or Final purpose, as a governing condition of organic development?

Series of species, uninterrupted or hroken by intervals?
Extinction, cataclysmal or regulated?
Development, by epigenesis or evolution?
Primary life, by miracle or secondary law ?
On returuing home and resuming office with additional duties at the Royal College of Surgeons, I was guided in all my work with the hope or endeavour to gain inductive ground for conclusions on thcsc great questions.
§ 423. Homology or Teleology? - Cuvier beld the work of organisation to be guided and governed hy final purpose, or adaptation, expounding this principle under the terms 'conditions of existence 'and 'correlations of structure.' Geoffroy denied the evidence of design, and protested against the deduction of a purpose as, e. g., from the coexistence of a valve with a dcfinite course of fluid: he contended for the principle which he called ' 1 nité de composition,' as the law of organisation. Most of his illustrations were open to the demonstration of inaccuracy, and his arguments to the refutation which they received from Cuvier in the debates in question: the logic, and, as it secmed, the facts, were on the side of teleology. The figurative language, morcover, in wbich contemporary anatomists had expressed their views of a principle akin to Geoffroy's was ill-calculated to enlist supporters. The expressions by which disciples of the school

\footnotetext{
"Or, cetto proposition, dêja contraira aux plus ancionnes données listoriques, repugno tont nutant mix lumières de la raison naturella qu'aux spéculations plus réfléchies des sciancas physiques.'-CcLxxxvn", p. 210.
- Also, mora decisively :-'Les animaux perdus sont, par voio non interrompua de genérations et da modifications succobsires, les ancêtres des animaux du monde actuel." -ccixixyn". p. 208.
}
of Schelling illustrated, in the animal structures, the transcendental idea of 'the repetition of the whole in every part,' operated disadvantageously to the calm enquiry into the prime question at issue. To Cuvier this language seemed little better than mystical jargon, and he alluded to it with transparent contempt. \({ }^{1}\) When he did extend inferences from comparative anatomy beyond the adaptation of structure to function, Cuvier went not beyond a recognition of what I have since termed - special homologies \({ }^{2}:{ }^{2}\) and this lowest degree of correspondence be explained on the ground of the subscrviency of such homologous parts to similar ends in different animals; \({ }^{3}\) viewing them, in fact, in tbat relation which I express and contrast by the term 'analogies.' 4 With Cuvier answerable parts occurred in the zoological scale because they had to perform similar functions.

Most of my fellow-students at the Garden of Plants, in 1830, and some subsequent fellow-labourers, Johannes Müller, Rud. Wagner, Milne-Edwards, Agassiz, implicitly accepted this explanation of the fact of answerahle hones and other parts occurring in different species.

After the puhlication of the 'Memoir on the Pearly Nautilus,' and of those on Monotrematous and Marsnpial generation, which subjects Cuvier had strongly recommended to my attention, the qucstion of the condition or law of special homologies pressed itself upon me, more espccially in connection witb the task of arranging and cataloguing the osteological part of the Hunterian Museum, \({ }^{5}\) As my observations and comparisons accumulated, with pari passu tests of observed phenomena of osteogeny, they enforced a reconsideration of Cuvier's conclusions to which I had previously yielded assent. To demonstrate tbe cvidence of the community of organisation, I found that the artifice of an arcbetype vertebrate animal was as essential as that of the archetype plant had beeu to Goethe in expressing analogous ideas; and as the like reference to an 'ideal type' must he to all who undertake to make intelligible the 'unity in variety' pervading any group of

\footnotetext{
- Quant à M. Oken, il déclaro les piéces en question les parties écailleuses des temporaux, ou, selon son langage mystique, "la fourchette du membre supérieur de la tête."-Cet humérus de la tête de M. Oken devient pour M. Spix Ie pubis de cette même tête; ou, pour parler un langage intelligible, un des osselets de l'ouie, savoir le marteau.'-cxxxix. tom. v. \(2^{e}\) partie, p. 85.
\({ }^{2}\) cxe. p. 7.
'Ce n'est qu'un principe subordonné à un autre bien plus élevé et bien plus fécond, it celui des conditions d'existence, de la convenance des parties, de leur coordination pour le rôle que l'animal doit jouer dans la nature. Voílà le rrai principe philosophique d'où découlent la possibilitós de certaines ressemblances,'-ccxclv'. p. 9.
\({ }^{4}\) cxi. p. 7.
\({ }^{3}\) xITV.
}
organisms. \({ }^{1}\) From the demonstration of this principle, which I then satisficd myself was associated with and dominated by that of 'adaptation to purpose,' the step was plain-to me inevitableto the conception of the operation of a secondary cause of the entire scries of species, whether of plants, or vertebrates, or other groups of organisms, such cause being the servant of predetermining intelligent Will. \({ }^{2}\)

But, besides 'derivation' or 'filiation,' another principle influencing organisation became recognisable in the course of studies and researches on Invertebrate animals. To this principle, as more especially antagonistic to the theological idea, I gave the name of 'irrelative repetition;' sometimes also, as it prevailed most in plants and zoophytes, of 'vegetative repetition.' \({ }^{3}\) The dcmonstrated constitution of the vertebrate endoskeleton, as a scries of essentially similar segments, out of which, as corollary, came the power of enunciating not only 'special' but 'general' and 'serial' homologies, appeared to me to illustrate also the law of irrclative repetition. The recurrence of similar segments in the spinal column and of similar elements in a vertehral segment, struck me as analogous to the repetition of similar crystals as the result of polarizing force in the grow th of an inorganic body. \({ }^{4}\)

Accordingly, these results of extensive, patient, and uuhiassed inductive rescarch-or, if there werc a hias, it was toward Cuvier-swayed with me in rejecting the principle of direct or miraculous creation, and in recognising a 'natural law or secondin'y cause' as operative in the production of species ' in orderly succession and progression.' \({ }^{5}\)
§424. Succession of Species, broken or linked?-To the bypothesis tlat existing are modifieations of extinct species Cuvier replied, that, in every mooted form of transmutation, the species werc made to alter hy small degrees, and that, therefore, traces of such gradual modifications were due from the fossil world:-' You ought,' be said, 'to be able to show, e. g., the intermediate forms between the Palwotherium and cxisting hoofed quadrupeds.' \({ }^{6}\)

\footnotetext{
Such 'idenal type' must not be confounded with the so-called 'types' supposed to be exemplified by certain living species. Arguments against the latter vague and ill-dofined ideas are of no weight against the former, and indicate a certain obtuseness of apprelansion in the objector, See cecxxyi". p. 31.
* exli. (1840) p. 86.
ccurrx. p. 641 (1843); and vol. i. Preface, p. ix.
- oxi. p. \(171 . \quad\) cxil. loc. cit.
- Cependant on peut leur répondre, dans leur propre système, que si les espèces ont changé par degres, on devroit trouver des traces de ces modifications graduelles; qu'entre le paleotherium et les espèces d'aujourd'bui l'on derroit découvrir quelques formes intermédiaires, et que jusqu'è présent cela n'est point arrivé'-cxixix. tom, i. p. Irii.
}

The progress of Palmontology since 1830 has hrought to light many missing links unknown to the founder of the science. My own share in the lahour led me, after a few years' research, to discern what I helieved, and still hold, to he a tendency to a more generalised, or less specialised, organisation as species recede in date of existence from the present time. \({ }^{1}\) Even instances which to some have appeared to oppose the rule, really exemplify it. The little marsupial carnivore, e. g., of the Purbeck heds, Plagiaulax (p. 294, fig. 234), retained the typical numhers of premolars ( \(p .1-4\) ), all of them heing carnassials: the more modified pliocene Thylacoleo had them reduced to the last (p. 4, fig. 233). So likewise in the later placental Carnivora, the eocene form Hyyenodon, fig. 266, had the typical numher of tceth, the three true molars here showing the carnassial form: in the existing Hyana and Felines the carnassials are reduced to, or concentrated in, a single molar. The oolitic Phascolotherium, with the typical marsupial numher of teeth, shows less differentiation in their form than in modern Opossums and Dasyures: the oolitic Amphitheria and Palcotheria manifest an earlier and more genexalised type of dentition in the great numher and similarity of character of their small molars. Both Anoplotherium and Paleotherium, with the majority of eoceuc placental Mammals, had the type-dentition of diphyodonts. \({ }^{2}\)

The two notahle examples of Cuvier's powers of restoration, viewed as Pachydcrms, must have seemed widely different from any of the existing species of the order, and were so deemed. The Anoplotherium more especially, among its singular peculiarities, unexpectedly exemplified one dental character, previously known only in the human suhject. These seeming anomalies, however, lost much of their import as evidence of insulated form, or special creation, when they came to he viewed by the light of the law of the 'more generalised character of extinct specics.' Such law in its application to Anoplotherium also exemplifies the analogy hetween the earlier species of a class and the earlier stages of a foetus. When, for example, the divided metapodials, the persistent upper incisors, and the hornless cranium of the Anoplothere were recognised as retentions of 'foetal peculiarities'

\footnotetext{
coxlix. Ed. 1843 , pp. 129, 165 ; Ed. 1805, pp. 223, 332, 342. ctxxx. and xvir'. pp. I, 361, passimn. Agassiz had been struck by indications of the same law in fossil fishes, and expressed it by the analogy of foetal and mature structures (ccerxax \({ }^{\prime \prime}\). (1844) p. xxvi.), and this, in some degree, is true. The earlier forms of Mammalia, however, are not toothless, have rather an excess of teeth as compared with later and modern forms; but they exemplify, in the main, a more 'generalised' type.

2 ק. p. 524. clxxx. p. 361.
}
of existing ruminants, that extinct species was seen to favour rather than oppose the idea of organisation by secondary law.

The discovery of the remains of the Hipparion \({ }^{2}\) supplied one of the links, required by Cuvier, between the Palcotherium and the Horse of the present day, and it is still more significant of the fact of filiation of species that the remains of such three-toed Horses are found only in deposits of that tertiary period which intervene between the older palmotherian one and the newer strata in which the modern Horsc first appears to have lost its lateral hooflets. These relations I illustrated in my Lectures on Fossil Mammalia at the School of Mines (1857) by the diagram, fig. 614.

Other evidences of gradation, in the case in question, have been brought to light. The molar series of the Horse includes six large complex grinders, individually recognisable by developmental characters as they are symbolised in fig. 280, p. 352. The representative of the first premolar is minute and soon shed. Its homologue in Paleotherium is functionally developed and retained, the type-dentition being adhered to. \({ }^{3}\) In Hipparion, \(d\) : is succeeded by a \(p 1^{4}\) smaller than in Palcotherium, but functional, with inflected folds of enamel on the grinding surface, and permanent. It exemplifies a condition intermediate to that in Palcotherium and Equus. It is not that the jaws of the Horse are too short to hold the full complement of grinders: on the contrary they are relatively longer than in the Palrothere, being specially produced between the grinders and cutters:- the first grinder might seem, indeed, to have been taken away in order to add to the space for the application of the 'bit.' The transitory and singularly small and simple denticle, fig. 614, \(p_{1}\), compared with the large contiguous massive molar, \(m 1\), in the Horse, exemplifies the rudiment of an ancestral structure, in the same degree as does thc hoofless ' splint-bones,' ib. Equus, II. IV. : just as the spurious hoofs dangling therefrom in Hipparion, ib. II. iv., are retained rudiments of the functionally developed lateral hoofs in the broader foot of Palmotherium, ib. II. rv.

Other missing links of this series of species have been supplicd; as, c. g., by the Paloplotherium \({ }^{6}\) of the newer eocene of Hordwell,
\({ }^{1}\) cexxe. p. 867.
"cocm". tom. ii. p. 25 (1832). Another species was discovered in the Miocene at Eppelsheim-the 'Hippotherium,' of Kaup; a third in deposits of similar age on the Sevalik Hills; a fourth, Hipparion prostylum, Gr., at Vaucluse, in the south-east of France, in deposits 'peut-etre plus récents que la mollasse dans ces localités.' cccxaxi. p. 432.

This modification, as the Palcotherium ovinum, Aymard, began to be shown, st

Hants., hy the Palcotherium aurelianense from the 'molasse marine' of Orleans,' and hy the Palcotherium hippoindes of the lacustrine calcareous beds of Sansan, all which deposits are miocene, or are transitional hetween eocene and miocene. In the first-cited example, the swollen termination of the lohe of the molar, answering to \(c, m\), fig. 268, remains longer as a detached column, \(m\), fig. 269. In the two other Palæotherioids, the whole foot is longer and more slender, with a longer and thicker middle toe, than in the older eocene type-genus, whence the generic name Anchitherium applied to them hy von Meyer. \({ }^{2}\) It is interesting, also, to find that the transitional character is further marked by the smaller relative size of first premolar, wherehy Anchitherium intervenes, as in the modification of the feet, between the Palcotherium and Hipparion.

Thus amply and satisfactorily has heen fulfilled Cuvier's requisition of 1821:-'Entre le palæotherium et les espèces d'aujourd'hui l'on devrait decouvrir quelques formes intermédiaires.' How, then, is the origin of these intermediate gradations to be interpreted? One may first remark, that as Palcotherium, Paloplotherium, Anchitherium, Hipparion, and Equus, differ from each other in a greater degree tlan do the Horse, Zebra, and Ass, the difficulty of interbreeding would he greater, and the probahility of fcrtility lcss, supposing those extinct genera to have co-existed. One cannot douht, also, that every well-marked species of these genera paired within itself, and that they exemplified respectively the character of a group of individuals descended from common parents, or from such as resemhled them as closely as they resemhled each other.' They did not, however, exist as species, during the same prriods of time, far less so 'from the heginning of things.' The single-hoofed Horsefamily cannot he traced further back than the pliocene tertiary period: the tridactyle equine species have not heen found in strata earlier than miocene, and disappear in the upper eocene: the heavier-hodied shorter-legged species with three functional hoofs to each foot belong to upper and middle eocenes. Furthermore, in the oldest eocene (London clay, super-cretaceous Conglomerates and Plastic clay at Meudon, Paris), we get evidence of Ungulates (Pliolophus, Hyracotherium, Coryphodon), in which the perisso- and artio-dactyle characters were less differentiated

\footnotetext{
the upper eocene at Velay, e.g., ere Palaotherium proper had passed away. (Bulletin du Congrés Scientifique de France tenu à Puy, 1855.)
\({ }^{1}\) Also in the upper eocene of the Basin of the Garonne, with Acerotherium. Anchitherium occurs, ulso, in the 'marine molasse,' or lower miocene, of St. Genies, Languedoc.
}
than in Palaotherium and Anoplotherium, affording additional significant evidence of progressive departure from generalised type. Thus, tbe succession in time accords with the gradational modifications by which Palcotherium is linked on to Equus.

Witb tbis additional knowledge the question, "whether actual races may not be modifications of those ancient races which are exemplified hy fossil remains ?' presents itself under very different conditions from those under which it passed hefore tbe minds of Cuvier \({ }^{1}\) and the Academicians of 1830 . If the alternativespecies by miracle or by law?-be applied to Palcotherium, Pa loplotherium, Anchitherium, Hipparion, Equus, I accept the latter, without misgiving, and recognise such law as continuously operative throughout tertiary time.

In respect to its mode of operation, we may suppose Lamarck to say, 'as the surface of the carth consolidated, the larger and more produced mid-hoof of the old three-toed Pachyderms took a greater share in sustaining the animal's weight; and, more hlood being required to meet the greater demand of the more active middle-toe, it grew; whilst the side-toes, losing their share of nourishment and becoming more and more withdrawn from use, shrank;' and so on, according to tbe bardening of the ground, until only the hidden rudiments of metapodials remained and one hoof became maximised for all the work. Mr. Darwin, I conceive, would modify this, like other Lamarckian instances, hy saying that some individuals of Palootherium happening to be born with a larger and longer middle-toe, and with shorter and smaller sidc-tocs, such variety was better adapted to prevailing altcred conditions of the earth's surface than the parental form; and so on, until finally the cxtreme equine modifications of foot came to be 'naturally selected.' But the hypotheses of appetency and volition, as of natural selection, are less applicable, less intelligible, in connection with the changes in the structure and proportion of the molar series of teeth, which we have scen also to be gradational from Palcotheriam to Equus, fig. 614.

Any modification of Geoffroy's 'ambient medium,' affecting the density of the soil might so far relate to the changes of limbstructure, as that a foot with a pair of small hoofs dangling by the sides of the large one, like tbose behind the cloven hoof of the ox, would cause the foot of the Hipparion, c.g., and a fortiori the broader hased three-hoofed foot of the Palæotbere, to sink less deeply into swampy soil, and be more easily withdrawn, than

\footnotetext{
1 'Pourquoi les races actuelles, me dirait-on, ne seraient-elles pas des modifications de ceu racer anciennes que l'on trouve parmi les fossiler ?'-cirixic. i. p. Ivii,
}
the more concentratively simplified and specialised foot of the Horse. \({ }^{1}\)

Rhinoceroses and Zebras, however, tread together the arid plains of Africa in the present day : and the Horse has multiplied in that half of America where two or more kinds of Tapir still exist. That the continents of the eocene or miocene periods were less diversified in respect of swamp and sward, pampas or desert, than those of the pliocene period, has no support from ohservation or analogy.

Assuming, then, that Palcotherium did ultimately hecome Equus, I gain no conception of the operation of the effective force hy personifying as 'Nature' the aggregate of beings which compose the universe, or the laws which govern these heings, hy giving to my personification an attrihute which can properly he predicated only of intelligence, and by saying, 'Nature has selected the mid-hoof and rejected the others.'

As some paragraphs in my ' Preface' have heen nisconceived, \({ }^{2}\) I must further ohserve, to put my meaning beyond doubt, that, to say that Palxotherium has graduated into Equus hy 'Natural Selection' is an explanation of the process of the same kind and value as that which has heen proffered of the mystery of 'secretion.' For example, a particular mass of matter in a living animal takes certain elements out of the blood and rejects them as 'bile.' Attributes were given to the liver which can only he predicated of the whole animal: the 'appetency' of the liver, it was said, was for the elements of hile, and 'hiliosity" or the 'hepatic sensation' guided the gland to their selection. \({ }^{3}\)

Such figurative language, I need not say, explains ahsolutely nothing of the nature of bilification. One's surprise is that ' tropes' and 'personified acts' should not have died out, as explanatory devices, with the 'archeus faber,' the 'nisus formativus,' and other self-deceiving, world-heguiling simulacra of science, with the last century; and that a resnscitation should have had any success in the present. It is of interest as illustrating the 'alternation of generations.'

What, then, are the facts on which any reasonable or intelligihle conception may he formed of the mode of operation of the

\footnotetext{
\({ }^{4}\) XVII'. p. 397.
\({ }^{2}\) Referring to my 'Anatomy of Vertebrates,' in the fourth edition of the "Origin of Species by Natural Selection,' \&ce, the author asserts that 'he' (Professor Owen) 'at the same time admits that Natural Selection may have done something fowards this end.' Mr. Darwin does not quote the passage or refer to the page on which he founds his assartion.-ccxuri" (1866), Histor. Pref. p. xyiii.
sccexviri". vol. i. p. 268, and passim.
}
derivative law exemplified in the series linking on Palcotherium to Equus? A very significant one is the following:-A modern horse occasionally comes into the world with the supplementary ancestral hoofs. From Valerius Maximus, \({ }^{1}\) who attrihutes the variety to Bucephalus, downwards, such 'polydactyle' horses have been noted as monsters and marvels. In one of tbe latest examples, \({ }^{2}\) the inner splint-bone, answering to the second metacarpal of the pentadactyle foot, supported phalanges and a tcrminal hoof, in position and proportion to the middle hoof, rescmbling the corresponding one in Hipparion, fig. 614, II.

In relation to actual horses such specimens figure as 'monstra per exccssum;', but, in relation to miocene horses, they would be normal, and those of the present day would exemplify ' monstra per defectum.' The mother of a 'monstrous' tridactyle colt might repeat the anomaly and bring forth a tridactyle 'filly'; just as, at San Salvador, the parents of a family of six had two of the series born with defective brain and of dwarf size: they were 'male' and 'female;' and these strange little idiots are exhihited as 'Aztecs.' The pairing of the horses with the metapodials bearing, according to typc, phalanges and hoofs, might restore the race of hipparions.

Now, the fact suggesting such possibility teaches that the change would be sudden and considerahle: it opposes the idea that species are transmuted hy minute and slow degrees. It also shows that a species might originate independently of the operation of any external influence; that change of structure would precede that of use and habit; that appetency, impulse, ambient medium, fortuitous fitness of surrounding circumstances, or a personified 'selecting Nature,' would have had no share in the transmutative act.

There is, however, one relation which I cannot shut out, for I hold it as strongly as when I explained it, and endeavoured to impress it upon the audience at my lectures of 1857; it is the fitness of the organisation of the Horse and Ass for the needs of

\footnotetext{
' 'Exemplorum memorabilium Libri noven, \&c. (De rebus mirificis.)'
" \({ }^{\text {ccenv" }}\). P. 55, P]. 1.
- Two anch examples are described in jur. vol. ii., and one in cccv". p. 22t, in which the left fore-foot had three eubequal hoofs, and the right fore-foot two hoofs. But the application of an instructive und rightly discerned relation may be travestied and exuggerated : the two-tailed lizard and the double-headed snake do not reproduce to view normal ancestral forme. The essentially single mid-toe (fig. 193, iii) of the horse, occaeionally bifid and terminated by a pair of ill-ahapen hoofs, lends no support to the ideas of the digit (iii) being homologous with the so-called cloven hoof (really the digits iii and iv, ib.) of Ruminants. It is a malformation akin to that of the partially double digit of the Dorking fowl.
}
mankind, and the coincidence of the origin of Ungulates having equine modifications of the perissodactyle structure with the period immediately preceding, or coincident with, the earliest evidence of the Human Race.

Of all the quadrupedal servants of Man none have proved of more value to him, in peace or war, than the horse: none have cooperated with the advanced races more influentially in Man's destined mastery over the earth and its lower denizens. In all the modifications of the old palæotherian type to this end, the horse has acruired nobler proportions and higher faculties, more strength, more speed, with amenability to bit. No one can enter the "saddling ground' at Epsom, before the start for the 'Derby,' without feeling that the glossy-coated, proudly-stepping creatures led out before him are the most perfect and beautiful of quadrupeds. As such, I believe the Horse to have been predestined and prepared for Man. It may be weakness ; but, if so, it is a glorious one, to discern, however dimly, across our finite prisonwall, evidence of the 'Divinity that shapes our ends,' abuse the means as we may.

Thus, at the acquisition of facts adequate to test the moot question of links between past and present species, as at the close of that other series of researches proving the 'skeleton of all Vertebrates, and even of Man, to be the harmoniscd sum of a series of essentially similar segments, \({ }^{1}\) I bave been led to recognise species as exemplifying the continuous operation of natural law, or secondary cause; and tbat, not only successively but progressively ; 'from the first embodiment of the Vertebrate idea under its old Ichthyic vestment until it became arrayed in the glorious garb of the Human form.' \({ }^{2}\)

The series of observations on the Ungulate group of Mammals yields insight, as above explained, into the mode of operation of the secondary law; and gives evidence of the amount of geological time intervening between the introduction and disappearance of generic or subgeneric modifications. According to

\footnotetext{
' CxLl. p. 119.
\({ }^{2}\) Ih. p. 86. Even in his partial quotation from my work of 1849 , the author of ccxurn" (4th Ed. 1866) might hare seen ground for apologising for his preposterous assertion, in 1859 :- that 'Professor Owen maintained, often vehemently, the immutability of specips' (p.310), and for the question, as preposterous and unworthy: 'Does he reelly helieve that at innumerahle periods in the earth's history elemental atoms haro been commanded suddenly to flash into living tissues?' (Ib. Ed. 1859, p. 483. In the Ed. of 1860 , p. 111, the imputation is tacitly abandoned.) The significance of the concluding paragraphs of cxill was plain enough to Baden Powert, ccexxmin'". p. 401 (1855), and drow down on me the hard epithets with which Theology usually assails the inhringer of unwelcome light, c11' p. 61.
}
the analogy of the mammalian Hipparion and Equus, we may expect the corresponding precedent form of the Papuan of the well-wooded and richly fruited islands representing a departed tropical or subtropical continent, to be exemplified by fossils in formations not earlier than middle tertiary. All species coexisting with the actual specific form of Homo will, with him, be immutable, or mutable only as he may be. To name such species, after comparing and determining their specific cbaracters, will continue to be the Zoologist's staple task as long as his own specific intellectual character remains unchanged (Pref. p. xxxvi.). To suppose that coexisting differentiations and specialisations, such as Equus and Rhinoceros, or either of these and Tapirus, which have diverged to generic distinctions from an antecedent common form, to be transmutable one into another, would he as unscientific, not to say absurd, as the idea, which has heen holstered up by so many questionahle illustrations, and foisted upon poor 'working men,' of their derivation from a Gorilla!
§425. Extinction, cataclysmal or regulated?-If, in place of recognising the series of the above-cited Perissodactyles as evidencing (preordained) departures from parental type, probably sudden and seemingly monstrous, hut adapting the progeny inheriting such modifications to higher purposes, the theological notion be retained, and the species of Palaothere, Paloplothere, Anchithere, Hipparion, and Horse, be severally deemed due to remotely and successively repeated acts of direct creation, one is concomitantly led to suppose the successive going out of such species to have heen as miraculous as their coming in. The destruction of one creation is the logical preordinance to a recurrence of 'genesis.' This nexus of ideas was too close not to have swayed with Cuvier: accordingly, in his famous ' Discours sur les Rêvolutions de la Surface du Globe,' we have a section of ' Preuves que ces Révolutions ont été nombreuses,' \({ }^{\text {' }}\) and another scction of "Preuves que ces Révolutions ont été subites.' \({ }^{2}\) Continued observations of Geologists, while establishing the fact of successive changes, have filled up the seeming chasms between such supposed 'revolutions,' as the discoveries of Palæontologists have supplied the links between the species held to have perished by the cataclysms. Each successive parcel of geolugical truth has tended to dissipate the belief in the unusually sudden and violent nature of the changes recognisable in the earth's surface. In specially directing my atteution to this moot point, whilst engaged iu investigations of fossil remains, and in
\[
\operatorname{cccx}{ }^{\prime \prime} \cdot \text { p. } \bar{b} . \quad 2^{2} \text { Ib. p. } 8 .
\]
the reconstruction of the species to which they belonged, I was, at length, led to recognise one cause of extinction as heing due to defeat in the ' contest which as a living organised whole, the individual of each species had to maintain against the surrounding agencies which might militate against its existence.' (Pref. p. xxxiv.) This principle has received a large and most instructive accession of illustrations from the extensive knowledge and devoted lahours of Charles Darwin: but he aims to apply it not only to the extinction but the origin of species.

Although I fail to recognise proof of the latter hearing of the 'battle of life,' the concurrence of so much evidence in favour of ' extinction by law' is, in like measure, corrohorative of the truth of the ascription of the origin of specics to a secondary cause. \({ }^{1}\)

\footnotetext{
\({ }^{1}\) A critic of the first volume of the present work, switching over the pages of the 'Preface' with the speed they merited at his hands, caught sight of the words, 'contest of existence,' ' battle of life ;' and thereupon dashed off with-' We would call attention to the following passuge, and ask whether it is not actnally an admission of the Darwinian Theory !' ('London Review,' April 28, 1866, p. 483); then pastes in the slip, heginning with 'the actual presence,' to 'fared better in the hattle of life.' With the hulk of the two volumes hefore him, an able reviewer could hardly he expected to waste valuable time upon 'notes,' and so the fact escaped him that the 'admission' or 'adoption' was, in whatever degree it might relate to the D. T., an anticipation.

Oddly enough, another reviewer (if haply the same moritorious labourer may not have been doing this sort of work for both periodicals) makes the same transposition of dates, mistaking a quotation for text; e.g. "Not the least important feature in the work before us is, that it contains a partial concurrence, on the part of the author, in the theory of Natural Selection.' And the same cutting' does duty as 'piéce justificative,' viz., 'The actual presence,' \&cc, to 'battle of life.'-('Popular Science Review,' April, 1866, p. 212.)

Having regard to intelligent countrymen and countrywomen taking scientific sustenance from tbese weekly and monthly sources, and who might never see the pages of the work reviewed, I rentured to call attention to the omitted reference in the foot-note of my 'Preface,' viz, to the volume of 'Transactions of the Zoological Society' 1850, in which my theory of the extinction and conservation of species appeared, including the passage quoted, with the obvious remark, that, 'if the difference between 1858 (date of the D. T. or "Natural Selection") and 1866 (date of voL, i. of Anat, of Vertebrates) puts the writer of the latter date in the subordinate relation of "admitter" or "adopter"-tacit or otherwise-to the author of the same theory at the earlier date, the writer of 1858 must stand in the same relation to the author of the same theory of 1850.'-(Letter to Ed. cf 'London Review, May 1st, 1866.)

Of course, to every competent judge, the difference between a theory founded on the application of the principle of the contest for existence to the preservation or extinction of certain species, and that of a theory of the origin of all species partially hased upon the same principle, must have been obvious; nor was any pretention advanced, in the letter rectifying the date of the 'idea,' to the ample and instructive degree in which it had been worked out, and doubtless as an original thought, by the accomplished autbor of ccemirt.

I deeply regretted, therefore, to see in a 'Historical Sketch' of the Progress of Enguiry into the origin of species, prefised to the fourth edition of that work (1866), that Mr. Darwin, after affirming, inaccurately and without ovidonce, that I 'admitted
}

\section*{§426. How works the Derivative Law?-The guesses made by those who have given the rein to the imaginative faculty in}

Natnral Eelectimn to have done sometbing toward that end,' to wit, the 'origin of opecies,' proceeds to remark: 'It is surprising that this admission should not have been made earlier, as Prof. Owen now believes that he promnlgated the theory of Natural Selection in a passage read before the Zoological Society, in February, 1850 (Trans, vul, iv, p. 15).'

The reason assigned for this assertion is a paragraph in my letter to the ' London Review;' May 6, 1886, p. 516, which letter Mr. Darwin represents as an expression of my belief 'that I promulgated the theory of Natural Selection in a pasange read before the Zoological Society, in February, 1850.' The passage which Mr. Darwin quotes is as follows:-"No naturalist can dissent from the truth of your perceptinn of the essential identity of the passage cited with the basis of that (the so-called Darwinian) theory, the power, viz, of species to accommodate themselves or how to the influences of surrounding circumstances." My ground for assuming the recognition of 'the power of species to accommodate themselves or bow to the influence of surrounding circumstances' to he the basis of the 'so-called Darwinian theorg,' was, the deflnition of that theory given by the author in the title-page of the work 'On the Origin of Species hy means of Natural Selection.' For, the words 'Natural Selection' not heing likely, of themselves, to suggest the mode of origin of species, the author adds the following definition of his menning: ' or, the preservation of favoured races in the struggle for life?
Now, although in the perussl of the work so entitled I found many other previously propounded grounds of a belief as to the origin of species-as, e.g. 'volition or endeavour to act in a given way,' p. 184, 'bomology,' p. 434, 'irrelative repetition,' p. 149, ' geologicul time,' p. 282, 'successive extinction of species,' p. 312, 'indications of older or earlier specios having a more embryonal or generalised structure than their successors,' p. 238, \&c,,-all of which had seemed to me to be better eridences of a genetic succession of species than the one ground set forth in the title-pgge-yet, being so set forth, it was due to the author to refer to it as 'the hatis' of his theory. If reference be now made to the 'Zoological Transactions,' vol.iv. p. 16 (February, 1850), or to 'Preface' (rol. i.) p. xxxiv., it will he seen that I exemplify the principle of the preservation of the favoured race, in the circumstances of the struggle described, including seasonal extremes, adaptntion to kinds of food, generative powers, introduction of enemies, \&c., hy such characters of apecies as those of size :- 'If a dry season be gradually prolonged, the large Mammal will suffer from the drought sooner than the small one; if such alteration of climate affect the quantity of vegetable food, the bulky Herhivore will first feel the effects of etinted nourishment; if new enemies are introduced, the large and conspicuous quadruped or hird will fall a prey, whilst the amnller species conceal themselves and escape. Smaller animals are usually, also, more prolific than larger ones.' It will he ndmited, I may believe, thest, in vien (in 1850) of the question of extinction by cataclysm, or by surrounding influences, not more extraortinary, for example, then extrome senson (heat, cold, rain, drought, as part of the ordinary Laws of Climate), tho operation of buch influences in the presorvation of some races and the extirpation of others could ncarcely be more explicitly propounded. And this principle of victory or defent in tho 'contest with surrounding agencies' is set forth in Mr. Darwin's titlepuge ab the hasis nf his theory of Natural Selection. Then, when a reviewer, ignorant of, or ignoring, the relative dates of promulgation of such basis, qnotes me as adopting Mr. Darwin's theory, and when I point out the transposition of the dates of that theory and of my rnunciation of its basis, Mr. Darwin turns upon me and writes, in 1866: 'Mr. Owen now belieres that he promulgated the theory of Nutural Selection,' and adds, 'this beliof in Prof. Owen that he thus geve to the world the theory of Natural Solection will surprise all who are acquainted with the several passages of his works,' dec. (p. xviii.). But all that Mr. Darwin gives in support of this statement
attempts to explain the mode of operation of the derivative law have mainly proved repellent to its study, and have raised the chief obstacles to its acceptance, hy affording the most favourable opportunities of telling argument and caustic criticism to opponents of any recognition of such law in the ahstract. Thus, De Maillet's conception of the conditions of transmutation \({ }^{1}\) invited Cuvier's crushing exposition of its ahsurdity, which fell with the full weight of his great anatomical knowledge. \({ }^{2}\) Lamarck
and comment, and I am very sure he quoted every word he could find to justify them, goes no further than to show that I had anticipated him in the hasis of his theory, and in no way or degree supports his assumption that I accepted or had affirmed that I had promulgated (in 1850), the extraordinary superstructure which he has raised upon that hasis, under the term 'Natural Selection.' In so asserting I should have merely deceived myself: no Naturalist cognisant of the history of the progress of the knowledge of the origin of species could be deceived for a moment by so gross an absurdity as would have been the statement of the belief, which statement Mr. Darwin endearours to fasten upon me, of 'having promulgated the theory of "Natural Selection,"' or any other theory of the origin of species. It would have been a case of self-deception akin to that hy which Mr. Darwin, having atterpted and, as it seems to me, failed, to explain the origin of species on my hasis of the 'struggle for life,' assumes to himself, or allows others to attribute to him the only reasonahle and probahle grounds for beliof in the origin of species through a preordained continuously operating secondary law or cause. And here I take leave to remark, that certain facts having heen pointed out, with their modo of operating in the origin of species, and the probahilities weighed for and against the miraculous origin of 'some one form into which life was first breathed' as contrasted with 'the normal origin of divers forms of sarcodal, single-celled, life' as hypothetical beginners of suhsequent and higher forms, it is not honest to confound auch 'derivative hypothesis of the origin of species' with the hypothesis of 'Natural Solection.'

1 'Car il peut arriver, comme nous sçavons qu'en effet il arrive asser souvent, que les poissons aîlés et rolans chassant ou étant chassés dans la mer, emportés du désir de la proie ou de la crainte de la mort, ou bien ponssés peut-être à quelques pas du rivage par les vagues qu'excitait une tempête, soient tombés dans des roseaux ou dans des herbages, d'oủ ensuite il ne leur fut pas possihle de reprendre vers la mer, l'essort qui les on avait tirés, et qu'en cet état ils ayent contracté une plus grande faculté de voler. Alors leurs nageoires n'étant plus baignées dos eaur de la mer, se fendirent et se déjettèrent par la sécheresse. Taardis qu'ils trouvèrent dans les roseaux et les herhages dans lesquels ils étaient tomhés, quelques alimens pour se soutenir, les tuyaux de leurs nageoires séparés les uns des autres se prolongèrent et se revêtirent de harhes; ou, pour parler plus juste, les memhranes qui auparavant les avaient tonus collés les uns aux autres, se métamorphoserent. La barbe formée de ces pellicules déjettées s'allongea elle-même; la peau de ces animaux se revêtit insensihlement d'un duvet de la même couleur dont elle était peinte et ce duret grandit. Les petits ailerons qu'ils avaient sous le ventre et qui, comme leurs nageoires, leur avaient aidé à se promener dans la mer, devinrent des pieds, et leur servirent à marcher sur la terre. Il se fit encore d'autres petits changemens dans leur figure. Le hec et le col des uns s'allongèrent; ceux des autres se racourcirent: il en fut de même du reste du corps. Cependant la conformité de la première figure suhsiste dans le total; et elle est et sera toujours aisée à reconnaitre.' Telliamed, t. ii. p. 166 (1755).
\({ }^{2}\) 'Des naturalistes, plus matériels dans leur idées, sont demeurés humhles sectatours de Maillet. Voyant que le plus ou moins d'usage d'un membre en augmente ou en diminue quelquefois la force et le volume, ils se sont imaginé que des hahitudes on
gave occasion to many similar confutations, applied not always in good faith, and often by men without any anatomical or physiological qualifications for such criticism, to discredit veritable evidences of the operation of a secondary creative law. Suhjoined, for example, is his hypothesis of the origin of the human species, \({ }^{3}\) which, with similar illustrations from the web-footed, hoofed, and long-necked ruminant mammalia, have afforded topics of easy ridicule. So Lyell, asserting that 'orangs had been tamed by the savages of Borneo, and made to climb lofty trees and bring down the fruit,' \({ }^{2}\) proceeds:-' It is for the Lamarckians to explain how it happens that these same savages of Borneo have not themselves acquired, by dint of longing, for many generations, for the powes of climbing trecs, the elongated arms of the orang, or even the prehensile tails of some American monkeys. Instead of being reduced to the necessity of subjugating stubhorn and untractable brutes, we should natnrally have anticipated "that their wants would have excited them to efforts, and that continued efforts would have given rise to new organs : " or, rather, to the reacquisition of organs, which in a manner irreconcileable with the principle of the "progressive" system, have grown ohsolete in tribes of men which have such constant need of them.' \({ }^{3}\)
dos influences axtérieures, longtemps continués, ont pu changer par degrée les formes des animaux an point de lea faire arriver succossivement i toutes celles que montrent maintonnat leurs differentes especes. On y considers en quelque sorte les corps organises comme une simple masse de paite ou d'argile qui se laisserait mouler entre les doigts. Aussi du moment our cees auteurs out- vonlu entrer duns le détuil, ils sont tombés dans le ridicnls. Quiconque ose avancer aérieusement qu'un poisson, à forco dase tenir bu sec, pourrait voir ses écailles se fendiller et se changer en plumes, et devenir lui-méme un oisenu; ou qu'un quadrupede, à force de pénétrer dans des voies btroites, de se passer é la filiére, pourrait se cbanger en un sorpent, ne fait autre chose que prouver la plus profonde ignorance de l'anatomie. Quel rapport y a-t-il entre l'organisation compliquée et ndmirable de la plume, ees tuniques, ses vaisseaux, ses cupules transitoires sur lesquelles se moulent ses barbes, et dont il reste une partio daps son tuyeau, ses barbules de plusieurs ordres, toujours si bien adaptés à la nature do l'oisenn; quel rapport, dis-je, y a-t-il entre tont cela et une deaille qui se fendillerait il \(y\) a mieux, cest que l'écaille n'est pas même d'une texture qui lui permettre de se fendra ainsi en as dessécbent; et voild cependant un échantillon ds ce qne nous proposent des auteure vantes!'-xn, i. p. 100.
" Effectivemcnt, si une raco quelconque de quadrumanes, surtout la plns perfectionné d'entre elles, perdoit, par la nécessité des circonstances on par quelqu'autre cause, l'hnbitude de grimpor sur les arbres et d'en empoigner les branches arec les pieds, conims avec les mains, pour s'y accrocher; et si les individus de cetts race, pendant upe suits de genérations, ótoient forcés de ne servir de leurs pieds que pour marcber, et cossoient d'employor leura mains commes des pieds; il n'est douteux, d'aprés les obsarvations exposées dans la chapitre préédont, que les quadrumanes ne fussent è la fin transformés en bimanes, ot quo les pouces ds leurs pieds ne cessassent d'ètre deartés dee doigts, ces pieds ne leur serrant plus qu"å marcher.'-cczerní". i. p. 349.
\({ }^{2} \mathrm{ccc}^{\prime}\). Ed. I835, vol. ii. p. 463 .
* Ib. p. 464.
vOL. 111.

An anatomist and physiologist competent to judge of the stahle grounds of a derivative origin of species-unity of plan, geological epochs, successive species therein,-truly set forth by the great and philosophic naturalist, would have referred to him, bearing calmly and nohly an old age of blindness and poverty, in a more worthy spirit. From one destitute of qualifications for grappling with the difficulties of this profound genetic prohlem in physiology, silence would have been hlameless. Vituperative condemnation hy such a one of a given phase or an untenable ground of that prohlem is of no greater value than his extravagant commendation, with as little capacity for comprehending its weakness, of a suhsequent attempt towards its solution.

Some of Lamarck's characteristic and assailable illustrations have indeed heen adopted and further developed:-‘Ceux des mammifères aquatiques qui contractèrent l'habitude de ne jamais sortir des eaux, et seulement de venir respirer à leur surface, donnèrent prohablement lieu aux différens Cetacées. En effet, depuis l'énorme quantité de temps que ces animaux vivent dans le sein des mers, ne se servant jamais de leurs pieds postérieurs pour saisir les objets, ces pieds non employés ont tout-à-fait disparu, ainsi que leurs os, et même le hassin qui leur servoit de soutien et d'attache.' \({ }^{1}\) As a fact, however, so much of the pelvis has been preserved in Cetacea as serves to give origin to certain muscles of the genitals; and, in the mysticete whale, even a rudiment of the attached limh remains (vol. ii. fig. 159, 63-66). But besides the influence of hahitual sojourn in water, Mr. Darwin adds another consideration to account for the enormous head in Cetacea:- \({ }^{\text {E }}\) In North America the hlack-bear was seen hy Hearne swimming for hours with widely open mouth, thus catching, almost like a whale, insects in the water. \({ }^{2}\) I see no difficulty in a race of bears heing rendered by Natural Selection, more and more aquatic in their structure and hahits, with larger and larger mouths, till a creature was produced as monstrous as a whale.' \({ }^{3}\)

The idea which Mr. Darwin persuades himself that he originated in addition to Lamarck's. 'influence des circonstances sur les actions et les hahitudes des animaux et de celle des actions et des habitudes de ces corps vivans, comme causes qui modifient leur organisation et leurs parties ' is most intelligihly illustrated in the Paper in which he first communicated his views to the Linnæan Society. It is hy "an imaginary example from changes in progress on an island ':-' Let the organisation of a

\footnotetext{
cexcvmi", ii. p. 461.
" cexiri". p. 181, Ed. 1.
*This conclusion of the passage is omitted in later editions.
}
canine animal which preyed chiefly on rabhits, but sometimes on hares, become slightly plastic: let tbese same cbanges cause the number of rabbits very slowly to decrease, and the number of hares to increase: the effeet of this would be that the fox or dog would be driven to try to catch more hares; his organisation, however, being slightly plastic, those individuals with the ligbtest forms, longcst limhs, and best eyesight, let tbe differences he ever so small, would he slightly favoured, and would tend to live longer, and to survive during that time of the year when food was searcest; they would also rear more young, which would tend to inherit those slight peculiarities. The less \#leet ones would be rigidly destroyed. I can see no more reason to doubt that these causes in a thousand generations would produce a marked effect, and adapt the form of the fox or dog to the catehing of hares instead of rabbits, than tbat greyhounds can he improved hy seleetion and eareful breeding.' \({ }^{1}\) So Geoffroy Saint-Hilaire also wrote:-‘Si ces modifications amènent des effets nuisibles, les animaux qui les éprouvent cessent d'exister, pour être remplaeés par d'autres, avee des formes un peu changées, et changées à la convenance des nouvelles circonstances.' \({ }^{2}\)

The modifications on which Geoffroy Saint-Hilaire laid chief stress were those assumed to have affeeted the ambient medium, the mode of operation of which in the origin of species he thus exemplifies:-‘ Mon Mémoire, traitant de l'influenee des inilieux ambians pour modifier les formes animales, montre comment la quantité décroissante de l'oxygène, relativement aux autres composans de l'atmosphère, a pu forcer les surfaces cutanées des emhryons, premier et principal siége des actes respiratoires, à s'ouvrir davantage, à gagner, dans une raison inverse du volume existant de l'oxygène, plus de profondeur, au moyen de plus larges anfractuosités dans le tissu cellulaire, et à aequérir, par un accroissement dans l'intensité des effets, de plus en plus, le earactère d'ampoules et déeidément de trachées, jusqu'à ee qu'enfin survienne dans le thorax une concentration des sinus respiratoires, et des arrangements de strueture pour l'isolement des poebes ou thêatres de respiration, appelés, suivant leurs qualités conditionnelles, poumons ou branchies.'-ccxcvir". p. 82.

One should not be dealing fairly with this exposition of transmutative conditions if we were to take its terms in their literal or usual acceptation; else, the ohvious ohjection tbat embryos are shut out from the influence of the atmosphere until their lungs
cccl. p. 40. But see the remarks on this in craxx. p. 434, and cri'. p. 65.
- coxcli". p. 79.
are prepared for it, at once suggests itself. I assume, therefore, that the term is used, metaphorically, to signify the low and early embryo-like forms of living things. But it may then be remarked that if speculation be permitted on possible changes in the constitution of the atmosphere of this planet, during past geological æons, it is more probable that the proportion of the carbonic acid has been reduced than that of the oxygen. The prevalence of remains of cold-blooded slow-breatbers in palæozoic and older mezozoic strata bas more than once suggested such relation to the ' ambient medium.' I repeat, bowever, that the sole consequence of vague generalities, or figurative impersonations, propounded to show how transmutation may go on, has been to prejudice calm and sound judgments against any acceptance of, or favour toward, the grounds of a belief in secondary creational law. I bave elsewhere tested the ideas of Lamarck and Darwin as to the mode of transmutation, by reference to the species Chiromys Madagas* cariensis: \({ }^{1}\) I will now apply them, together witb Geoffroy's, to another and lower degree of life.

What spectacle can be more beautiful, striking, and suggestive than tbat of the inhabitants of tbe calm expanse of water of an atoll, encircled by its vast ring of coral rock! Leaving the bright-tinted Cbætodonts, the Scari witb adamantine jaws, the Holothurians and other locomotive frequenters of the calcareous basin out of the question, and restricting the test to the species cemented or otherwisc confined to its area: we may first ask:-

Were the elements of the coriaceous and of the softer contractile and secreting tissues of the coral-polype suddenly combined and disposed so as to form the body-wall, inverted gastric-bag, produced tentacles, intermediate laminæ, generative plaits, vesicles and threads, witb outer folds in arrangement and numbers such as to secrete the laminate calcareous polype-cell? Was the creature, so miraculously constituted, at the same time endowed with generative faculties to multiply and reproduce its kind for all time; the creative act benceforth and thereafter being dispensed with? Accepting, with the tbeologian, this view, it must then be applied to each of the more or less closely allied species associated in the same coral workhouse. The origin of such species thus dates back to the beginning of life on the globe. \({ }^{2}\) The first creatcd coral-polype included, potentially, the germs of its successors throughout all time.

\footnotetext{

I leave out of the question the subsequent lethal influence of the heary and continuous rain added to the ocean in order to raise it above the bigbest mountains, according to the biblical flood.
}

Ohservation, however, shows that the species of existing \(A n\) thozoa cannot be traced very far back: those with a flexible, or with a branched, calcareous axis began only at the tertiary period; and, of the genera of eocene lamellate or stony corals, all the species are extinct, and have heen superseded in their grand and useful operations by those now forming reefs and atolls. As we extend our researches back in time we find generic and family types of coral-polypes passing away: the prevalent pattern of stcllate cups of rays of six or its multiples, has superseded a simpler pattern of four or its multiples. Of the Cyathophyllide of the palæozoic reefe which present a quadripartite churacter of their plaited polype-cells, not one such species now exists, or bas becn observed in any formation later than lower green-sand. Morcover, the filling up of abandoned cells in the course of growth of the polypary becomes changed from a more complex to a more simple method, as we recede in time in pursuing our comparisons.'

With this generalised result of observation of reef-huilding polypes we return to tbe initial question in a frame of miud inevitably other than that in which the creation of a coral-island is pondered on by one ignorant of tbe geological history of the class engaged in its construction. Was direct creation, after tbe dying out of its result as a 'rugosc coral,' repeated to constitute the succecding and superseding 'tahulate coral'? Must we, also, invoke the miraculous power to initiate every distinct species of hotlı Rugosa and Tabulata? These grand old groups have had their day and are utterly gone. When we endeavour to conceive or rcalise such mode of origin, not of them only, but of their manifold successors, the miracle, by the very multiplication of its manifestations, becomes incredible-inconsistent with any worthy conception of an all-seeing, all-provident Omnipotence! It is not above, but against, reason; and I may assume the special Irimary creative hypotbosis of the successive and coexisting species of Anthozon to he not now held by the scientific naturalist.

Let us then test the propounded explanations of their origin by secondary law. That of 'appetency' subsides from the impotency of a coral-polype to exercise volition. The weak point of Lamarck's creative machinery is its limited applicability, viz., to creatures ligh enough in the scale to be ahle to "want to do sometbing: 'for the determined laws of tbe 'reflex function' in the physiology of the nervous system and the uecessity of the
superadded cerebral mass for true sensation rigorously fix the limits of volitional faculties.

We pass then to considerations of the 'ambient medium' and 'natural selection.' We have no evidence that the fabricators of the coral-reef of Wenlock-edge, or of those skirting the Cambrian slates and Devonshire 'killas,' or of those in the lofty limestone cliffs of Cheddar, worked in an ocean otherwise constituted tban the present. What conceivable character of sea or of the air dissolved or diffused therein could have changed the loose aggregation of the individuals of composite Rugosa into the close combination, with intercommunicating pores, of those of the composite Tabulata? Or what possible external influence could have transmuted the comparatively simple massive mode of growth or deposition of carbonate of lime common to both Rugosin and Tabulata into tbe light and complex character of the polyparies of most existing lamelliferous Anthozoa? In the first mode the old polypccell is successively partitioned off from the one in occupation by floor after floor crossing the cavity: in the other, radiating vertical partitions alone occupy the deserted cell aud extend uninterruptedly from its bottom or beginning to the superficial inhabited chamber. The quadripartite pattern of the plaited cup of the palæozoic coral has changed into the sexpartite disposition of the radiating lamellæ of the polype-cells of tertiary and modern corals. But personifying the fact of such transmutations by the term ' natural selection' gives no more insight into the manner of the operations than we learn of that of the budding out of a new leg in a maimed newt, by being told that it is done by the 'nisus formativus' or by 'pangenesis'! Even were there evidence of changes in the composition of the atmosphere, their ' modus operandi' in effecting such structural differences would not be more conceivable.

I do not believe that a sexpartite type of coral was miraculously created to supersede a quadripartite one. If the grounds are good for admitting the continuous operation of a secondary cause of the specific forms of Vertebrate life, a fortiori it is admissible in the lower sphere of Radiate life. It is consistent with facts that a quadripartite coral might bud out, or otherwise generate, a variety with a greater number of radiating laminx. Some varieties, like those expressed by the inodern generic terms Porites, Millepora, especially the M. complanata, with its strong vertical plates, were better adapted to bear the brunt of the breakers, and flourish in the surf, under the protection of the coating Nullipore. But to how small an exception is this rela-
tion applicable! Of the 120 kinds of coral enumerated by Ebrenherg in the Red Sea, \({ }^{1}\) 100, at least, exist under the same conditions. The majority of species, originating in uncalled-for, unstimulated, unselected departures from parental structure, estahlish themselves and flourish independently of external influences. All classes of animals exemplify this independence: the Cetaceans, under an extraordinary and nicely graduated range of generic and specific modifications; and the same may he sail of most Fish cs. \({ }^{2}\)

So, heing unahle to accept the volitional hypothesis, or that of impulse from within, or the selective force exerted hy outward circumstances, I deem an innate tendency to deviate from parental type, operating through periods of adequate duration, to he the most prohahle nature, or way of operation, of the secondary law, wherehy species have heen derived one from the other.
It operates, and has operated, in the surface-zones where the chambered cephalopods floated, and at the depths where the hrachiopods were anchored, as in the nore defined theatre in which the various polypes of the coral reef display their diversities of colour, size, shape, and structure, independently of outward influences. This tendency, moreover, is not exemplified in the ratio of the numher, variety, or force of conceivable 'selective' surrounding influences, hat is directly as the simplieity of the organism. In the Foraminifera, e. g., it is manifested in such degrec that as many as fifteen genera defincd hy one given to-

> Intrigue with the specious chaos, and dispart
> Its most ambiguous atoms with sure art; Define their pettish limits, and estrange Their points of contact and swift counterchange,
lave heen found by his followers to he hut varieties of a single type; and even this, too inconstant to come under the definition of a species given in p. 792. The departure from parental form, producing the beautiful varieties of perforate and imperforate Rhizopods, and which exemplify each group, respectively, under the Lagenine, Nummulinine, Glohigerine, or under the Gromiine, Nilioline, and Lituoline types, has effected its ends independently of inner volitions or of outer selections. Certain encrusting forms seem by the presence of siliceous spicula to have heen derived from sponges; but no explanation presents itself for such transitional changes, save the fact of anomalous, monstrous births-as these varieties, and the whole assemblage of alternate-generative phenomena, would be called ' in high life.'

According to my derivative hypothesis, a change takes place first in the structure of the animal, and this, when sufficiently advanced, may lead to modifications of hahits. But we have no evidence that the ohserved amount of change in Porifera, Foraminifera, and Anthozoa, \&cc. has been attended with any change in the way or power in which they extract from their ambient medium, and precipitate, silex and carbonate of lime, or in the performance of any other vital function. As species rise in the scale, the concomitant change of structure can and does lead to change of habits. But species owe as little to the . accidental concurrence of environing circumstances as Kosmos depends on a fortuitous concourse of atoms. A purposive route of development and change, of correlation and interdependence, manifesting intelligent Will, is as determinable in the succession of races as in the development and organisation of the individual. Generations do not vary accidentally, in any and every direction; but in preordained, definite, and correlated courses.

If the survey of a series of siliceous polycystins and diatoms, of zoophytes, of brachiopods, of ammonites, excites pleasure hy their beauty, and raises worship of the Power manifesting itself in such inconceivahle and exhaustless variety, I accept the relation as one designed, and in His due time, fulfilled:-

To doubt the fairness were to want an eye; To doubt the goodness were to want a heart!"
\({ }^{\text {c }}\) Derivation' holds that evcry species changes, in time, hy virtue of inherent tendencies thereto. 'Natural Selection' holds that no such change can take place without the influence of altered external circumstances educing or selecting such change.
'Derivation' sees among the effects of the innate tendency to change, irrespective of altered surrounding circumstances, a manifestation of creative power in the variety and heauty of the results : and, in the ultimate forthcoming of a being susceptible of appreciating such heauty, evidence of the preordaining of such relation of power to the appreciation. 'Natural Selection' acknowledges that if ornament or heauty, in itself, should be a purpose in creation, it would be absolutely fatal to it as a hypothesis.
'Natural Selection' sees grandeur in the " view of life, with its several powers, having heen originally breathed by the Creator into a few forms or into one:"1 'Derivation'sees, therein, a narrow invocation of a special miracle and an unworthy limitation of creative power, the grandeur of whicb is manifested daily,

\footnotetext{
ccxili'. Ed. 1860, p. 490.
}
hourly, in calling into life many forms, by conversion of physical and chemical into vital modes of force, under as many diversified conditions of the requisite elements to be so combined.
' Natural Selection' leaves the subsequent origin and succession of species to the fortuitous concurrence of outward conditions:
Derivation' recognises a purpose in the defined and preordained course, due to innate capacity or power of change, by which nomogenously-created protozoa have risen to the higher forms of plants and animals.

The hypothesis of 'derivation' rests upon conclusions from four great serics of inductively established facts, together with a probable result of facts of a fifth class: the hypothesis of ' natural selection' totters on the extension of a conjectural condition, explanatory of extinction to the origination of species, inapplicable in that extension to the majority of organisms, and not known or observed to apply to the origin of any species.
§427. Epigenesis or Evolution?-The derivative origin of species, then, being, at present, the most admissible one, and the retrospective survey of such species showing convergence, as time recedes, to more simplified or generalised organisations, analogous to Von Bacr's law of individual development, the result to which the suggested train of thought inevitably leads is very analogous in each instance. If to Kosmos or the mundane system has been allotted powers equivalent to the development of the several grades of life, may not the demonstrated series of conversions of force have also included that into the vital form?

In the last century, physiologists were divided as to the principle guiding the work of organic development.

The 'evolutionists ' contended that the new being pre-existed in a complete state of formation needing only to be vivified by impregnation in order to commence the series of expansions, or disencasings, culminating in the independent individual.

The 'epigenesists' held that both the germ and its subsequent organs were built up of juxtaposed molecules according to the operation of a developmental force, or 'nisus formativis.'

Haller maintained the principle of 'evolution,' Buffon that of 'epigenesis.' Hunter, who surpassed all his contemporaries in obscrvations on the formation of the chick, 'thougbt he could see both prineiples at work, together with a third.' However, as he limitcd the 'pre-existing entities' to 'the materia vite universalis' and the ' absorbent faculty,' he would now be classed with the ' epigenesists.' For, he reckoned among the parts newly
built up, not evolved, 'the hrain and heart, with their appendages, the ncrves and vessels, and so on of all the other parts of the hody which we do not find at first.' \({ }^{1}\) His third principle is merely a modification of epigenesis, viz., 'change in form and action of pre-existing parts.'

At the present day the question may seem hardly worth the paper on which it is referred to. \({ }^{2}\) Nevertheless, ' pre-existence of germs 'and 'evolution' are logically inseparahle from the idea of the origin of species by primary miraculously created individuals. Cuvier, therefore, maintained both, as firmly as did Hallcr. \({ }^{3}\) It is, perhaps, one of the most remarkable instances of the degree in which a favourite theory may render us hlind to facts which are opposed to our prepossessions. Hunter's demonstrations of the epigenetic development of the blastoderm and initial parts of the chick \({ }^{4}\) were not known to Cuvier; but the analogous ones of Wolff \({ }^{5}\) he had studied. To the phenomena of the hlood-lakes and their union in order to constitute the 'circulus vasculosus' of the vitellicle, Cuvier opposes the following remark:-‘Mais il faut nécessairement adınettre qu’il y avait une pré existence de quelques chemins pour les pointes rouges; car en vertu de quelle force la figure veineuse serait-elle toujours composée des mêmes vaisseaux ayant la même direction? Comment ces vaisseaux aboutiraient-ils toujours au même point pour former un ccour? Tous ces phénomènes ne sont intelligibles qu'autant qu'on admet quelque pré-existence.' \({ }^{6}\)

Haller, who had made some good observations on embryonal development, confessed that there was a stage in that of the chick in which the 'intestinal canal was not visible;' he would not admit, however, that it was not formed, or that it did not pre-exist; but affirmed that, it was too minute to he perceived : not until the head and limh-huds of the chick appeared, was the intestine visihly 'evolved.' \({ }^{7}\)

\footnotetext{
xx. vol. v. p. xiv.
a The encasement or imboxing ("emhoitement') of germs was deemed, a century or more ago, to receive support from the erolution of buds and other parts of plants, and from Swammerdam's diseoveries in the chrysalis, not only of the parts which afterwards form the hutterfly, as wings, antennæe, \&ce., but also of the eggs which were to be laid in that phase of life. Bonnet drew an inference in favour of the same view from his discorery of the numerous successive generations of \(A\) Ahides, which might be impregnated by a single copulation. (See, however, cxur'. pp. 27, 39.)
sxvin". "xx. vol. v. Pls. Ixviii.-ixxyiii. s cocvi'.
- ccevi" tom. iv. p. 236.
\({ }^{7}\) "Partes animalis non noviter formantur, sed transeunt ex statu obscuro iu eon-spicuum."-xxvur". tom. viii. sectio 2da. p. 150-156. Also "Mémoire \(\mathrm{II}_{\text {®s }}\) sur la formation du Poulet, \({ }^{\text {, }}\) p. 182.
}

To the beautiful demonstration of the steps in the successive building up and moulding of the intestinal canal, out of the 'mucous layer' of the blastoderm, Cuvier objects:-‘Mais quand il serait vrai que l'intestin se forme comme Wolff croyait l'avoir observé, il n'en résulterait aucune preuve en faveur de l'êpigénèse; car le nombril, par lequel l'embryon tient à son placenta, est d'abord tout aussi large que l'animal lui-même; c'est en enveloppant la portion du jaune qui doit rester dans l'intérieur, que la peau finit par rétrécir de plus én plus cette ouverture, qui primitivement n'en était pas une, et par la réduire à l'ombilic tel qu'on le voit dans le poulet ou dans l'enfant naissant.' ]

Geoffroy contended that the dogma of 'pre-existence of germs" owed its origin to a metaphysical explanation of ill-observed phenomena. To admit that a germ included within itself all the forms, in miniature, whicb were afterwards to be manifested, and to develope such thcory by a matter so indefinable, was to multiply, at will, the most gratuitous suppositions. \({ }^{2}\) His opponent's passages, above quoted, in defence of a doctrine now deemed by embryologists to be dead and buried, have bardly other than historical intcrest; \({ }^{3}\) and I should not have recalled them, or their
ccevir". tom. iv. p. \(277 . \quad\) Anst. Philos. rol. ii. p. 280.
A polomical bisbop, viewing with the mixed feelings of bie kind the dawn of new ligbt, which, in 1669, hegan to flood men'e minds from the 'Essay on the Human Understanding,' commenced bie attack hy insinuating 'uneoundness' in the author; then called upon Locke 'to clear bimeelf by declaring to the world, that he owned the doctrine of the Trinity, as it hath been received in the Christian Church." (Bp. of Worcester's 'Answer to Locke'e Second Letter,' p. 4.) Finally, be charged him witb diffusing principles inconeietent witb, and eapping the grounds of, belief in tbe following articlee of the Chrietian faith: 'the Reeurrection of the Body;' the 'Trinity;' and the 'Incarnation of Our Siviour.' It is in reference to the first article that the antagoniem of 'evolution' and 'epigenesis' curiously comes in. Stillingfleet, contendiug for the dugma of the 'same hody,' against the objection of tbe transitory etate of ite particles during life, affirmed that "every seed had that hody in little whicb is afterwards eo murh enlarged,' and in proof tbat 'it hath its proper organical parte, which makea it the same body with that wbieb it grow, up to, (Ih. p. 40), refers to 'cortain most accurate observations wbereby these seminal parts are discerned iu thom, which nfterwarde grow up to that body wbich we call corn,"

To whicb Locke replied: "If that could he so, and that the plant in its full growth ut barveat, increaed hy \(n\) thouand or a million of times as much new matter added to it as it had, when it lay, in lithle, concealed in the grain that was sown, was the very same body; yet to eny that every minuts grain of the bundred grains contained in that little organieed aeminal plant is every one of thom tbe very same with that grain which containe that whole little eominnl plant, and sll tbose invisihle grains in it, is to say tbat one grain is the same with an bundred, and one hundred distinct grains the ome witb one; whicb I ohall be able to assent to, when I can conceire tbat all the wbent in the world is but one grain." ('Socond Reply to the Bp, of Worcester," in ccoxxxvi". wol. i. p. 658.)

The chief point of interest, here, is to note how the latest movement in Science is prossed into questions of theological dogma, The newly estahlisbed 'Philosophical
subjeet, were it not that ghosts of "pre-existence' and 'evolution" still haunt some chambers of the physiological mansion, and even excreise, to many, perhaps, an unsuspeeted, sway over certain biological problems.

Although in the Debates of 1830 , the question of 'Preexistence of Germs,' was the sole one in which, as applied to Embryogeny, I held with Geoffroy Saint-Hilaire, I remained the thrall of that dogma in regard to the origin of single-celled organisms, whether in or out of body. \({ }^{1}\) Every result of formifaction I believed, with most physiologists, to be the genetic outcome of a pre-cxisting 'cell.' The first was due to miraculous interposition and suspension of ordinary laws; it contained, potentially, all future possible cells. Cell-development excmplified evolution of pre-existing germs, the progeny of the primary cell. They propagated themselves by self-division, or by 'proliferation' of minute granules or atoms, which, when properly nourished, again multiplied by self-division, and grew to the likeness of the parentcells.

Those who still hold by this rag of 'pre-existence of germs,' call all organic corpuscles or granules 'cell-gemmules,' and maintain that they are transmitted, sometimes becoming developed,

Transactions' were, then, giving to the world tbe results of the improved Dutah magnifying glasses, some of which results-e.g. 'spermatozoa' -were interpreted in a way which seemed to help the Bishop's view of the resurrection and his interpretation of the texts, 1 Cor. xp. 37-40. I quote Locke's remark for its bistorical interest in Microscopic Anatomy:- It does not appear, hy any thing I can find in this text, that St. Paul here compared the hody produced, with the seminal and organical parts contained in the grain it sprung from, but with the whole sensible grain that was sown. Microscopes had not then discorered the little embryo plant in the seed; and supposing it should have been revealed to St. Paul (though in the Scripture we find little revelation of natural philosophy), yet an argument taken from a thing pertectly unknown to the Corinthians, whom be writ to, could he of no manner of use to them, nor serve at all either to instruct or convince them. But granting that those St. Paul writ to knew as well as Mr. Lewenhocke; yet your Lordship theroby proves not the raising of tbe same body,' \&c.

In fact Locke, having been driven by the Bishop to look into the Scriptural grounds of that article of a progressively developed thoological summary or 'creed,' which he was charged by Stillingfleet with undermining, roplied: "I must not part witb this article of the resurrection, without returning my thanks to your Lordship for making me take notice of a fault in my "Essay," When I writ that book, I took it for granted, as I doubt not but many othere have done, tbat the Scripture had mentioned in express terms, "the resurrection of the hody;" but upon the occasion your Iordship has given me in your last letter to look a little more narrowly into what revelation has declared concerning the resurrection, and finding no such oxpress words in the Scripture, as that "the body shall rise or be raised, or the resurrection of the hody," I shall in the next edition of it change these words of my book, "the dead bodies of men shall rise," into these of Scripture, "the dead shall rise."' (Essay, B. iv. c. 18, § 7 , and cccyxxul", vol. i. p. 668.)
\({ }^{1}\) coselix. ceslif.
sometimes lying dormant from generation to generation, independent, autonomous, pre-existing from their primal miraculous creation, as descendants, like all higher forms of life ' of that one form of "Natural Selection" into which life was first breathed.' Darwin grafts upon this modification of the old evolutional dogma \({ }^{1}\) his provisional hypothesis of 'Pangenesis.' (cccvini".)

In like manner the Evolutionists hold that every single-celled organism, torule,-organic molecule, out of the hody, arises from a pre-existent germ; and that such germs abound in the air, in the waters, or wherever any forms of living matter may happen to make their appearance.
' Studying under this belief the phenomena described in cxurit, I was led to regard all 'cells' or nrganic unita concemed in development and repair as the progeny of the primary germ-cell in the nvarium of the mother, and to be in that sense 'derivative.' Bave in the case of the hypothetical primordial created unit, such primary ovarian cell in the Aphis and all sexual organisms I regarded as impregnated. The derivative cells nr organic uaits propagated themselves independently of direct sezual intercourso ; but, that they should not be remotely or indirectly related to the act by which their seat, the developed organism, came to be, -in which oaganism, or its parthenogenetically propagated offispring, the 'cells' subseguently were formed,-was to me inconceivable on the then accepted hypothesis of 'pre-existence of germs' or 'omais cellula e collula.' Mr. Darwin, however, opposes to the above view the remurk, "My gemmules" ( \(=\) my germ-cells) "are supposed to be formed quite independently of soxual intercourse, by each separate cell or unit throughout the body." (cccini". fi. p. 375.) Yet, his provisional lypothesis of 'pangoaesis' assumes that they ( cells,' 'cellgemmules,' 'units') "are trunamitted from the parents to the offepring" (ib.). Bu* how Bo (is nexunl species), sare as the progeny or outcome of the primary impregnated germcell in the mother, whencs all suhsequent development and cell-generation radiated? Take any case in ccoviri", which 'Paagonesia' is propounded to explaia-and all the given instances nf varieties, malformations, \&c., are from sexual organisms-as e.g. 'whon a stag is castrated the gemmules dorived from the antlers of his progenitors quite fail to he developed.' (Ib. ii. p. 399): to each I should reply as to this case:--Such stag frat existed as an impregnated unit in the oviducal ovum of the mother. By tho 'spontanoous flssion' or 'cleavage process' it must have existed as a mass of impregnated gommules. Assuming, with Mr. Darwin, that some of these gemmules were dorived from tho entlers of its parent, yct they are not less the progeny of the primary germ-cell which was formed within the ovarium of the femtle and was fertilised by the mule. It may bo a defect of power; but I fail, after every eadesvour, to appreciate the 'fundamental difference' hetween M. Durwin's cell-hypothesis of 1868 and mine of 1849 (cxuII. p. 5-8). Both of them I now regard as fundamentally erroneous; in so far as thoy are ubsolutely based on 'pre-existence'-or 'omuis celluls,' \&re. No doubt, many cella or organic units are derived from pre-existiag cells (vol. i. p. 625): the phenomonon of the pale or granulatod blood-cells which suggested to me, in 1838, the idea of the genetic mode of formation of the ordinary bleod-dises, is a true phenomenen: but wheth mode of formation is suhordinate to a wider law. Under givea conditions mathre in solution aggregates and shows form; if inorganic as "crystal,' if organic as 'spherule': in the one the process is termed 'crystallization,' in the other 'formifactioa.' If tho large 'pule cell' was first filled by fluid holding organic matter in solution, the amaller granules or atoma it subsequently discharged might be the result of 'formifaction': it is at least a more simplo, nind I believe truer, ides of their origin than that which ascribos such origin to a mysterious genetic act under the name of "proliforation.'-(cccvis', vol. ii. p. 37.4.)
§428. Nomogeny \({ }^{1}\) or Thaumatogeny ? \({ }^{2}\)-The French Academy of Sciences was the field of discussion and dehate, from 1861 to 1864, hetween tbe 'Evolutionists' holding the doctrine of primary life by miracle, and the 'Epigenesists' who try to show that the phenomena are due to the operation of existing law. The analogy of the discussion hetween Pasteur and Pouchet, and that hetween Cuvier and Geoffroy, is curiously close. Besides the superiority in fact and argument, Pasteur, like Cuvier, had the advantage of suhserving the prepossessions of the party of order 'and the nceds of theology. Tbe justice of Jamin's summary, \({ }^{3}\) awarding to the chemist the palm of superior care and skill hoth in devising and performing the experiments, and exposing the inferiority of the physiologist in polemical ahility and coolness of argumentation, cannot be denied. Nevertheless, Pouchet, is rapidly acquiring, in refcrence to the origin of monads, that position which Geoffroy Saint-Hilaire has taken in regard to the origin of species. It is a suggestive and instructive fact in the philosopby of mind and the bistory of progress.

Some rare instances, in every generation, are gifted with the faculty of discerning the light of truth tbrough all obstruction: when its glimmer is of the feeblest their hrain responsively vihrates through a barrier of beliefs, prepossessions, precise logic, across thickets of facts deemed to he rightly understood, athwart accepted 'laws' and principles, organised corps of the soldiers of science, public opinion, \&c.; and tbese men never know when they are beaten and put out of court: happily, against all hindrance, tbey persist-" 'e pur si muove.'

Pasteur by an ingeniously devised apparatus, \({ }^{4}\) collected atoms in the atmosphere, and descrihed and figured them as examples of ' organised corpuscles,' 'globules,' or the 'germs' of living things, there floating. \({ }^{5}\) In a solution of organic matter, otherwise unfit for the development of life, tbe addition of some of these germs was followed by the appearance, in ahundance, of its simple forms.

To the conclusion that the monads were the consequence, not merely the sequence, of the 'ensemencement,' it can he objected that tbe atmospheric atoms figured \({ }^{6}\) are not like the ohserved formified corpuscles by which hacteriums bave heen seen to he

\footnotetext{
vo \(\mu \mathrm{os}\), law, yérw, root of rifyouat, to 'become,' or come into being. \(\theta a \bar{u} \mu \sigma\), miracle, \(\gamma^{\ell} \nu \omega\).
cccexary'. pp. 442, 443 . "cccix", p. 25, Pl. I. fig. 1. \({ }^{s}\) Ib. Pl. I. figs. 2-9.
Ib. "quelques corpuscles organisées."-p. 28, Pl. I. figs. 2, 3, 4 :-"tout-d-fait semblables a des gormes d'organismes inférieures."-p. 37. Of the various wollmarked forms of ova or germs of lower organisms, I know not any recognisable in the figures above cited.
}
huilt up; and, that the chemieal treatment to which they had been subject, in their extraction from the atmosphere, would he likely to destroy the vitality of fecund germs, if any were present. To the alleged absence of any organisms in the experiments which were calculated to exclude extraneous germs, and to unfit the infusion for the development of any it might contain, the graver objection applies, that the microscopic power employed by Pastcur in their search was insufficient. Dr. Child,' in experiments which seem to he as exclusive as Pasteur's, does obtain bacteriums, discoverahle, at first, by a power of 1,500 diameters, and, once so seen, afterwards recognisahle by a power of 750 diameters: whereas Pasteur, in his quest, did not avail himself of a power exceeding 350 diameters, and consequently failed to detcet the evidence of ' nomogeny,' under conditions as decisive as can be hoped in an attempt to prove a negative. Against 'panspermism, or the dogra that animalcules of infusions come, invariably and exclusivcly, from pre-existing germs falling from the air, Pouchet records the results of experiments, conclusive or satisfactory from their simplicity and ease of repetition, and freedom from nced of minute, ambiguous, manipulatory precautions. \({ }^{2}\)

A glass tuhe containing a filtered infusion is placed in the midale of a glass dish containing the same infusion: this stands in a wider dish of water in which a bell-glass is placed covering the versels with the infusion. At the end of four or five days the tube-infusion has a thick film ahounding with ciliate infusoria: the dish-infusion has a thin reticulate film containing only bacteriums and other small non-ciliate 'microzoaires." It is - difficult to see how the germs of the one kind of creatures should have entered or become devcloped in the one vessel and entirely different kinds in the other.' \({ }^{3}\)

I refer the reader to \(\operatorname{cccxir}^{\prime \prime}\). and \(\operatorname{cccxxx}{ }^{\prime \prime}\) for further analysis of the grounds of the disputants, and proceed to remark, that the illustrations of the process of development of a Paramecium \({ }^{4}\) so closely resemble those of the ovarian ovum in Fish or Manmal, that either fig. 555 or fig. 416, vol. i. of the pre-

\footnotetext{
\({ }^{1}\) ccexis". \(\quad \operatorname{cccx}^{\prime \prime}\). pp. 122, 135.
" cccxu" . p. 101: parapbrasing Pouchet:- Si les cufs tombaient do l'atmosphére, commo le préteudent les panspermistes, il n'y aurait pas de raison au monde qui put faire que, dans la mème portion d'uir, l'éprouvatte on soit constamment remplie ot la curette jamnis. Celle-ci mổme, la canse de sa surface bien eutroment étendue, derrait eu récoltar infloiment plus.'-ccos.". p. 136.
" coox". Pl. II. figg. 1-5, and cecx!". Pl. I. fig. 1.
}
sent work serves as well as those given by Pouchet, to exemplify it. The proligerous pellicle, due to the resolution into molecules of the primarily formified bacteriums and vibrios of infusions, answers to the molecular contents of the ovisac. In both instances the molecules or granules aggregate into groups forming spheroids more opake than the rest (as in fig. \(555, \mathrm{~A}\) ): as the aggregation and coalescence advances the sphere becomes more opake, more definite: then a clear line marks its inclusion within a membrane, analogous to a 'zona pellucida,' and proclaims its individualisation (as in ib. B). Next appears a clear nucleus, answering to the germinal vesicle (as in ib. c). Fission of the nucleus is followed by that of the monad, which may thus multiply itself within the primary envelope (Chlamydomonas, coxlix. fig. 29), like the cleavage-formation of the germ-mass: ciliary organs are acquired in both instances, rotating the germ-mass in the mammalian ovum, and extricating the monad from its proligerous bed; whereupon it revolves or darts along, a free animalcule, in the subjacent liquor of the infusion.

In neither instance is there any support, from observation, of the derivation of germ-mass or of monad by evolution out of a preexisting cell: in both instances have the processes of epigenesis or building up \(a b\) initio been repeatedly seen and traced. \({ }^{1}\)

In the case of the ciliate infusory the following are the primary or prcliminary steps in the formation of the proligerous pellicle, or 'Burdach's mucous layer.' In the clear filtered infision a slightly opalescent appearance precedes the formation of the thin superficial film. This consists of molecules of various sizes, the most minute testing the highest powers of the microscope. These molecules I attribute to the act of formifaction, which in reference to organic matter in solution corresponds with the crystalline aggregation of mineral matter in solution. Solution of organic matter, such as clear serum from a blister, enclosed in - goldbeater's' skin or other close membrane, and inserted beneath the integument of a living Mammal-even distilled water which so placed obtains the elements of formifaction by endosmosis -show its results in the form of granules, white blood-cells, pusglobules, \&c. These experiments need repetition and modification mainly in reference to the objection that such 'leucocytes' might have wriggled their way, like \(A b c m a\), from without, through the

\footnotetext{
сссх". pp. 352-388. сесхı". pp. 133-253. ссехи". pp. 121-129. сссхпı". p. 1046. cccxrv': P. 974. Cccxp"-p. 467: Mantegazza spent sixteen consecufive hours in observing this genesis.
}
close texture of the enclosing bag. \({ }^{1}\) In the proligerous pellicle the larger molccules unite end to end, forming bacteriums, or less regularly into masses composing Torulce: these send out parts which become jointed tubes, and may terminate in rows of sporules (Penicillium) or capsules of such (Aspergillus). The bacteriums may, by further union and confluence, form vibrios. There is much activity, allied in character to the Brunonian movements; \({ }^{2}\) which, after a time, ceascs, and the bacteriums, vibrios, \&c. are decomposed to constitute the secondary series of molecules in and from which the development of the higlter ciliate Infusory takes place. The formation of the proligerous pellicle or 'secondary histolytic mass of molecules \({ }^{\prime 3}\) by the primary developments and resolutions of the organic material, is analogous to the furmation of the germ-mass, in ovo, by the successive spontaneous fissions, assimilations, and ultimate coalescence of the progeny of the original germinal cell.

To meet the inevitable question of "Whence the first organic matter ?' the Nomogenist is reduced to enumerate the existing elements into which the simplest living jelly (Protogenes of Hæckel) or sarcode (Amaba) is resolvable, and to contrast the degree of probability of such elements combining, under unknown conditions, as the first step in the resolution of other forces into vital force, with the degree of probability remaining, after the observations above recorded, of the interposition of a miraculous power associating thosc elements into living germs, or forms with powers of propagating their kind to all timc, as the sole condition of their ubiquitous manifestation, in the absence of any secondary law thereto ordained.

In this, the last general summary of work which I am likely to find time to complete, the expression of belief on one or two points where proof is wanting may be condoned. The chance of its bcing a help, or encouragement, to any younger, more vigorous, mind, bent upon grappling with such problems, outweighs any anticipation of troublc consequent upon the avowal.

It seems to me, then, more consistent with the present phase of dynamical science and the observed gradations of living things, to suppose that sarcode or the 'protogenal' jelly-speck should be formable through concurrence of conditions favouring such combination of their elements and involving a change of force productive of their contractions and extensions, molecular attractions and repulsions-and that sarcode has so become, from the period

\footnotetext{
"ccxvir". "ccxvin". p. 470, in all organic molecules, living or dead.
\({ }^{1} \operatorname{ccc} x \times y^{\prime \prime}\). p. 10.
VOL. III.
}
when its irrelative repetitions resulted in the vast indefinite masses of 'eozoon,' exemplifying the earliest process of 'formifaction' or organic crystallisation-than that all existing sarcodes or 'protogenes' are the result of genetic descent from a germ or cell due to a primary act of miraculous interposition.

Some, accepting the latter alternative, teach that, while generations of the first-created sarcode have descended to us unchanged from the period of the Laurentian limestone, other sarcodal offspring have developed and improved, or have been selected, into all higher forms of living beings. I prefer, however, while indulging in such speculations, to consider the various daily nomogeneously developed forms of protozoal or protistal jellies, sarcodes and single-celled organisms; to have been as many roots from which the higher grades have ramified, than that the origin of the whole organic creation is to be referred, as the Egyptian priests did that of the universe, to a single Egg.

Amber or steel when magnetised seem to exercise "selection": they do not attract all substances alike. To the suitable ones at due distance they tend to move; but, through density of constitution, cannot outstretch thereto; so they draw the "attracted' substance to themselves. If the amber be not rubbed, or the steel bar otherwise magnetised, they are 'dead' to such power. The movement of a free body to a magnet has always excited interest, often wonder, from its analogy to the self-motion so common and apparently peculiar to ' life.'

A speck of protogenal jelly or of sarcode, if alive, shows analogous relations to certain substances: but the soft yielding tissue allows the part ncxt the attractive matter to move thereto, and then by retraction to draw such matter into the sarcodal mass, which overspreads, dissolves, and assimilates it. We say that the Protogenes or Amaba has extended a 'pseudopod,' has seized its prey, has drawn it in, swallowed, and digested it. No 'organs,' however, are recognisable; neither muscle, mouth, nor stomach.

If the portion of iron attracted by the magnet became blended with the substance of its attractor, the analogy thereto of the act of the abrma would be, perhaps, eloser, more just, than that other analogy which is expressed by terms borrowed from the procedure of higher organisms.

From certain knowledge of the homogeneous, by some termed ' unorganised,' texture of Protogenes and Abama, we cannot predicate of their having sensation or exercising volition. Given ' life' and suitable organie substance at due distances, the act of making contact seems as inevitable, as independent of any voli-
tion of the abxma, as in the case of amber or steel, given 'magnetisation' and attractahle substances at due distance.

The term 'living,' in the one case, is correlative with the term 'magnetic 'in the other. Devitalise the sarcode, unmagnetise the steel, and both cease to manifest their respective vital or magnetic phenomena. In that respect both are 'defunct.' Only the steel resists much longer the surrounding decomposing agencies.

A man perceives a ripe fruit: if he can, and will, he stretches out his hand, plucks, brings to his mouth, masticates, swallows, and digests it.

The question then arises whether the difference between such series of actions in the man and the attractive and assimilative movements of the amæba, he less or greater, than the difference betwcen these acts of the amæba and the attracting and retaining acts of the magnet.

More may be said on both questions than I have here space for ; hut, when all is said, the question, I think, may be put with some confidence as to the quality of the ultimate reply and the affinity to truth, and liherty to accept it, in the equal respondent, viz., whether the amxbal phenomena are so much more different, or so essentially diffcrent, from the magnetic phenomena than they are from the mammalian phenomena, as to necessitate the invocation of a special miracle for their manifestation?

Magnetic phenomena are sufficiently wonderful, exemplifying, as they do, one of those suhtle, interchangeahle, may we not say ' immaterial,' nodes of force which endows the metal with the power of attracting, selecting, and making to move a substance extraneous to itself. It is analogically conceivahle that the same Cause which has cndowed Lis world with power convertible into magnetic, electric, thermotic and other forms or modes of force, has also added the conditions of conversion into the vital mode.

Ncryc-forcc we know to he convertible into electric energy, and reciprocally : and from the electric force, so induced, magnetic and other modes have becn derived (vol. i. p. 357). The direction, then, in which may be anticipated the replies to the ultimate question, will be toward an admission of the originating and vitalising of the primary jelly-speck or sarcode-granule, hy the operation of a change of force forming part of the constitution of Kosmos; not contrary to its ordained laws, in the sense in which 'miracle' or the 'interposition of special creative act,' is rightly understood.

But from protozoo, \({ }^{1}\) or protista, to plants and animals, the gradation is closer tban from magnetised iron to vitalised sarcode. From reflex acts of the nervous system animals rise to sentient and volitional ones.

And witb that ascent are associated brain-centres progressively increasing in size and complexity. Arrest the development of the human brain at the point it has reached in the 'Aztcc,' and the faculty of generalising and giving expression to such generalisations is wanting. The Aztecs can articulate words, and apply the right noun to the thing, as e.g. ' bread,' 'cbair;' but they cannot conihine ideas into propositions and say 'give me bread,' 'set me the chair.'

For sucb advance in intellectual acts more brain is essential. Compared with the normal state of brains iu the brutes hest endowed, so mucb more cerebral substance is required, and in such position, as to make the great and sudden rise, in the lowest grades of man, whicb is referred to in p. 144.

Tbought relates to the 'brain' of man as does electricity to the nervous 'battery' of the torpedo: both are forms of force, and tbe results of action of their respective organs.
Each sensation affects a cerebral tibre, and in so affecting it, gives it the faculty of repeating the action, wberein memory consists, and sensation in a dream.

A dog at the sight of a rabbit receives a sensation whicb induces a volition, and he barks with the excitement of the cbase. He sleeps, and by suppressed barking and agitation of limhs reveals the fact that he dreams. Shall we obtain any further insight into the nature of the act or acts resulting in this sensation, memory, dreamy imagination, by saying that the perception of the rabbit reacbes tbe 'soul' of the dog by tbe affection of its cerebral fibres? Is the 'soul' of the dog other than the personified sum of bis psychological manifestations?

The 'sight' of the dog is its faculty of vision, the 'soul' of a dog is its power of knowing what it sees and determining accordingly : it may approacb the object with every manifestation of sentiments of gladness and submissive affection: it may rush upon it with every sign of rage: it may pursue. it with every mark of excited ardour.

Aud these mental activities can only go on for a time: the waste tbcreby occasioned of fibre and of power calls for reno-

\footnotetext{
- This is the better as well as older term : \(\zeta\) ôov being understood as 'life' generically, and before development has differentiated its manifestations into unambiguous 'regetal' and 'animal' modes.
}
vation, and this for repose, of the mental organ. In sleep the eyes close and sight goes; wbat then happens to the hrainfibres we cannot see nor tell: but the sum of action called 'soul' ceases. Deep sleep is utter unconsciousness to Dog and Man. The initial steps, and partial resumptions, of brain-action are 'dreams'; the awakening one issuing, often suddenly, in the full blaze of consciousness.

I am most averse to travel beyond my proper province; but a general physiological conclusion from the phenomena of the nervous system inevitably brings on collision with a dogmatic affirmation or definition of the cause of the highest class of those phenomena instilled as an article of religious faith into fellowChristians, and on which is based their mode of thought affecting dearest hopes and highest aspirations. It must he repugnant to any good man's feelings to say aught tbat may unsettle such mode of thought, though he knows that what he has to impart lends truer and better support to both the faitl and tbe hopc.

If the hypotbesis that an abstract entity produces psychological phenomena by playing upon tbe brain as a musician upon his instrument, producing bad music when the fibres or cords are out of tune, be rejected, and these phenomena be held to be the result of corebral actions, an objection is made that the latter view is 'materialistic' and adverse to the notion of an independent, indivisible, 'immaterial,' mental principle or soul.

What 'matcrialistic' means in the mind of the objector I nowhere find intelligibly laid down; but it is generally felt to be something ohjectionable, 'inconsistent witb, or shaking the foundations of an article of faitb,' as Stillingfleet would have said.

To this I repeat Locke's answer, that my faith in a future life and the resurrection of the dead rests on the grounds of their hcing parts of a divine revelation,

If I mistake not, present knowledge of the way in which we derive idens of an outer world helps to a more intelligible conception of 'matter,' 'substance,' ' immateriality,' \&c. tban could be framed by patristic and medieval theology. To make intelligible my own ideas in this subject, whicb the anticipated imputation draws from me, I would put a case and ask a question.

When Saul at Endor "perceived that it zoas Samuel," \({ }^{1}\) lines of force, as 'luminous undulations,' struck upon his retina. Qu. Were the centres whence they diverged to produce the idea of the dead Propbet 'material' or 'immaterial'?

Other lines of force, undulated in another manner, from
centres, producing the ideas of the dead man's speech :-"Why hast thou disquieted me, to bring me up?" \({ }^{1} Q u\). Were the centres radiating these acoustic lines of force material or spiritual?

Substitute the living for the dead Prophet, and it will be said that the points whence the rays of light converged to produce his image in the beholder are 'material ' because 'tangible;' in the case of the 'spirit of Samuel' not. Had Saul stretched forth his hand to grasp the vision it would have met no resistance. Let us, then, analyse the sensations from tangible lines of force. I stretch forth the sum of forces called 'hand,' and exercise part of them in a way and direction called 'pressure,' deriving the sense or idea of such act by my lines of force being opposed by other lines of force. To the extent to which my forces overcome the opposing forces, \(I\) have an idea of a something giving way; when my lines of force are overcome by the opposite lines of force, I have the idea of a hard or resisting surface. But all that I know, after ultimate analysis, is the meeting of opposite forces; of the centres respectively radiatiog such force I know nothing; and if \(I\) did or could know anything I cannot conceive that \(I\) should get a clearer idea of 'touch' than as a relation of certain lines of force acting from ceutres, which may as well be 'immatcrial ' as 'material' for any intelligible notion I can frame of those verbal sounds.

If a blade of metal could move itself to and fro in striving to cleave the space between excited electro-magnetic poles, and could tell us its sensations, they would be those of sawing its way through a substance like cheese; but there is no visible impediment: nor, were luminous undulations to vibrate from the hindrance as from the plane of force resisting the pressing finger, would the hindrance be less ' immaterial.' Similarly, if lines of thought-force were visible, the 'ghost' would not on that account be more ' material.'

The ideas excited by the act of pressure are those of the 'exertion of force' and the 'resistance of force; ' if these ideas be analysed they include those of the direction of force in lines from centres or points. Further than this, my mind, or thinking faculty, cannot go; i. e. can have no clear ideas: I cannot feel that I know more about the matter by calling the "centres of force" ' matcrial atoms' or 'immaterial points,' and am resigned to rest at a point beyond which Faraday \({ }^{2}\) did not see his way.

Having evidence of the opposing force acting in lines from centres distinct from and outside of those volitional centres called
- ego,' the sensation is sufficient for my belief that it is due to the reaction of lines of force from outside-centres upon lines of force put into action from inside-centres. But I have no ground for calling tbe one 'material,' and the otber 'immaterial,' or either, or both. The samc result has followed my attempts to analyse all sensations and volitions, i. e. I know of notbing outside myself of which I can have any clearer knowledge by calling it ' material,' than I bave of that whicb originates force from within inyself, by calling it an 'immaterial' entity, mental principle, or soul.

But, so it is; in the endeavour to clearly comprehend and explain the functions of the combination of forces called 'brain,' the phrysiologist is hindered and troubled by the views of the nature of those cerebral forces which the needs of dogmatic thcology bave imposed on mankind.

How long physiologists would have entertained the notion of a 'life,' or 'vital principle,' as a distinct entity, if freed from this baneful influence, may be questioned; but it can be truly affirmed that physiology has now established, and does accept, the truth of that statement of Locke-' the life, whether of a material or immaterial substance, is not the substance itself, but an affection of it." ' Religion, pure and undefiled, can best answer, bow far it is righteous or just to charge a neighbour with being unsound in bis principles who bolds the term 'life' to be a sound
ccosxxyt. rol, i. p. 761. As the authority of a Physiologiat and late President of tho Royal Society may he cited for ascrihing such vital phenomena to an invisibls 'mental principle,' (a) I unwillingly refer to the romark by which Sir B. Brodie meets the obvious objection of the divisibility, without destruction, of acrits organisms:- It is true that one of our most celebrated modern physiologists, from observing the multiplication of polypi by the mere division of the animal, has coms to the conclusion that tha mental principls, which to our conceptions presents itself as heing so preeminently, abovs all other things in nuture, one and indivisibls, is nevertheless itself divisible, not loss than ths corporeal fabric with which it is appreciated.' (p.116.) Tho reader, eager for now light, and guidanos toward truth, naturally here expects tha fucts and arguments exposing the weakness or fallacy of the inference dedueed from the polyps-phenomena. The sole remark is a chargo of that kind called 'argumentun ad hominam.' 'But it is to be observed' (proceeds Sir B. B.)'that, great as is the authority of Míller generally in questions of physiology, in ths present instance he is not quite an unprejudiced witness, inclined as he is to the pantheistic theory;' \&c. (p. 116.) Now, tho charge is untrue; and, were it otherwise, affects not the point in question. Johannos Müller was of the school of inductivg physiologists, opposed to Okan and others of the achool of Schelling. Hs would not accept even the 'rertebral theory of the skull,' or 'general homologies;' but adhered to the party of Curier: hs livod and died a sincsre memher of the Roman Catholic Church. Brodie's notion of a 'mental principlo' soems to be a combination of 'vital principls' and 'soul,' wveipa and \(\psi v \chi\) \%.
(a) Brodie's, Sir B., ' Psychological Exquiries,' 12 mo .1854, pp. 103, 115, 167.
expressing the sum of living phenomena; and who maintains these phenomena to be modes of force into which other forms of force have passed, from potential to active states, and reciprocally, through the agency of these sums or combinations of forces impressing the mind with the ideas signified by the terms 'monad,' 'moss,' ' plant,' or 'animal.'

If the physiologist rejects the theological sense of the term ' life,' without giving cause for the charge of unsoundness in religious principles, does he lay himself more open to the charge, by rejecting, also, the theologian's meaning of the term 'spirit,' of the term ' soul,' of the term ' mind,' and we might add of ' \(\sin\) ' or 'death'? That is to say, arguments based upon scriptural expressions of thought-force may be drawn from the like personifications of the aberrations and cessation of such force. Both Poets and Painters have, in each case, endeavoured to realise and give shape to the abstractions.

When doubting Thomas obeyed the Lord's command, his fingers met resistance below what seemed to him the surface of the side, and, entering the wound, were opposed by a 'force' exceeding the 'force' they exercised. \({ }^{1}\) The resulting idea, was, that the 'inatter' of our Lord was there, but wanting where the spear had penetrated; the fact was the opposition of a force by a force, and the sensation of that opposition. We know of nothing more 'material' than the 'centres of force.' Our ideas of things without as within the 'ego' are the action and reaction of forces, as 'material' or 'immaterial' as the ideas themselves.

In this view is avoided the alternative of 'idealism' with denial of an external world, or that of the personifying the sum of mental phenomena as an ' immaterial indestructible soul,' contradistinguished from other sums of forces which are as arbitrarily styled 'destructible matter.' Sleep, stimulants, drugs, disease, concur by their effects in testifying that the kinds and degrees of mental manifestations are the result of corresponding affections and changes of structure of the brain.

How the brain works in producing thought or soul is as much a mystery in Man as Brutes-is as little known as the way in which ganglions and nerves produce the reflex phenomena simulating sensation and volition.

\footnotetext{
cccexxvi'. vol. i. p. 656. The whole of Locke's 'Second Reply' to Bishop Stillingfleet may be read, with profit, in relation to the undesigned testimony borne by Physiology to the clear grood sense and allinity for truth in the Philosopher's remarks on the relation of the dogma of 'immateriality,' 'indestructibility,' and 'separability' of soul, to a Christian's faith in the resurrection of the dead as resting on the grounds of dirine revelation.
}

But it is a gain to he delivered from the necessity of speculating where the 'soul' wanders when thought and self-consciousness are suspended: or how it is to be disposed of until the 'resurrection of the body,' glorified or otherwise; of which reintegrated sum of forces 'soul' will then, as now, be a parcel. If the Physiologist and Pathologist had done no more than demonstrate 'the universal law of our being', \({ }^{\text {' }}\) which cuts away the foundations of 'purgatory' or other limbo, from the feet of those who trade thereon, \({ }^{2}\) which makes 'judgment' follow death without consciousness of a moment's interval, \({ }^{\text {b }}\) they would deserve the gratitude of the Christian world.


\footnotetext{
ccexxxvir". p. 306.
' Not to mention the kindred baser brood of 'Spiritualists and Spirit-Rappers.'
\({ }^{2}\) For the importance of this conviction to 'practice,' see ccoxxzy'", rol. i. p. 156, § 63. 'In comparing present and future.'
}

\section*{WORKS}

REFEIRRED TO BY ROMAN NUMERALS AND TWO DOTS IN THE THIRD VOLOME.
[Those rcterred to by Roman Numerale and Dot are in the Becond Volume, those withont Dot are in the Eiret Volume.]
\(I^{\prime \prime}\). Dovranox, G. L. Des Curactères anatomiques des grands Singes pseudo-anthropomorphes, in Archives du Muséum, t. ₹iii. 1855-56. 4 to.
II". Sroses, G. The Anatomy of the Horse, Fol. 1766.
III'. Clark, Bracy. On the Foot of the Horse. 4to. 1809. And Sectional Figure of the Horse, \&ce. 4to. 1813.
IV'. Gurat. Anatomische Ahhildungen der Haus-Säugethiere. Fol. 1824-32. Text, 8vo. 1829-48.
V". Owen, R. On the Anatomy of the Indian Rhinoceros, in Transactions of the Znologicnl Society of London,' vol. iv. 4 to. 1855.
VI". Walton, Elijah. The Camel, its Anatomy, Proportions, \&c. Fol. 1885.
VII". Breschivt, G. Traité anat. sur le Systeme veineux. Fol. 1820.
VILI". Owns, R. On the Anatomy of the Great Anteater (Myrmecophaga jubata, Linn.), in Trans. Zool. Soc., vol, iv. 4to, 1856-7.
LX'. Arnomn, Fr. Tahulm Anatomicx, Fusc. I. Icones Cerobri et Medulla Spinalis. Fol. 1838.
\(\mathbb{X}^{\prime \prime}\). Bcroach, E. Boiträge zur vergleichenden Anatomio des Affon; in Neunter Bericht von der königlichen Anatomischen Austalt zu Königsherg. 1838.
XI'. Reid, J. On some Points in the Anatomy of the Medulla Oblongata, in Edinh. Medical and Surgical Journal. January, 1844.
XII". Waren, W. \& E. Mechanik der menschlichon Gohoporkzeuge. 8vo. 1836.

XIII". Du Chanluv, P. B. Explorations and Adventures in Equatorial Africa. 8vo. 1881.
XIV". Barthzz. Nouvelle Mécaniquo des Mouvements de l'Homme ot des Animux. 4to, 1798.
\(\mathbf{X V} V^{\prime \prime}\). Roulin. Recherches sur le Mécanisme des Attitudes et des Mouvernens do l'Homme; in Magendie's Journal de Physiologie, t. i. and ii. 8vo. 1821 and 1822.
XVI". Gendy, Sur le Mécanisme de ln Marche de l'Homme, in Physiologie Médicale. 1833.
XVII". Straus-Durchheim. Anatomie deseriptive du Chat. 4to. 2 vols. Paicis.
XVLII". Stilling and Waliack. Untersuchungen tuber dio Textur des Rückenmarks, 1842. Nolle Unters, ui. d. Bau des Rückenmarks. 1856.
XIX". Magandie. Reuharchos physiologiques et cliniques sur le Liquide chphanlo-rachidien. 8vo. 1842.

1 This will anbeqnently be referred to na 'Trans, Zoul. Soc,'

XX". Clarke, J. Lockhart. Rescarches on the Intimate Structure of the Brain, Human and Comparative, in Philos. Trans. 4to. 1858, et seq.
XXI". Wiluss, Thomas. De Cerebro et Nervis. 8vo. 1664. Also, De Anima Brutorum. 8vo. 1672.
XXII". Vievssens, R. Neurographia Universalis, Fol. 1685.
XXIUI". Winslow, J. B. (and Astruc). Exposition anatomique du Corps humain. 1732. Translated by Douglas, ed. 2nd. 1763.
XXIV". Rolando, L. Della Struttura degli Emisferi cerebrali (read Jan. 18, 1829) in Memorie della Reale Accademia delle Scienze di Torino, t. xxxy. 4to. 1831.

XXV". Fovilue. Traité complet de l'Anatomie du Systéme nerveux céréhrospinal. 1844.
XXVI". Chaussier. Exposition sommaire du Cerveau. 1807.
XXVII". Todd, R. B. Nervous System (Nervous Centres), Cyclopadia of Anatomy, \&c., vol. iii.
XXVIII". Haxler. Elementa Physiologiæ Corporis Humani, 8 vols. 4to. 17571778.

XXIX". Tienemann, Fr. Icones Cerebri Simiarum. Fol. 1821. Treviranus, Zeitschrift fuir Physiologie, vol. ii. pl. xii. (Brain of Orang) ; also Hirn des Delphins (Delphirus delphis) mit dem des Menschen verglichen, in Tiedemann and Treviranus, Zeitschrift f. Physiol., Bd. ii. Heft 2, 1827; also Hirn des Orang-Outangs, mit dem des Menschen verglichen, in Ib., Bd. ii. Heft 1, 1826.
XXX". Tiedemann, Fr. Anatomie und Bildungsgeschichte des Gbhirng im Fætus *des Menschen, nebst einer vergtoichenden Darstellung des Hirnbaues in den Thieren. Nürnb. 1816. 4to.
XXXI". Thinemanny, Fr. Anatomie du Cerveau, contenant l'Histoire de son développement dans le Foetus, avee l'Exposition comparative de sa Structure dans les Animaux. Traduite de l'Allemand par A.-J.-L. Jourdan, \&c. 8vo. Paris: 1823.
XXXII". Serres, E. R. A. Anatomie comparée du Cerveau dans lea quatres Classes des Animaux vertébrês, appliquée de la Physiologie du Système nerveux, 2 vols. 8 vo. Atlas, 4to. Paris: 1824-28.
XXXIII". MAYo, H. Series of Engravings intended to illustrate the Structure of the Brain (4to., 1827); and the Nervous System. 8vo. 1842.
XXXIV". Owen, R. On the Anatomy of the Orang-utan (Simia Satyrus, L.), in Proceedings of the Committee of Science, \&ce., Zoological Society of London, Part 1. 8vo. 1830.
XXXV". Tralle, Dr. Observations on the Anatomy of the Chimpanzee, in Wernerian Transactions, vol. iii. 1818.
XXXVI". Wrlder, B. G. Contributions to the Comparetive Myology of the Chimpanzee, in Boston Journal of Natural History, vol. pii. p. 369. 1861.

XXXXVII". Owen, R. On the Psychical and Physical Characters of the Mincefpies, in Reports of the British Association for 1861. 8ro.
XXXVIII". OWEN, R. Hunterian Lectures on the Nervous System (1842), reported in Medical Times, 1842.
XXXIX". Grood, Msson, M.D. Book of Nature. 8vo. 1826.
XU". Leuret. Anatomie du Système nerveux considèré dans ses Rapports avec. 1 'It talligence, vol. i. 8vo. Atlas, fol. 1839.
XLI". Leuret. Anatomie du Système nerveux considéré dans ses Rapports avec l'Intelligence, vol. ii. (Gratiolet). 8vo. 18:7.
XLII". Reill, J. Chr. Archiv für die Physiologie, 1799-1805. Various Memoins on Cerebral Structure, translated by Mayo in his Anatomical and Physiological Commentaries, 1822, 1823.
XLIII". Flower, W. H., F.R.S. On the Cerebral Commissures of the Marsupialia and Monotremata, Philos. Trans. 1865.
XIITV". Erasistratts, quoted by Galen. De Csu Partium, lib. 8, eap. 13.
XLV'. Vice d'Azrr., Syst. anat.: 'Quadrupèdes,' t. iii, in Encyclopedio Méthodique. 4 to. 1789.
XLVI". Malacarne. Encefalotomia di alcuini Quadrupedi. Fol. 1790.

XLJII". Owrn, R. On the Anatomy of the Cheetah (Felis jubata, Schreb), Trans. Zool. Soc., sol. i. 1833.
XLVIII". Martis, Ch. L. A General Introduction to the Natural History of Mammiferous Animals, \&cc. 8vo. 1841.
XLLX". Pracock. On the Weight and Specific Gravity of the Brain, in London and Edinburgh Monthly Journal of Medical Science, vol. vii. 1847; and Tranacactions of the Pathological Society of London, vol. xii. 1880-61.
L". Rem, J. On the Weight of the Brain, \&ce, in London and Edinburgh Monthly Journal of Medical Science, 1843.
\(\mathrm{LI}^{\mu}\). Wagner, Rud. Vorstudien zu einer wissensehaft. Morphologie, and Physiologie des menschlichen Gehirns. 4 to. 1860.
LIX". Borm, I., M.D. Tables of the Weight of the Human Body and Internal Organs in the Sane and Insane of both Sexes at various Ages, arranged from 2,814 post-mortom examinations, in Philos. Trans. 1881.

LIII". Margiall, Jno., F.R.S. On the Brain of a Bushwoman, in Philos. Trans. 1864.
LIV \({ }^{\prime \prime}\). Crisr, E., M.D. On the Relative Weight of the Brain, \&ce., in Reports of Brit. Association for Advancement of Science, 1865.
LV". Floongns, M. Recherches expérimentales sur les Fonctions du Système nerreux, \&c. 2nd ed. 8ro. 1842.
LVI \({ }^{n}\). Masempie. Legons sur les Fonctions, etc., du Systeme nervenux. 8 vo. 1841.
 les Mammiferes marsupiaux, 8vo. 1838, in Vowage autour du Monde de La Favorite.
LVIII". Wrman, Prof. Observations on the Skeleton of a Hottentot, in Proceedings of the Boston Society of Natural History, April, 1862, aud December, 1863.
Lix". Gratiolet, P. Mémoire sur les Plis cérébraux de l'Homme et des Primates. 4 to and fol. (No date.)
LX". Turner, W., Prof, F.R.S. Systematic Description of the Arrangement of the Convolutions of the Human Brain, in Edinburgh Medical Journal, June, 1866.
LXI". Thurneam, J., M.D. On the Weight of the Brain and the Citcumstances affecting it, in Journal of Mental Science, April, 1866.
LXII". Quain, J. Anatumy, 7th ed. by Wm. Sharpey, Allen Thomson, and Joha Clelund, vol. i. (1864), vol. ii. (1866), vol. iii. (1867). 8vo.
LXIII", Bell., T., F.IR.S. Article Insectivora, Cyclopædia of Anatomy, vol. ii. 1839.

LXIV". Bejıl, Sir Charles, Idea of a New Anatomy of the Brain, submitted for the observations of his friends. 12mo. (No date, but is stated to be printed in 1811.)
LXV". Bxll, Sir Charlos. Exposition of the Natural System of the Nerves of the Human Body. 4to. 1824.
LXYI". Brinton, W. Seventh Pair of Nerves, Cyclopædia of Anatomy, vol. iv. 1852.

LXVLI". Bewnz. Tractatus de Connexu inter Nervum Vagum et Accessorium Willisii. 4to. Havnix, 1836.
LNV"ll". Weurr, E. II. Lehrbuch der Plysiologio des Menschen, 2 vols. 8 ro.
LXiN". Belpiben-Iwrivne. Recherches sur la Nature, la Distribution ot l'Organo du Sens tactilo. 8vo. 1837.
IXX". Moteanti, G. In Anuali universali di Modicina. Giugno 1845.
IXXXI". Huschub́, E. Bemerkungen zur Anatomie der Sinncsargane, in Oken's Isis, 1825.
LXXII". Arbutin. Considérations sur les Localisations cérébralee, et en particulier sur le Siége do ln Faculté du Langage arriculé. 8ro. 1863.
1.XN1II". Sanners, W. S., M.D. Case illustratiug the supposed connection of Aphasin (loss of cerobral fnculty of speech) with right Hemiplegia and Lesion of the external left frontal convolution, in Edinburgh Medical JompanL March, 1866.
LaNiv". Owen, R. Report on the Archetype and Homologies of the Verte-
brate Skeleton. Report of the Sixteenth Meeting of British Association, in Septemher, 1846. 8vo. 1847.
IXXV \({ }^{n}\). The Journal of Anatomy and Physiology. 8ro. 1867-68.
LXXVI". Stannius, H. Anatomische Beobachtung über den Tümmler, 4 to. 1840.

LXXVII". Dremanond, J. Art. "Sympathetic Nerve,' Cycloprdia of Anatomy, Supplement, I859.
LXXVIII". Köllıker. Selbstständigkeit und Abhängigkeit des sympathischen Nervensystems, \&rc. 4 to. 1844.
IXXIX". Osburn, W. Notes on the Chiroptera of Jamaica, Proc. Zool. Soce, January, 1865.
LXXX \({ }^{\prime \prime}\). De Buanticle. De l'Organisation des Animaux, \&sc. 8vo. 1822.
LXXXI'. Münler (E.) and Wedl (C.). Beiträge zur Anatomie des zweibuckeligen Kameeles. 4to. 1852.
INXXXII". OwEN, R. Anatomy of the Kinkajou (Cercoleptes caudivolvulus). Proe. Zool., part 3. 1835.
IXXXIII". Vrolis, W. Recherches d'Anatomie comparée sur le genre Stenops, \&c. 4to. 1843.
IXXXIV \({ }^{\prime \prime}\). Burmerster. Beiträge zur näheren Kenntniss der Tarsius Spectrum. 4to. 1846.
LXXXV' Van der Hosven, J. Bijdrage tot de Kennis van den Potto van Bosman. (Perodicticus). 4to. 1851.
LXXXVI". Kngama, P. H. Eenige vergelijkend-ontleedkundige Aanteekeningen over den Otolicnus Peeli. 8vo. 1855.
LXXXVII \({ }^{\prime \prime}\). Iatrke. De Lemure nigrifronte. 8vo. 1850
LXXXVII \({ }^{\prime \prime}\). MIUrrara A. On the genus Galago, in Edinburgh New Philosophical Journal. 8vo. 1859 and 1860.
LXXXIX". Owen, R. Anatomy of the Wart-Hog (Phacochorus 'Pallassii). Proc. Zool. Soc. February, 1851.
XC'. Jacobson. Description anatomique d'un Organe observe dans les Mammiféres, in Ansales du Muséum d'Histoire Naturelle, t. xwi. 1812.

XCI". Spencer, Herbert. Theory of the Skull and the Skeleton, Annals and Magazine of Natural History, 3xd series, vol. xviii. December, 1836.
XCII", Skeizy, Henry G. Outline of a Theory of the Skull and the Skeleton, Annals and Magazine of Natural History, 3 rd series, vol, swii. Novemher, 1866.
XCIII'. Eupes-Destongchantss. Remarques anatomiques sur le Tapix d'Amérique, in Mémoires de la Société Linnéenne de Normandie, t. vii.
XCIV". Paget, James, T.R.S. Art. Nose, Cyclopedia of Anatomy, vol, iii. 1847.

XCV' \({ }^{\prime}\). Cotveno, D. De Aqueductihus Auris humanæ internæ Anatomica Dissertatio. 1774.
XCVI". Breschet, G. Recherches anatomiques et physiologiques sur l'Organo de l'Ouie et sur l'Audition, dans l'Homme et les Animaux vertébrés. 4to. 1836.
XCVII', Jones, T. Wharton. Art. 'Organ of Hearing,' Oycl. of Anat.; vol. ii. 1839.

XCVIII \({ }^{\prime \prime}\). Soemaerring. Icones Organi Auditûs Humani. Fol. 1806.
XOIX \({ }^{\prime \prime}\). Sxetfensand, Karl. Untersuchungen über die Ampullen des Gehörorgans. Muller's Archiv für Anat. und Physiologie, \&c. 1835. Heft ii.
C". Savart, F. Mémoixe sur la Voix humaine, in Majendie's Journal do Physiologie, t. iv., and Annales de Chimie et de Physique, t. xxx. 1825.
\(\mathrm{CI}^{\prime \prime}\). Wreatstone, Ch. On the Transmission of Musical Sounds through solid Linear Conductors and on their subsequent Reciprocation, in Journal of the Royal Institution, November, 1831.
CII". Carlisie, Anthony, F.R.S. Physiology of the Stapes, in Phil. Trans. 1805.

CIII \(^{\prime \prime}\). Weger, in Hildebrandt's Anatomie, Bd. iv.
CIV'. Huschke, E, Ueber die Kiemenhögen beim Hühnchen, in Oken's Isis, 1827; über Vogelembryo, in Oken's Isis, 1828.

CV". Jacos, Arthur, F.R.S. Art. Ere, Cyclopadia of Anatomy, vol. ii. 1839.

CVI". Teas,e, J, P. On the Form of the Eye-ball and the Relative Position of the Entrance of the Optic Nerve in different Animals. 8vo.
CVII", Znar. Descriptio anatomica Oculi Humani. 4to. 1780.
C'YLI". Albers, J. A. Bemerkungen üher den Bau der Augen verschiedener Thiere, in Denkschr. d. Akad. Wiss. München, Band i. 1808.
\(\mathrm{CLX}^{\prime \prime}\). Thonss, H. L. On the Anatomy of a Male Rhinoceros, in Philos. Trans. 1801.
CX'. Jones, Wharton, F.R.S. Art. 'Lachrymal Organs,' Cyclopædia of Anatomy, vol. iii. 1847.
CXI". Tond and Bowwax. Physiological Anatomy and Physiology of Man. 8 von
CXII". Cuviere, G. Analyse des Travaux de la Classo des Sciencès mathématiques et physiques de l'Institut, pendant 1812.
CXIII". Kavp, Prof. J.JJ. Ossemens fossiles de Mammifêres, de Darmstadt. 4to. and fol. 1836.
CXIV"', Home, Sir E. On the Stomach of the Xariffa, \&c., Philos. Trans, 1830.
CXV', Owen, R. Description of a small Lophiodont Mammal (Pliolophus vulpiceps, Cuv.), in Proceedings of Geological Society, London, May, 1857.

CXVI". Owes, R. History of British Fossil Mnmmals and Birds, 8vo. 1846.
CXVII"。 OwEN, R. On the Anatomy of the Dugong, Proceedings of the Zoological Society of London, 1838.
CXVIII". Owzas, \(R\). Description of Fossil Marsupialia, Appendix to Mitchell's Three Expeditions into the Interior of Austradia. 8vo. 1838.
CXIX \({ }^{n}\). Owen, R. On the Fossil Mammalia of Australia, Parts 1 and 2:Thylacoleo carnifex, in Philosophical Transactions, 1858 and 1865.
CXX". Rems, G. Owon. Art, 'Saliva,' Cyclopædia of Anatomy, vol. iv. 1852.
CXXI". Coven, Fréd. Dents des Mammiferes. 8vo. 1825.
\(\mathrm{CXXII}^{\prime \prime}\). Peters, Prof. W. Das Milchgebiss der Chiromys madagascariensis, Monatsbericht dor königl. Akademie der Wissenschaften, Berlin, April, 1884.
CXXIII". Relnhandt, Prof. On the Deciduous Dentition of Cystophora, in Guinther's Zoological Record, vol. ii. 1866.
CXXIV". Schncenbr, van der Kolk, and W Vronik. Rocherches d'Anatomie comparée sur le genre Stenops d'tlliger. 4to. 1848.
CXXV". Wand, Nath. Art. 'Salivary Glands,' Cyclopeedia of Anatomy, vol. ir, 1852.

CXXVI". Berwarn, Claude. Mémoires sur lo Rôle do la Salive dans lees Phénomènes de la Digestion, in Archives Générales de Médecine, Janvier, 1847.

CXXVLI" Owen, R. On the Anatomy of the Nine-banded Armadillo (Dasypus Peba), Proceedings of the Committee of Science, \&cc., Zoological Society of London, Part 1, 1830.
CXXVIU" Owes, R. On the Anatomy of the Weasel-hended Ammadillo (Dasypus sexcinetus, L.), Proceedings of the Committoe of Science, \&sc., Zoological Society of London, Part 1, 1831.
CXN1: \({ }^{n}\). Rapp, Uebor die Edentaten. 4to. 1843.
UXiX', Owen, R. On tho Anatomy of Capromys Fournieri, in Proceedings of the Committee of Science, \&c., Zoological Society of London, April, 1832.

CXXXI". Carlised, Sir A. On the Peculiar Arrangement of the Arteries in Slow-moring Animnls, in Philusophical Transactions, vol. xciv, 1804.
("XXXII". Gervars, Prof. P. Histoire naturelle des Mammiferes. 8vo. 1855.
( \(\mathrm{N} \boldsymbol{\mathrm { NXLLI }}{ }^{\prime \prime}\). Rktzivs, A. Om magens byggage hos do i Sverige förekommande arter af sliggtet Lommus, in K. Vet. Akad. Handlgr. Stockholm, 1839.

CXXXIV". Smith, J. A. Notice of the 'Angwäntibo' of Old Calabar (Galago calabaricnsis), Proceedings of the Royal Physical Society of Edinburgh, April, 1860.
CXXXV' Huxcuy, Thos., F.R.S. On the Angwantibo (Arctocebus calabariensis), in Proc. Zool. Soc. June, 186t.

CXXXVI". Huxdey, Thos. F.R.S. On the Strincture of the Stomach in Desmodus rufus, Proc. Zool. Soc. April, 1865.
CXXXVII". Otro, Ad. W. Ueher sine nete Affen-Art, den Cercopitheous (?) leucoprymanus, Nova Acta Nat. Cur. t. xii. 1824.
CXXXVIII". Owes, R. On the Stomach and Cæem in wo species of Douc (Semnapithecus entellus and Semar. fascicularis), in Proc. Zool. Soc. 1833.
CXXXIX" OWrn, R. On the Sacculated Form of Stomach as it exists in the genns Semnopithecus, Trans. Zool. Soc. vol. i. 4to. 1835.
CXL". Owen, R. On the Stomach of the Semnopitheous maurus, as shown in a preperation presented hy Mr. G. H. Garnett, in Proe. Zool. Soc. 1834, p. 6.
CXII". Owes, R. On the Stomach of the Colobus ursinus, in Proc. Zool. Soe 1861.

CXIJI". Valentin. Handbuch der Entwickelungsgeschichte des Menschen. 8vo. 1835.
CXLIII". Ratake. Anatomisch-physiologische Untersuchungen über den Kiomonapparat und das Zungenbein der Wirbelthiere. 4to. 1832.
CXIIV', Cuvier, F. Art. Cetacea, Cyclopedia of Anatomy, vol, i.
CXLV". Belr, Wm. Description of the Double-horned Rhinoceros of Sumatra, in Philos. Trans. 1783.
CXIVI". Anernethy, John, F.R.S. Account of two instances of Uncommon Formation in the Viscera of the Human Body, in Philos. Trans. 1793.
CXIVII". Owen, R. Descriptive and Illustrated Catalogue of the Physiological Series of Comparative Anatomy, in the Museum of the Royal College of Surgeons of England, vol. i. 2nd ed. 4to. 1852.
CXLVIII". Brinton, Wm. Art. 'Stomach and Intestine,' in Cyclopedia of Anatomy, vol. v. Supplement, 1859.
CXIIX". J \(\triangle\) FGER, II. F. Anatomische Untersuchungen des Orycteropus Capensis. 4to. 1837.
CL". Bell, Thos. Art. Edentata, Cyclopzedia of Anatomy, vol. ii. 1839.
CLII". Owen, R. Notes appended to the Art, Cetaces, Cyclopadia of Anatomy, vol. i. 1836.
CLII". Owes, R. On the Anatomy of the American Tapir (Tapirus Americanus, Gmel. ), Proceedings of the Committee of Science, \&ac, of the Zoological Society, Part 1, 1831,
CLIII' \({ }^{\prime \prime}\) OwzN, R. On the Anatomy of the Cape Hyrax (Hyrax. Capensis), Proceedings of the Committee of Science, \&c, of the Zoological Society, Part 2, 1832.
CLIV'. Vrolik, W. Recherches d'Anatomie comparéo sur le Babyrussa. 4to. 1844.

CLV'́. Sax, M. On a Quadruped belonging to the Order Rodentia (Isodon pilorides), in Journal of the Academy of Natural Sciences of Philadelphia, rol, ii. 1826.
CLVI \({ }^{\prime \prime}\). Owen, R. On the Anatomy of Phoca vituline, in Proceedings of the Committee of Scionce, \&c., of the Zoological Socioty, Part 1, 1831.
CLVII". Klernan, Francis, F.R.S. The Anatomy and Physiology of the Liver, Philos. Trans. 4to. 1833.
CLVIII". Wilson, Erasmus, W. J., F.R.S. Art. 'Liver,' Cyclopedia of Anatomy, vol. iii. 1848.
CLIX", Hering, E. Ueber den Bau dor Wirbelthierleber, in Sitzungsberichte, Kais, Akad, der Wissenschaften in Wien. 6th Decemhor, 1866.
CLX". Wonmus, Olaus, Museum Wormianum, seu Historia Rerum Rariorum, \&c. Lugd. and Batav. Fol. 1655.
CLXI", Owrs, R. On the Anatomy of the Beaver (Castor fiber), in Proceedings of the Committee of Science, \&cc., of the Zoological Society, Part 1, 1830.

CLXTI \({ }^{\prime \prime}\). Scॄmint. Das Verdauungsgeschäft und der Stoffwechsel. 8ro. 1852.
CLXITI'". Treirices. In Wagner's Handwörterhuch der Physiologie.
CLXIV'. Bernard, Claude. In Archives Générales de Médecino, Série 4. t. xix.
CLXV'. Allman, Prof., F.R.S. On the Character and Affinitios of Potamogale, in Trans. Zuol. Soce, vol. vi. 1866,
CLXVI", Du Chainev, P. B. On Animals from Equatorial Africa, helieved to be new, in Proceedings of the Boston Society of Natural History, vol. vii 1859.

CLXVII". Duykrnoy, G. L. Sur les Musaraignes, in "Recueil des Mémoires de la Société d'Histoire Naturelle de Strashourg', vol, ii. 4 to. 1835.
CLXVIII", Breschrt, G. Le Systéme lymphatique, considérés sous les rapports, \&ic., \&c. 8vo. 1836.
CLXIX". Kavp, J. J. Deinotherinm gigantenm, Isis yon Oken, Bd. iv. p. 401. 1829.

CLXX". Lanz, S. Art. 'Lymphatic and Lacteal System,' Cyclopedia of Anatomy, vol. iii. 1847.
CLXXI", Mascagni. Vasorum Lymphaticornm Corporis Humani Historia et Iconographia. Fol. 1787.
CLXXL", Owen, \(\mathbf{R}^{\prime}\). Artw 'Teuth,' Cyclopadia of Anatomy, vol, iv, 1847.
CLXXIII". Owsm, R. On the Development and Homologies of the Molar Teeth of the Wart-hogs (Phacocherrs), in Philos. Trans., 1850.
CLXXIV'. Abeunethy, John. On the Anatomy of a Whale, in Philos, Trans., 1796.
CLXXV". CoLm. Recherches oxpérimentales sur les Fonctions du Systeme lymphatique (quoted in cexxxix., vol. iv. p. 511 ).
CLXXVI". Sretoli. Ueber die Entwickelung der Lymphdrüsen, in "Sitzungsborichte dor Kaiserlichon Akadomie der Wiasenechaften, mathe-matisch-naturwissenschaftliche Classe.' Band liv. Zweite Ahthoilung. 1866.
CLXXVII". Matreuccr. Leçones sur les Phénomenos physiques de la Vie. 1845.
CLXXVIL". Cnumshank, W., F.R.S. On the Absorbonts. 4 to. 1786.
CLXXIX \({ }^{\prime \prime}\). Owen, \(\boldsymbol{R}\). Contrihutions to the Comparative Anatomy of the Blooddisce, in London Medical Gazette, vol. i. (New Series), 1839.
CLXXX". Asklluvg, De Lactibus sive lacteie Venis quarto Vasorum meseraicorum Genere novo inrento, Dissertatio. \&to. 1627.
CLXXXI". Jones, Wharton. On the Blood-corpuscles, in Philos. Trans., 1846.
CLXXXII' Mandr, Glohules dn Sang do forme olliptique obsorvés chez deux espéces de Mammiferes, in 'Comptes Rendus de l'Académie des Sclunces,' t. vii, P. 1060. Paris: 1838.
CLXXXIII". Achisnson. Uober den physiologischen Nutzen der Fettstoffe, in 'Müller's Archiv für Physiologio.' 1840.
CLXXXIV', Steller. De Bestiis marinis, in Novi Commentarii Acad. Petropolitaдæ. 1749.
CLXXXV \({ }^{n}\). King, T. On the Safety-valve Functions in tha Right Ventricle of the Heart, in Guy's Hospital Reports, vol, ii.
CLXXXVI". Bate, C. Spence, F.R.S. On the Dentition of the common Mole (Talpa Europea), in Annals and Magazine of Natural History, June, 1867.
CLXXXVII". Reid, f., M.D. Art. Hesrt, Cyclopredia of Anatomy, vol. ii. 1839,
CLXXXVLI'". Searle, H. Art, 'Arrangement of the Fihres of the Heart,' Cyclopedis of Anatomy, vol. ii. 1839.
CLXXXIX". Pemtigrkw, J. On the Arrangement of the muscular Fihres in the Vontricles of tho Vertohrato Heart, with Physiological Romarks, Philos. Trans., 1864.
CXC \(^{\prime \prime}\). Meckel. Syatem der veryloich. Anatomio. 8vo. 1827-1830.
\(\mathrm{CXCl}^{\prime \prime}\). Owen, 17. On the Anatomy of the Walrus, in Proc. of the Zool. Soc., Noromber, 1853.
CKCII". Owen, R. On the Anatomy of the Orang, in Proc. of the Zool. Soc., Nov. 1830 ; also, Bennett, Geo., F.R.S. Wanderings in New South Wules, 3 vols. 8 vo. 1844.
CXCIII". Broderyp, W.J. On the Jaw of a fossil Mammiforons Animul, found in Stonesfield State, in Zool. Journal, vol. iii. 1827.
CXCIV'. Quoy et Gaimand, in ' Voyage de 'UYraino.' Fol. 1824.
CXCV". Vrolik. Disquisitio Anutomico-Physiologica de peculiari Arteriorum Extromitatum in nonnullis Animalibus Dispositiono. 4to. 1826.
CXCVI', Barr, C. Fon. Uebar die Geflechte, in welche sich einige grössere Schlagadern der Saiugothiere friih aufösen, in 'Mem des Savants étrangers, présentés à l'Académie Impériale de St.-Pétorsbourg,' t. ii. 1833 .

CXCVII". Pagrt, James, F.R.S. Lectures on Inflammation, Medical Gazotte, vol, xly.
CXCVIII". Stanmos. Ueber don Verlauf der Arterien hei Delphinus Phocæna, in 'Müller's Archiv für Anat, und Physiol.' 1841.

CXCLX". Altman, Prof. On certain Peculiarities in the Arteries of the Sixbanded Armadillo, in Proceedings of the British Association, 1843.
CC'f. K^. ГAnHNOr, amavta. Fol. Basil, 1538.
CCI". Barkow, H. C. L. Disquisitiones recentiores de Arteriis Mammalium et Avium, in Nova Acta Acad. Natur. Curios,, t. xx., 1844.
CCII". Hyntt. Das arterielle Getäcs-System der Monotremen, in " Abhandlungen der Kaiserl. Akademie der Wissenschaften in Wien.' 1853.
CCITI". Salter, Hyde. Art. "Vein,' Cyclopredia of Anat., wol. iv. 1847.
CCIV". Haryey. On the Motion of the Heart and Blood (Sydenham Society's edition).
CCV". Breschet, G. Histoire anatomique et physiologique dun Organe de nature vasculaire découvert dans les Cétacés. 4to. 1836.
CCVI". Fabricius ab Aquapendente. De Venarum Ostiolis, \&c. 1603.
CCVII". Bardelbben, Ad. Ueher Vena azygos, Hemi-azygos und Coronaria cordis, bei Staugethieren, in 'Müller's Archiv für Physiologie.' 1848.
CCVIIT". Kolliker. Art. 'Spleen,' Cycl. of Anat., vol. iv, 1852.
CCIX". Ranney, George. On the Mode of Formation of Shells of Animals, of Bone, and of several other Structures, hy a progress of Molecular Coalescence, demonstrable in certain artificially formed Products. 8vo. 1858. 13 . On the Artificial Production of certain Organic Forms, \&ce, in Medical Times and Gazette, Jan, 4th, 1868.
CCX". Montgombry, Ed, M.D. On the Formation of so-called Cells, in Animal Bodies. 8 ro. 1867.
CCXI". Breschet, G. Recherches anatomiques, physiologiques et pathologiques sur le Système veineux. Paris: 1828.
CCXII". OWFN, R, Anatomy of the Bischacha (Lagostomus trichodactylus), Proceedings of the Zoological Society, 1839.
CCXIII". Darmin, C. On the Origin of Species by means of Natural Selection, \&zc. 8 vo .1859.
CCXIV". Jones, Handfield. Art. "Thymus Gland,' Cyelopædia of Anatomy, vol. iv. 1852.
CCXV". Srmon, J. A Physiological Essay on the Thymus Gland. 4to. 1845.
CCXVI". Cooper, Sir A. Anatomy of the Thymus Gland. 4to. 1832.
CCXVII'". Bıshop, J. Art. 'Larynx,' Cyclopædia of Anatomy, vol. iii. 1847.
CCXVIII". Brannt. Observationes Anatomice de Instrumento Vocis Mammalium. 4to. 1826.
CCXIX" Sandifort, G., in Nieuwe Verhandelingen der Koninklijk Nederlandshe Instituut. Deel iii. p. 224, Pl. i.-v.
CCXX". Martin, C. Limnæus. A General Introduction to the Natural History of Mammiferous Animals, \&c. 8vo. 1841.
CCXXI'. Savart. In Majendie's 'Journal de Physiologie,' t. v.
CCXXII". Bennati. Recherches sur le Mécanisme de la Vois. 8 vo. 1832.
CCXXIII". Wimis, Prof. On the Mechanism of the Larynx, in Cambridge Philosophical Transactions, vol. iv. 1832.
CCXXIV". Bartlett A. D. Remarks on the Affinities of the Pronghuck (Antilooapra Amerioana), in Proc. Zool. Soc. 1865.
CCXXV". Canfield, C. A., M.D. On the Ilabits of the Prongbuck (Antilocapra Americana), and the Periodical Shedding of its Horns, Proc. Zool. Soe., 1866.
CCXXVI". Owen, R. On the birth of the Giraffe at the Zoological Society's Gardens, Trans, Zool. Soc., vol. iil. 1849.
CCXXVII", Redi. Experimenta Naturalia. 12mo. 1675.
CCXXVIII". Owen, R. Lecture on the Raw Materials from the Animal Kingdom, in the Great Exhibition of 1851. 8vo, 1852.
CCXXIX". Owen, Rn On the fossil Musk-Ox (Bubalus mosohatus), in Quarterly Journal of the Geological Society, 1855.
CCXXX". Eschricht, D, F. Ueber die Richtung der Harré im menschlichen Körper, in 'Müller's Archiv für Physiol.' 1837.
CCXXXI". Inman, \(\mathrm{Dr}_{\mathrm{r}}\) On the Natural History and Microscopic Character of Hair, in Proceedings of the Literary and Philosophical Society of Liverpool, No. 7.
CCXXXIl". Retzius. Om en egen Körtelhildving hos nagra arter af slägtel Canib, in 'Kongl. Wetensk. Akad. Handlgr.' 1848.

CCXXXIII". Owen, R. Remarks on the Secretion of the Euhorbital Sinus of the Indian Antelope (Antilope cervicapra, Pall.), with a Tabular View of the Relations hetween the Habits and Habitats of the several species of Antelspes and their Suborhital, Maxillary, Post-auditory, and Ioguinal Glands. Proc. Zool. Soc., March, 1836.
CCXXXIV". Bennertw, George, F.R.S. Notes on the Natural History and Hahils of the Ornithorhynchus paralloxus, Trans. Zool. Soc., vol. i. 1835.
CCXXXV". Cowper, W. Account of a Dissection of a mele Opossum, in Philos. Trans., vol xxiv. 1704.
CCXXXVI". Kolaker, Alh. Beitriege zur Kenntniss der Geschlechtererhältnisss und der Samenfliussigkeit wirbelloser Thiere, 4 to. 1841.
CCXXXVII' Kuscikzr, Alb. Die Bildung der Samenfäden in Bläschen als algemeines Eutwickolungagesetz dargestellt. 4to. 1846.
CCXXXVUII". Weber, E. H. Zusätze zur Lehre vom Baue und den Verrichtungen der Oeschlechtsorganc. 8vo. 1846.
CCXXXIX". Leveckart, Rud. Art. 'Vesicula prostatica,' Cyclop. of Anat., vol. iv. 1852.
CCXL." \({ }^{\text {. }}\) wren, R. History of British Fossil Mammals. Bro. 1846. Also, Muse-Enwards, Alphonse. On Elaphurus Davidianus, in 'Nouvelles Archives du Muséum,' Bulletin ii. 1867.
CCXLI", Lkxnco, Fr. Zur Anatomie der männlichen Geschlechtsorgane der Sängethiere, in 'Zeituchrift für wissenschaftliche Zoologie,' Band ii. 1850.

CCXLil". Crssar, Julins. De Bello Gallico, liher vi. cap. 26. Albo, Curling, T. Art. Testicle, Cycl. of Anat, vol. iv. 1852.
CCXLIII", Owen, R. On the Anatomy of the Tree-Kangaroo (Dendrolagus inutus, Gould), in Proc. Zool. Soce, 1852.
CCXLIV". Pomlman, Prof. C. Description des Orgenes de la Génération chez le Macropur Bennetiia, in 'Bullotin de l'Acad. Roy. de Belgique,' to xviii. 1851.
CCXLV". Axix, E., M.D. Sur les Organes de la Génération chez le Macropue Bennetilii, in ' Comptes Rondus de l'Acad. des Sciences de l'Institut de Paris.' Janvier 15, 1866.
CCXLVI". Farre, A., F.R.S. Art. 'Uterus and its Appendages,' Cyel. of Anat., Supplement, 1850.
CCXLVII". Hoy J J. F.L.s. Note on One-horned Hind in Trans, Linn. Soc., vol, ii. p. 356 . 4to. 1791. Also Huaurer, cited in CCXLVI".
CCXLVIII". Homs, Sir E. On the Anatomy of the Dugong, Philos. Trans., 1820.
CCXLIX". Von Bapr, K. E. Epistola de Oqi Mammalium et Hominis Genesi. 4to. 1827. Also in Hensinger's 'Zeitschrift,' ii. pp. 125, 194, 1828.
\(\mathrm{CCL}^{\prime \prime}\). Coste et Delpech. Recherches sur la Génération des Mammifêres. 4to. Paris, 1834.
CCLI". Varemtin, In Bornhardt's Inaugural Thesis, Symbolæ ad Ori Mammalium Historiam nnte Pragnationem. 4to. 183.4.
CCLII". Jones, Th. Wharton, E.R.S. On the Orn, of Man and Mammifera, \&c.: read before tho Royal Society, June 18th, 1835, London and Edinburgh Philosophical Magazine, vol. vil. p. 209. Also, On the First Clanges in the Orn of the Mammifera in consequence of Impregnation, and on the Mode of Origin of the Chorion, Philos. Truns., 1837.
CCLIII". Poucher, F. A. Théorie positive de la Fécondation des Mammiferes, Lasée sur l'obser ration de toute la série animule. 8ro. 1842.
CCLIV". Duvirevoy, G. L. Sur l'Ovulation menstruello, in 'L'Txpérience,' No. 319. Aoat \(18+2\).
C(LLJ Rachorsky, Dos Rapports des Trompes avec les Oraires chez les Mamniféres, in 'Comptes Rondus de l'Acad. des Sc.,' t. xiv. 18\$2; also ' Note' in 'Onzette Médicale,' Sept. 2, 1842.
CCLUX'. De Granf, Regner. De Mulierum Organis Genorationi inservientibus, 1672.
CCLV11". Hati.kr. Elementa Physiologiæ, t. viii. p. 43, ed. \(177^{2}\) s.
CCLJJlI". Crelkshase, Wm. Exporinents in which, on the third day aftor Impregnation, Ove of Ralbits were found in the Fallopian Tubes, ancl on the fourth day in the Uterus itself, \&c., in Philos. Trans., 1797.

CCLIX". Prévost et Dumas. De la Génération dans les Mammiferres, in 'Annales des Sciences Naturelles.' 8vo. 1825.
CCLX". Barry, Dr. M., F.R.S. The Oyum and its Development after it has left the Ovary, in Phil. Trans., 1839, pp. 320-332.
CCLXI". Brschofr, L. W. Entwickelungsgeschichte dos Kaninchen-Eies. 4to. 1842. Ib. ib. des Hund-Eies, 1846.

CCLXL". Bischofr, L. W. Entwickeluagsgeschichte des Meerschweinchens. 4to. 1852.
CCLXIII". Biscrofr, L. W. Entwickelungsgeschichte des Rehes. 4to. 1855.
CCLXIV". Geofrrox St.-Hitarre, Mémoire sur la Génération des Animaux à Bourse, \&ic., in 'Annales des Sciences Naturelles,' t. i. 1824, and t. ix. 1827. Note sur quelques circonstances de la gestation des femelles de Kangourous, \&ce., in 'Annales des Sciences Nat.' 1826. See also in 'Journal complémentaire du Dict. des Sciences Médicales.' 1819.
CCLXV', Molne-EDwards. Eléemens de Zoologie, 12mo. 8th edit. Paris: 1858.
CCLXVI", Knoz. A Manual of Zoology, hy Milne-Edwards. 12mo. 1856.
CCLXVII". Rolueston, Prof, On the Placental Struetures of the Tenrec (Cen. tetes ecaudatus), and those of certain other Mammalia, in Zool. Trans., vol, v. 1865.
CCLXVIII", Adams, John. Art. Prostate Gland, Cycl. of Anat., vol. iv. 1852,
CCLXIX \({ }^{\prime \prime}\). BARKow, H. C. L. Zootomische Bemerkungen. 8 vo .1851.
CCLXX". Huxley, Prof. Lectures on the Elements of Comparative Anatomy. 8vo. 1864.
CCLXXI". Ziegler. Boobachtung über die Brunst und den Embryo der Rehe. 1843.

CCLXXII". Latru, E. A. Anatomie du Testicule, in 'Mémoires de la Société d'Hist. Nat. de Strasbourg,' to i. 1830.
CCLXXIIT". Turner, H. N. Observations on the Base of the Skull and on the Classification of the Order Carnivora, in Proc. Zool. Soc., 1848.
CCLXXIV". Crisp, Dr. On the Os Penis of the Chimpanzee, \&ce., Proce Zool. Soc. January, 1865.
CCLXXV" Covier, Fr. Histoire naturelle des Quadrupedes. Fol.
CCLXXVI". Alessandrim. Osservazioni sugl' Inviluppi del Feto della Phoca bicolor.
CCLXXVII". Breschet, G. Recherches, \&cc., sur la Gestation des Quadrumanes. 4to. 1845.
CCLXXVIII". Mencs, Dr. Chas. D. On the Reproduction of Didelphys Virginiana, in American Philosophical Society, April, 1847.
CCLXXIX". Goumm, John, F.R.S. Monograph on Marsupialia Fol. 1859.
CCLXXX". Waterhouse, G. R. Natural History of the Mammalia. \({ }^{870}\). 1845 ,
CCLXXXI". OwFN, R. On the Marsupinm of Thylacinus, Proc. Zool. Soc., 1843.
CCLXXXII". Chevredt, M. E. Recherches chimiques sur lee Corps gras d'origine animale. Paris: 1823.
CCLXXXIII' Solly, S., F.R.S. Art. 'Mammary Glands,' Cycl. of Anat., vol. iii, 1848.
CCLXXXIV', Coorer, Sir Astley P. On the Anatomy of the Breast. 4to. 1840.
CCLXXXY'. Curier, Baron Geo. Extrait d'Observations faites sur le cadavro d'une fomme de race boschisman, dite 'la Vénus hottentote,' in ' Mémoires du Mnséum,' t. iii. 1817.
CCLXXXVI". Lem, Dr. R. On Supernumerary Nipples, in 'Transactions of the Medical and Chirurgical Society,' 1837.
CCLXXXVII". Groffroy Saint-Hilaire, Mémoire où l'on se propose de rechercher dans quels rapports de structure organique et de parenté sont entre eux les animaux des Ages historiques, et vivant actuellement, et les espèces antédiluviennes et perdues, in 'Mémoires du Muséun d'Histoire Naturelle,' t. xvii. 1828.
CCLXXXVILi", Von Baer, Ueber die Gefássverbindung ewischen Mutter und Frucht. 1828.
CCLXXXIX". Escerricht, D. Fr. De Organis qui Respirationi Fæetus inserviunt. 4to. 1837.
CCXC'. Daubenton, L. J. M. Observations sur la liqueur de l'Allantoïde, et sur des corps auxquels on a donné le nom d'Hippomanes, in 'Mémoires de l'Académie Royale des Sciences.' 1751-1752.

CCXCI". Pouchet, F. A. Zoologie classiqne. 8vo. 1841.
CCXCII". Canfrea, P. De Molaribus Elephantum giganteorum et eorum Obsihus, Nova Acta Petropol., t. îi. 1781.
CCXCIII". Humrer, J. Observations on the fossil Bones presented to the Royal Society by H. S. H. the Margrave of Anspach, Phil. Trans., 1794.

CCXCIV'. Covier, G. Considérations sur les Mollusques, \&c., in 'Annales des Sciences Naturelles.' Mars 1830.
CCXCV". Peters, W, Ueher die hei Beutelthieren im Entwickeluagszustande vorkommende Verbindung des Os tympanicum mit dem Unterkiefer, als einen neuen Beweis für die Uebereinstimmung dieses Knochens mit dem Os quadratum der ührigen Wirheltbierclassen. Gesammtsitzuag der k. Akad. der Wissensch. Berlin, Nov. 21, 1867.

CCXCVI". Geoffnoy Saint-Hmaire. Sur un Appareil glanduleux récemment découvort dans l'Ornithorhynquo, situé sur les flancs de le région ahdominale, et faussement considéré comme une glande mammaire, in 'Annalos des Scienees Naturelles.' 1826.
CCXCVII". Groffroy Saint-Hilares Paleontographie, ou Considérations sur des Ossornens fossils, \&c. Accompagnées de notes où sont exposés les rapports ot les differences des deux zoologies, celle des époques antédiluviennes et celle du monde actuel, in 'Rerue Encyclopédiquo,' t. lix. 8vo. 1833.
CCXCVIII", Lamarce, J. B. P. A. Philosophie zoologique, 2 vols. 8 vo. 1803.
CCXClX" Groffnoy Saint-Hixaine. Recherches sur de grands Sauriens, \&c. 4to. 1831.
CCC'. Lyelx, Sir Ch. Principles of Geology.
CCCI". Darwin, Ch., and Warlace, A. On the tendency of Species to form Varieties, \&c., in Proceedings of the Linnean Society, August, 1858.

CCCLI". Gervais. Zoologie et Paléontologie française. 4to. (No date.)
CCCIII". Cnsstor, J. de. Lettre sur l'Hipparion, in 'Annales Scientif. et d'Industrie du Midi de la France.', 8vo. 1852.
CCCIV". Arionsa, M. S. Contrihution a l'Étude de l'Organisation du Pied chez le Cheval, in 'Annales des Sciences Nat. : Zoologie,' t. viii. 1867.

CCCV' Geoffroy Saint. Heame. Sur un Foetus du Cheval polydactyle, \&ce, in 'Annalos dos Sciences Nat.,' t. vi. 1827.
CCCVI". Wolfy, C. F. Theoria Generationis. 4to: 1759.
CCCVII". Cutier, Baron Geo. Lepons sur l'Histoire des Scionces Naturelles, t. iv. (Gaspard-Fred. Wolff et de ses Travaux.) 1831.

CCCVIII". Datwin, Ch. Tbe Variation of Animals and Plants under Domestication, 2 vols. 1868.
CCCLX". Pastror, L. Mémoires sur les Corpuscles organisés qui existent dans l'Atmosphère, in 'Aunales dos Sciences Naturelles, 4' Série: Zoologie,' t. IFi. 1861.
CCCX \(^{\prime \prime}\). Poverirt, F. A. Hétérogénie. 8va. 1859.
CCCXI". Pouchet, F. A. Nouvelles Expóriences sur la Génération spontanée, \&cc. 8vo. 1864.
CCCXII". Culld, G. W., M.D. Essays on Physiological Subjects. 8vo. 1868.
CCCXU". Schafrhadsen, Dr. Sur T'Origine des Algues et sur les Métamorphoses des Monndes, in 'Comptes Rendus de l'Acad. des Sciences,' t. liv. 1862.

CCCXIV". Joly, N. ot Musset, Ch. Nouvelles Expériences sur l'Hétérogénie, in 'Comptes Rendus de l'scud. des Sciences,' t. 1. 1860.
CCCXV'. Mantraazas, Paolo. Sullat Generazione spontanea, in 'Giornale del R. Instituto, Lombardo.' 1851.

CCCXVI". Mantroazza, Paolo. Sulla Generazione spontanea, note sperimentali. 186.

CCCXVII". Onmmus, Dr. Expériences sur la Genèso des Leucocites, in 'Journal d'Anatomie et de Plyysiologie,' 1867. Also, Lortet, Dr. Passage dos Loucocytes ì travors les Mombranes organiques. Ib, 1868.
CCCNILIL", Browv, Robert. Miscellaneous Botanical Works, vol. i. (Active Molecules, p. 463.)

CCOXIX \({ }^{\prime \prime}\). Ehrenaera. Ueher die Natur nnd Bildung der Corallen-Bänke im Rothenmeere. 1832.
CCOXX". Cuvier, Baron Geo. Discours sur les Révolutions do la Surface du Glohe. 4to. 1826.
COOXXI \({ }^{\prime \prime}\). Mürısr, J. Bildungegeschichte der Genitalion. 1830,
COCXXII \({ }^{\prime \prime}\). Owen, R . On the Marsuphal Pouchos, Mammary Glands, and Mammary Fcetus of tho Echidna Histrix, Philos. Trans., 1865.
CCOXXIII". Owen, R. On the Mammary Gland of Echidna Hystrix, in Procoodings of the Committee of Science, \&c., Zool. Soc. of London, Part 2, 1832.

COOXXIV". Gegenbadr. Untersuchung zur vergleich. Anat. der Wirbelthiere (Carpus and Tarsus). 1864.
COOXXV' Geoffroy Saint-Hilaire, Isid. Hist، des Anomalies, t. i. (pp. 688693).

COOXXVI". Grove, W. R. Address to the British Association for the Advancement of Science. 8\%o. 1866.
COOXXVII \({ }^{\prime \prime}\). Robin, C. Mémoire sur l'Érolution de la Notocorde, \&e. 4to. 1868.
COOXXVIII". Darwin, Frasmus, M.D. Zoonomia, or the Laws of Organic Life. 2 vols, 2nd ed. 4to. 1796.
COOXXIX". Agassiz, L. Monographie des Poissons fossiles du Vioux Grès Rouge. 4to. 1844.
COOXXX \({ }^{\prime \prime}\). D'Archac, Vcte. A. Paléontologie de la France. Gr. 8vo. 1868.
CCOXXXI". Warres, J. Mason, M.D, An Account of Two remarkable Indian Dwarfs exhibited in Boston under the name of "Aztec Children, Amer. Jour. of Med. Sciences, New Series, vol, xx. 1851.
CCOXXXII' Le Cowite, J. L., M.D. The 'Astec' Dwarfs, in the New York Medical Times, vol. i, p. 143, February, 1852.
CCOXXXIII". Powell, Baden. Essays on the Unity of Worlds. 12mo. 1855.
CCGXXXIV'. J \(\begin{gathered}\text { min, M. J. Les Générations spontanées, in 'Revue des Deux }\end{gathered}\) Mondes,' t. liv. 1864.
CCOXXXV". Bennett, Prof. On the Atmospheric Germ-Theory and the Origin of Infusoria. 8vo. 1868.
CCCXXXVI", Locke, John, Works of, 4 vols. 7 th ed, 4to. 1768.
CCCXXXVII". Faraday, M., E.R.S. A Speculation touching Electric Conduction and the Nature of Matter; heing a Discourse delivered Friday, January 19th, 1846, at the Royal Institution of Great Britain. Also, On Lines of Magnetic Force, their definito character and their distribution within a magnet and through space.' Philos. Trans., 1851.
CCOXXXVIII". Argyle, Duke of, The Reign of Lew. 12 mon 1867.

\section*{ZOOLOGICAL INDEX. \({ }^{1}\)}

\section*{Kingdom: ANIMALIA-I. v. viii.}

Province: MYELENCEPHALA, seu VERTEBRATA-r. ix. x. xi. xxi. \(1-4,19,29,359,640\).
Genetic Section: Zootora, I. 6; in. 266.
Thermotic Section: IIematotherma, 1, 7; in. 1-4.
 \(218,240,285,383,478,492,500,504,513,516,534,551,557,583,588,572\), 804, 810, 832, 841, 876, 709, 751, 783.
Genetic Seetion: Placentalia-ili. 285.
Sub-cless: Arciencephara-ni. 274, 291 ; ini, 127, 138.
Order: BIMANA-1. xvii. xxxilii. ; п1. 292, 553-586; ппи. 54, 59, 60, \(70,72,88,132,147,322-326,434-442,516,525,555,641,673\), \(704,747,751,780,783\). - Homo-1. xii. xvi. Exxv. xxxyiii. 362 ; 11. \(273,274,291,292,293,298\); mit. l, 2, \(55,59,61,62,64,65\), \(76,77,78,82,83,85,88,92-97,124,127-136,138-141,142\), \(144-148,148,149,154,157-159,161,186,167,178,181,184\), \(187,190,190-203,206,217-223,225,236-245,252-258,261-262\), \(268,378,396,405-409,483,487,488,491,497,500,501,507\), \(509-511,514,530-532,534,548,556,557,562,568,570,582\), \(583,601-803,608,613,814-616,619,621,623,842,673,670\), \(704-708,711-713,723,748-797\).
Sub-class: Oyrenceptala-ix. 272; in1. 24, 98, 99, 114, 128, 147, 604, 641. A. Unguiculata-II. 288,487 ; \(\mathrm{T11} .128\).

Order: QUADRUMANA-I. xvii. xviii. xx. xxxyiii.; n. 290,511; mu. \(52,58,71,88,91,98,114,124,128,144,147,156,162,180\), \(184,187,198,216,225,252,258,261,300,313,395,429,487\), \(496,551,555,563,666,568,570,608,619,672,701,706,745\), 754, 780, 783.-Sub-ordor: Catarhina-11, 201, 517, 531, 643 ; in. \(216,236,252,316,432,487,498,599,673,703,746,780 .-\) Troglodytes-1. xuxii. גxxv.-Tr. Gorilla, r. xix. xxxr.; 1. 291, \(523,536-638,546-553,572\); 111. 55-59, 71, 127, 138, 144, 236, 317-322, 43•, 583, 601.-Tr. niger, 1. xaxii.; rr. 273, 521, 522, 535, 545 ; III. 12\%, 130, 131, 236, 317, 321, 434, 582, 600, 673Pilhrws satyrus-I, 工x. ; 11. 272, 273, 520, 534, 544, 553; II. 70, 127, 131, 316, 43•t, 536, 582, 600, 780-Hylohates syndantylus, 11. \(201,520,533,544,552-H\). leuciscus, 590, 544-H. agilis, 1II. \(53,71,124,433,582,600,746-\) Colobus ursinus, ม. 519,543 ;

\footnotetext{
* Spucles marked with * have not been anatomizod, or the parts descrived not seen, by the author,
}

Order：QUADRUMANA－continued．
iII．433－Nasalis larvatus，IL． 519 ；ini．216，433，746－Semnopi－ thecus entellus，II．519，533；；II．432，446－S．melalophis，II． 519 －S．fascicularis， 1 IL 433，446－Cercopithecus sabeus，II． 533 ； iII．236，433，434，600，703，746－C．ruber，in．533－C．albogu－ laris，in．633－Macacus，I．xxxiii－M．radiatus，1I．273， 517 ；mr．
 ı．517，532－M．silenus，זд土．703－M．cynomolgus，iш．673－M． nemestrinus，II．519，533，543－Cynocephalus porcarius，I上．517， 531， 532 ；프－562－C．Sphinxs，imi．432－C．Toth，n．517－Papio Mormon，ㅍ． 517,531 ；ini．91，131，316，673，703．－Sub－order： Piatyrinna－II．291，295，515， 529 ；mi．71，125，216，315，432， 598，672，703，780－Mycetes seniculus，іІ．519，531；іиц 432， 595，745，746－Ateles belzebut，ㄲ．273－A．paniscus，ㅍ．307， 515 －A．niger，in． \(515,516,530,543\) ；int．71，146，187，598－Cebus Apella，II．529， 534 ；ㅍ．131， 315 －C．capucinus，I．373，516， 530；1II．543，598，672，746－C．hypoloucus，In．515－Callithris sciureus，ix．515，530， 543 ；1i．114，124，125，129，131，199， 745，746－C．Spixii，II． \(515-\) C．personata，II． 529 ；iIf． 598 －Noothora trivirgata，ini．746－Pithecia chrysocephala，III． 315 －Midas rufimanus，II． 512 ；iIT．114，124，125，129，131，315， 432－Hapalo jacchus，I． \(615,529,530,542\) ；mi．129，315， 432，598，745，746．－Sub－order：Strepsichina（Syn．Lemu－ rides）－II．290， 512 ；iII．124，198，216，235，314，395，430， 525 ， 597，672，701，780－Tarsius spectrum，n．512，528，542；II．53， 314，431，582，672—Microcebus pusillus，mIT．199－Otolicnus cras－ siccudatus，ㅍ．512， 542 ；iII．431，672，780－O．Peli，ㅍ．512；m． 315，701－Galago Moholi，mi．431－G．calabariensis，mi．431－ Cheirogaleus griseus，घ．529—Lemur，工．इxxv．；L．Catta，ப． 512 ； mr． \(53,124,125,130,235,542,780-L\) ．nigrifrons，ㅍ．513；iII． 619，637－L．macaco，iI． 529 ；mi．146，582－L．Mongoz，mr．198， 395，562，582，597－L．niger，inI．199，432－L．albifrons，m．91， 216，672，702，745－Stenops graciliis，II．512，542；mi．314，597， 672－St．tardigradus（Loris，syn．），गiI．195，405，431，512，545， 701，702－St．javanicus，mI．431－Perodictious potto，I．512， 528， 541 ；ini．198，431，452，672，701—Propitheorls diadema， II． 542 －Lichanotus indri，in．240，512，515，528，701－L．laniger， Ir．528；inI．314—Chiromys quadagascariensis，I．xxxv．；；1．512， \(513,529,539,54 \mathrm{I}, 542\) ；1ㅍ． \(53,54,124,125,198,235,252\) ， 313，314，582，596，637，672，780－Galeopithecus volans（syn． Temminckii），II．387，393，511， 526 ；III．311，312，313，369，430， 562，776－G．Philippinensis，ㅍ．512；프．429，ธ̄77，612， 657.
Order：CARNIVORA－I．xxxviii．；in．288，296，348，487，506，511； iII． \(1,49,51,69,88,91,116,119,122,125,146,181,197,204\) ， \(215,234,252,300,327,395,404,442,485,495,523,548,561\) ， 581，623，641，668，698，742，780，783，790－Felide，ii．488，510； III． \(51,69,116,118,125,128,159,181,235,328,330,369\) ， \(370,443,605,780-\) Felis leo，反．xrvii．362；ri．288，289，492， 493，504，505，506， 511 ；дл． \(51,70,198,216,252,327,328,442\) ， \(443,485,496,523,535,582,596,641,671,744-F\) ：tigris，iI． 505 iuI．234，235，523，582，671－F．leopardues，in．198，700，701－ F．onca，ixi．175，181，198－F．jubata，iII，118－F．caracal，im． 198－F．catus，II． 506 ；III．51，116，117，198，252，512，596，597，

Order: CARNIVORA-continued.
871, 748, 780-Machairodus, IIL. 329, 339, 370, 373-Pterodon, in. 338-Hyanodon, mi. 339, 340, 372, 375,790- Hyana vulgaris, п. 492, 504, 510 ; ㅍ․ 177, 198, 330, 805, 837, \(780-\) H. crocuta, ㅍ. 492 ; III. 329-Viverra civetta, ก7. 492, 602, 509 ; iII. 637, 700V. genetta, II. 610; 7II. 837, 780-V. eibetta, III. 670-Eupleres,* II. 510-Bassaris astuta, II. 510 -Eerpestes Zehneumon, II. 503 ; IIf. \(508,780-\) H. peniwillata, II. 510-H.Mungo, n. \(603-\) Rhyzena tetradactyla, II. 510; II. 444, 670—Paradoxurus typus, II, 492; IIt. 331, 445, 780-Cynogale barbatus, n1. 510; mi. 331-Galecynus, II. 508 -Canider, II. 289, 492 ; III. \(89,118,197,548,608\), \(780-\) Ca3is, III. 235, 330, 331, 332, 370, 405, 670-C. australis, 11. 603, 504-C. aureus, 11. 503-C. lupus, iI. 492, 503, \(593-\) C. domesticus, IT. 298, 492, 508, 571; IIL. 118, 156, 215, 234, \(404,405,444,498,512,661,570,582,670,700,709,710,715\), 744, 820-C. pictus, IT. 510-C. rufus, ז. 492-C. vulpes, IT. 503 ; III. 117, 118, 175, 178, 180, 637-Pricynodon, III. 334-Amphicyon, IIL, 340, 372, 375-Megalotis Lalandih, In. 234Mustelides, 11. 492, 502, 509 ; II. 234, 333, 608, 780-Mustela martes, In. 495, 670, 744-M. zibellina, II. 491-Putoriuz, I, 501,509 ; ini. \(118,129,333-\) P. ermineus, ir. 143, 491-P. furo, 111. 744 -Mephtis zorilla, 11. 637—Mgdaus meliceps, 11. 491, 509 ; III. 637 - Zatra vulgaris, n. 491, 501, 509 ; in. 234, 235, 333, 563, 837, 780-Enhydra,* \(1 \mathrm{~L}, 234,333,336,445,780\)-Meles taxus, IL. 491, 501, 509 ; ILI. 234, 333, 334, 660, 780 -Taxidea labradorea, III. 333, 780-Ratelus mellivorus, II. 501, 509 ; \(\mathbf{x 1}\). 700-Arctonyx, 1п. 333 -Gulo arcticus, IL. 501; II. 235Urside, 11. 490, 494, 499, 508; in. 780-Ursus arctok, 11. 499 ; III. 118, \(234,329,335,371,595,669-U\). americantes, \(\operatorname{II} .745\) -U. ferox, II. 500 ; iII. 143-U. maritimus, II. 490, 500 ; InI. 618, 899-U. labiatus, II, 490-Suburside, I. 509; 1I. 808Subursus thibetanus, III. 197-S. ornatws, I. 508-Nasua, II. 501, 508 ; III. 117, 334, 780-Ailurus, II. 494, 501 ; III, 334, 445, 780 -Procyon lotor, II. 491, 501, 503,508 ; 1nt. 334-Arctictis (syn. Zetides) albifrons, 11. 491, 508; ni. 445, 491, 508-Cercoleptes caudivolvulus, II. 197, 491, 509 ; III. 334, 780-Phocidoe (日yn. Pinnigrada), 11. 288, 490, 494 ; 11. 65, 147, 234, 336, 780Trichechus rosmarus, II. 289, 490, 498, 507; IIL. 338, 524, 780Phoct (Calocephalus) vitulinus, . xix. ; 11. 289, 296, 494, 507 ; III, \(118,119,337,446,486,524,561,581,605,669,698,745-\) Ph. granlandica, II. 488, 489, 494, 498,507; II. 115-Halichoerus griseus, II. 494-Pelagius monachus, 11. 495, 507-Cystophora cristata, II. 496, 497; III. 336, 524-Cyst. proboscidea, II. 496, 497; iII. 337-Stenorhynchus loptonyx, II. 495-St. serridens, \(п\). 489, 495 ; 111. 338, 337, 369 -Otaria leonina seu jubata, Ir. 496, 497, 498 ; III. 338, 486-0. ursina, II. 507; IL. 216, 234, 618O. lobata, iII, 618-Ommatophoca, mx. 337-Arctocephalus australs, п. 496.
B. Ungulata-I, xxitii -xux. ; 1I. 280-286, 295, 296, 487; III. 1, \(128,188,340,522,623,732,778\).
Order: ARTIODACTYLA-II. 283, 285, 296, 457; im. 41, 122, 343, \(465,598,666,668,604,698\).-Sub-order: Runtnantia-r. xxix. xxxi. xxs riii. ; п. 286, 296, 298, 471, 481, 482; 1п. 41, 88, 342,

Order：ARTIODACTYLA－continued．
\(348,392,467,515,522,624,667,696,737,784\) —Bovidem－n．472， 486；ㅍ․ 351，547，607，624，779－Bos．І．хі． 362 ；ㅍ．288， 462 ；1II． 128， \(159,625,631,738-\) Bos taurut，1．кxxii．；I．461，472，482； IIL．42－47，90－Bos grwnaiens，II，483－Bison，I．xxxii．－B，ewro－ peus，15．462，472，473；пи，196，351－B．americanus，แ1，625，697－ Bubalus－11． 473 ；11．233，779－B．caffer， \(11.826-B\). moschatus， III．626，779－B．gntt，II．482；III．626－Antilopide，II．286， 483 ；11．624，625，633，634－A．（Aigoceros）equina，11． 473 ； II．462， \(482-\) A．dorcas，III． \(555,779-A\) ．cervieapra，II． 482 ； แI． \(626,632-\) A．rupicapra， \(1 \amalg . ~ 633-A . ~ c o r i n n a, ~ ш . ~ 635-~\) A．strepsiceros，ㅍ． 473 ； \(1 \mathrm{I} .77-A\) ．（Cephalophus）mergens，ц．， 473；1II．626－A．tragelaphzes，iII．626－A．dama，1II．779— A．oreas， 779 －A．（Tetraceros）quadricornis，п．473；111． 825. －Antilocapra americana（syn．Dicranoceros）－L．473；111，625．， 626－Sivatherium－II．473；1I．625－Bramatherium，11． 473 ； III．625－Ovids，III．624，779—Capra hircus，11．475；iII． 738 —Ovis aries，I．286，474，475；mi．87，738－O．ammon，II．474； 1แ．618－0．musimon，un．618；O．Vignei，ㄷ．474；пи．618－O mahura，工．462，474－Camelopardalis Giraffa，1．хххit．；in．286， \(464,475,482\) ；m． \(47,49,75,90,122,143,196,471,695,631\) ， 779－Moschider，п．286，486；11．779－Moschus moschiferus，i． \(460,471,484,486\) ；III．348，349，351，481，635－M．aquaticus，п． 486，487；iII．472，483—Thagulus，․ 298，471，472，483；iII．114， 120，121，122，123，351，696，737－Tr．javanicus，II．484－Tr．napu， 11．486－Tr．kanchil，II．484；1II．467，481，515－Tr．pygmeats， III．143－Dorcatherium，II．286—Cervider，11．286， 486 ；III．122， 123，627，738，779－C．alaphus，ㅍ․ 628，738－C．dama，ㄷ．478； II．629，631－C．tarandus，I．\(x \times x i I_{1} ;\) II．464， 478 ；III 630， 697－C．davidianus，＊inI．628，630－C．capreolus， 1 II．630，696－ C．rufus，пп．631，697－C．simplicicornis，III．831－C．mum引jac， II． \(478,479^{\circ}\) ；д䒑I． 631 －Megaceros，II． 285,483 ；ini．351， \(628-\)
 II． \(460,462,474,481,482\) ；1II． \(43,44,122,198,478,581,607\) ， \(779-C a m e b u s\), II．286；тir．48，349，895－C．bactrianus，49， 459，471，784－C．dromedarives，49，784－Auchonia lama，w．286， 460,470 ；н1．122， \(349,468,515,565,618\)－Auchenia vicunia， II． 470 ；iII．515．－Sub－order：Onntvora－I．xxix．；II．296－ Merycopotamus，II．286－Dichodon，11．286，287；III．266，340， 375 －Dichobura，II．286－Xiphodon，II．286－Anoplotherium，I．xvii． xxxi．；II，260， 286 ；II．340，341，375，790—Microtherium，II．286， 287，472－Entelodon，II．286－Hippopotamus，II．283，286，465， 466， 470 ；тाı．122，340，343，581－Hexaprotodon，1․ 347－Hippo－ hyus，III．343－Hyopotamus，III．343，375－Anthracotheriwm，I． 286；1II， 343 －Dicotyles，IL 286，458，480， 481 ；1L．213，340，465， 481，635－Charopotamus，II．286；III．343，375－Phacochovrus， II． 469 ；III．195， \(213,346,561,581-\) Suid以e，IT． 469 ；III．122， 203，581－Sus sorofu，11．286，458，467，489，480，481，547；imı． 123，195，340，343，344，345，465－Sus larvatus，11．469，470－ S．babyroussa，11． 561.
Order：PERISSODACTYLA－11．283，296，444； \(\mathbf{~ I I . ~ 2 6 , ~ 1 2 1 , ~ 3 5 2 , ~ 4 5 8 , ~}\) 660，693－Coryphodon，II．284；iII．377，798－Pliolophus，IL． 284 ；III，341，343，375，377，792－Hyracotheriwm，III，375， 792

Order: PERISSODACTYLA-continued.
Lophiodon, 11. 284; 11. 377-Palcotherium, 1. xvii. xxi.; 11. 284,309 ; 1ns. \(340,341,342,343,356,375,377,789-\) Paloplothe. rium, 1п. 791 -Macraucherria, ㅍ. 448, 448, 451, 454, 459-Elasmotherium \({ }^{*}\), II. 284 -Rhinoceros, ir. 283 ; III. 49, 794-Rh. indicus,
 377, 522, 580, 824, 838, 893-Rh. sondaicus, иI. \(624-\) Rh. suma-
 tichorhinus, III. 450, 818; Rh. Leptorhinus, II. 450; Rh. minutur, 11. 824 ; Acerotherium incisivum, II. 286, 455 ; II. 356, 624, 631, 742 - HIyrax capensiis, 11. 284, 285, 446, 450, 455 ; mi. 114, 120, \(121,123,133,143,233,340,342,358,483,385,567,606,664-\) Ancitherium, in. 284 ; 1n. 792-Hipparion, ı. xuxii. II. 284, 309 ; ini. 340, 342, 791-Equida, I1. 283, 298, 308, 451; u1. 534, 593, 616, 737, 791-Equus caballus, t. xxxii. 360; in. 285, 305, 310 , \(447,4 \overline{1} 1,453,458\); mir. \(27,32,34,39,40,41,67,85,91,98,114\), \(120,121,123,195,212,232,340,343,352,355,301,403,458-\) \(400,479,495,522,581,565,570,592,607,618,617,664-667\), 694, 734-738, 778-Eq. quagga, in. 448-Eq. zebra, iш. 448, 818, 79!-Eq. asinus, 1II. 142, 448, 565, 616-Tapirus, II. 283, 285, 298; лп. 534-T. americanus, 11. 444, 449, 455; mi. 211, 232, \(233,251,343,357,391,458,464,522,581,593,606,664,694\), 736, 794-T. malayanus, i1. 448; in. 4j̄8, 661—Toxodon, iII. 203-Nesodon, iu. 268.
Order: PRODOSOIDIA-I. mxxviii.; in. 282, 296, 437; m. 115, 359, 457, 660, 892-Dinotherium, I. 282, 440; 1u. 343, 358, 359,378 -Mastodon, in. 282, 441 ; 111. 343, 378-Elcphas, 11. 282, 206, 439; mi. \(49,86,75,90,265,343,359,380,361-\) E. africanus, 11. 438 , 430-E. indious, II. 437, 439, 443; inI. 123, 143, 232, 260, 390, 892, 740-E. primigenius, iII. 362, 818.
C. Mutilata, il. 280,296, 299 ; ili. 732.

Order : SIRENLA-II. 281, 298, 304, 420, 436; 11I. 24, 75, 189, 194, \(210,226,250,260,283,478,561,579,580,619,660,692,732\), \(778-\) Manatus, и. 373, 429, 432, 433; пи. 2, 194, 226, 284, 521 -Halicorc, 1. 361, 363, 365 ; п. 281, 296, 429, 430, 433, 434436 ; 111. 2, 194, 210, 250, 283, 455, 457, 495, 521, 547, 561, 579, 589, 807, 660, 892-Rhytina*, נ. 430, 432, 433; mi. 194, 250, 521, 607, 692-Zougludon (syn. Squalodon), य. 424 ; iII. 266, 28.f, 369.

Ordor: CETACEA-11. 280, 298, 298, 307, 311, 313, 416, 422, 429, 436 ; iII, \(1,18,24,65,75,91,115,146,148,149,158,168,194,205\), \(207,223,282,561,562,568,570,578,580,611,618,641,658\), 691, 731 -Balenidce, u1. 296, 415, 426 ; 111. 119, 152, 278, 279, 578, 687, 688, 689, 690-Balena Mysticet us, 11, 280, 296, 415, 416, 429, 429 ; m. 143, 383, 452, 568, 732-D. australis, II. 423, 426-B. longimana, ㅍ. 426, 428-Balenoptera, 11. 418, 419, 426, 428 ; III. \(143,189,249,285,274,277,278,279,453,454,546,561\), 670, 587, 659-Physeteride, n. 419-Physeter macroccphalus, i. 262, 363; r. 415, 419, 422, 426 ; III. 231, 363, 588-Etuphysetes simus, ir. 416, 426; ; tI. 281, 588-Monodon, II, 418; III. 265, 279, 280-Ziphiкs, ик. 419, 427, 428 ; іІІ. 265-Paraziphius, II. 426, 1:4--Hyperoodon, u. 420; mi. 453, 454, \(521,691-\) Delphinides,

Order: CETACEA-continued.
п. \(419,424,427,429\); іп1. 119, 162, 194, 204, 224, 225, 279, 565 , 587, 588 -Delphinus delphis, 11. 417; nu. 84, 91, 115, 120, 146, 266, 281, 282, 536, 691-D. tursio, 11. 416, 419, 427, 428; ;1. 224 -D. griseus, viI. 255, 265, 280—D. leucas, 11. 425 ; mi. 281Phoctona соттuпis, II. 418, 424; mi. 75.152, 168, 225, 452, 521, 636, 554, 587, 691-Ph. orca, nI. 281—Inia, ㅍ. 282-Platanista, II. 425, 427, 428 ; ㅍI. 282.

Sub-class : Lissencephaida, iL. 270, 276, 296; ini. 16, 74, 98, 99, 108, 111, 112, 113, 125, 134, 141, 147, 152, 229, 519, 569, 604, 641, 723.
Order: BRUTA-II. 278, 296, 393; iII. 19, 110, 193, 248, 265, 269, \(270,272,273,274,283,446,657\), € 89, 732-Megatherium, 1. ххxii. 361,363 ; іІ. 297, \(307,402,408,411,414,416,507\); III. 66, 162, 274, 275-Mylodon, ir. 401, 402, 407, 414, 415; in. 162Megalonyx, 11. 411-Bradypodide, 2. 363; п. 229, 296, 414Cholapus didactylus, 1x. 297, 306, 406, 411, 412; nir. 274, 450, 578, 586, 690 -Ch. Hoffmami, 1г. \(400-\) Bradypus tridactylus, II. 219, 279, 298, \(307,398,400,405,408,411,412\); iII. 110 , 484, 578, 586, 690, 731-Dasypodide, in. 279, 296; im. 193Glyptodon, 11. 297, 393, 395, 405, 409; ur. 271, 273—Dasypus gigaf, ㅍ. 408-D. peba, II 393, 394, 404, 408, 409; ㅍ․ 193, 390, 400,402, 409, 440, 484, 520, 560, 577,689, 690, 731-D. macrurus, III. 565-D. 6 -cinetus, II. 408; iII. 447, 484, 578, 690-Priodon, ini. 273, 266-Euphractus, HI. 273-Chlamyphorus, 11. 405, 407, 409 ; iII. 209—Orycteropus, I. 367, 369; 1. 279, 376, 395, 404, 409; in. 210, 231, 272, 273, 366, 386, 484, 520-Edentata, I5. 278, 295-Edentula, rx. 296-Manis pentadactyla, 11. 279, 396, 403; in. 447, \(622-\) M. longicaudata, II. 404, 409 ; חI. 265, 232, 612, 623-Myrmecophaga jubata, IL 279, 388, 397, 403, 410; iII. 20-\(24,143,151,210,231,265,383,403,448,484,494,586,691-\) M. didactyla, ㅍ. 398, 410 ; mi. 110, 402, 658.

Order: CHEIROPTERA-II. 278, 296, 387, 392 ; iII. 1, 74, 90, 98 , \(109,189,228,310,387,428,484,536,542,553,565,586\), 612, 657, 689, 730, 776-Pteropus, п. 278, 296, 387, 388, 393; iII. 190, 192, 229, 311, 484, 562, 577, 586, 657, 689, 730, 776Desmodius, III. 190, 192, 311, 313, 429-Monophyllews, II. 192Artibeus, ini. 192-Phyllonycteris, wu. 192, 387-Phyllostoma, in. 310, 387, 613-Megaderma, III. 424, 613--Rhinolophus, I. 388; iII. 189, 190, 209, 429, 562, 613-Nycteris, iII. 387, 613-Otoops, тiI. 387-Saccolaimus, in. 387-Rhinopoma, iII. 387, 429, 613Mormoops, in. 387-Chilomyoteris, wn. 310-Noetilio, in. 387Emballonura, in. 638-Cheiromeles torquatus, win. 634-Ch. caudatus, ini 634-Molossus, mi. 387-Plecotus, iII. 429-Vespertilio, II. 4, 387 ; II. 4, 229, 562 -V. murinus, II. 392 ; II. 192, 310, 429- \(V\). nootula, נII. 74, 228, 730, 731-V. emarginatus, II, 730 -V. serotinus, ux. 657-Saccopteryx, iII. 613, 638.
Order: INSECTIVORA-ir. 277, 296, 385-392; im. 17, 90, 109, 147, \(151,192,209,229,248,301,427,562,568,685,609,655,687\), 689,730—Talpide, xi. 296 ; 111. 98, 152, 304, 310—Talpa europac, II. 297, 386389,390 ; II. \(17,98,147,152,246,303,304,399\), \(428,520,560,570,577,620,656,688,729,776-\) Т. сесса, іІІ. 246-Chrysochloris, I. 389, 392 ; III. 301, 302, 303, 621, 656-

Order: INSECTIVORA-continued.
Condylura, II. 209-Scalops, 11. 303, 304-Soricides, 11. 277, 298; 1II. 305, 313, 427, 834-Sorex araneus, 1n. 229-Bydrosorex fodiens, wi, 229, 306, 427-H. Hermanki, mi, 305, 306Amphisorex tetragonurus, 11. 389, 390; MI. 305, 306, 427Solenodon, 1II. 229, 304, 305, 427, 428-Tupaia (syn. Glysorex; Cledobates), mi. 102, 307, 427, 428, 689-Rhynchocyon,* 11. 390 ; iII. \(06,109,151,306,384,427,428,560,657,688\)-Petrodomus,* 111. 307, 384 -Bdeogale, III, 307-Myogalea (syn. Mygale) moschata, III. 304, 637-Macroscelides, II. 385 ; in. 307, 428, 637Gymnvra, Ir. 390 ; mI. 308 -Potamogale, In. 305-Erinaceide, 11. 296, 390-Erinaceus ewropeur, 11. 4, 297, 365, 390 ; 111. 18, \(19,74,100,308,427,464,494,535,553,560,568,577,586\), 621, 822, 658, 889, 730, 776, 765-Ericulus, 士1. 309-Echinops, III. 309-Centetes, 11. 4, 385; 1. 230, 310, 428, 484, 621, 689, 730 -Spalacotherium, iII. 302, 303, 790.
Orùer : RODENTLA (syn. Glires)-I. [xxviii.; in. 276, 296, 364-385; III. \(1,16,90,98,147,152,193,194,209,283,295,577,611\), 666, 724-729, 775, 784 Leporidee, 11. 364, 378; ini. 110, 192, 231, \(248,298,426,553,560,570,649,688,887,776-\) Lepus timidus, II. \(300,364,367,379\); 11. \(98,113,208,296,299,300,423,426\), 636, 849, 686, 727, 784-L. palustr,s, III. 776-L. cuniculus, 11. 376 ; ㅍ. 299, 301, 423, 585, 711, 712, 714, 715, 724, 727, 764—Lagomys alpinus, I1. 377, 385 ; II. 296, 299, 650-Hystricidce, 11. 364-Hystrix cristata, I1. 269, 364, 372, 373 ; III. 110, 151, 192, 485, 623, 650, \(775-\) H. alopha, ⒈ 364-Erethizon, im. 485, 775-Cercolabes (syu. Synetheres), II. 367 ; iII. 465, 775Loncheres, แ. 776—Dasyprocta, II. 270, 365, 379 ; III. 192, 423, \(577,651,776\)-Celogenys, I1. 371 ; III. 208, 230, 388, 399, 423, 677, 585, 652, 775-Hydrochoerus, п1. 369, 377, 380; 111. 296, 296, 387, 886, 775-Cavia apcrca, 1II. 396, 775-C. cobaya (syn. porcellus), II. 380 ; III. \(08,485,652,727,775-\) Dolichotis, I1. 377 ; 1II. 297, 775-Habrocoma, 1II. 775 -Capromys Fournieri, 111. \(192,387,423,424,425,485,488,560,652,775-\) C. prehensilis, 11. 367-Ctenomys, II. 378 ; HiI. 250-Myopotamus, 111. 192, 377, 423, 570, 577, 775 -Lagotis, I1, 365 ; mi. 230-Lagostomus, in. 299, 560, 666, 687, 775-Octodon, 11, 299, 775, 776—Ckinchilla, 11. 370, 385 ; แ1. 298, 299-Echimyidce, 111. 299-Nelomys, w. 775-Echimys, 1г. 465, 775-Anomalurus, 11, 612,623-Myoxus, II. 4; III. 422, 423, 776-Sciuride, II, 383; 11, 686-Sciurus velgaris, iII. 421, 424, 649—Sc. cincreus, II. 383 ; ı11. 421 -Sc. palunarum, in. 775-Sc. maximus, แ. 363; 1m. 485-Pteromys volucella, 11. 276, 364; III. 231, 247, 612—Castor fuber, 11. 364, 374 ; mı. 98, 110, 635, 649, 686-C.canadensis, in. 269 ; mi. 111, 231, 422, 636, 653-Fiber zibethicus, II, 375-Arvicola amphibia, 11. 361 ; HIL. \(209,296,386,421,577,653-G e o m y s\), LI. 565 Saccostomus, III. 386-Saccomys, H1. 366-Dipodidae, 111. 246Dipus sagitta, 11. 366, 376, 383, 485, 654-Alactaga, 11. 276Helamys caponsis, II. 365, 376, 362, 363, 485, 520, 577, 634, 636 -Spalax typllus, п. 376; inl. 246, 386-Bathyergus, и. 381 ; 111. 231, 246, 265, 269, 296, 399, 422, 424, 560, 565, 6E7, 776Orycirris, 1II. 423, 577-Orycteromys, wi. 296-Otomys, iII. 296 -Merione's, M1. 296-Hapalotis, แ. 365, 382-Cricetus, 111. 386,

Order: RODENTTA-continued,
421, 485-Arctomys, 11. 382 ; ini. 424, 654-Spermophitus, int. 386-Lemmus, iII. 485-Muridee, TI. 378, 382 ; TII. 200, 299, \(570,655,686-\) Mus rattus, II. 382 ; ini. \(420-\) M. documanus, in. 209, 230, \(421,485,493,776-\) M, musculus, III, 143, 776-M. messorius, III. 143, 776-Hydromys, II. 365, 366, 382 ; III. 265, 300.

Genetic Section: Implacentaxid—II. 270; III. 715-722.
Sub-class: Lmencephata-if. 270, 234, 296 ; mi. 98, 101, 111, 125, 134, 141, \(147,410,516,645,677\).
Order: MARSUPLALLA-I. xxxviii. ; mı. 174, 275, 296, 328 ; пıI, 8, 112, \(162,227,285,411,517,584,645,680,718,768-775-D\) asyurida, Hi. 14-Thalacinues, II. 342, 503; mi. 104, 105, 208, 285, 286, 420, 774-Dasyurus ursinus, II. 260, 342, 343,359; III, 98, 104, \(286,411,585,606-\) D. macrurus, \(1.360,361\); 111. \(14,191,398\), 412, 420, \(565,576,606\) - D. Maugei, n. \(341-\) D. viverrinus, m. 191, 606, 681-D. lantarius, \(\operatorname{In1}\) 291-Phascogale, III. 286, 411 , 412, 420,584, 774 - Antechinue, III. 104 -Didalphis, II. 275., 341, \(355,359,361\); III. \(14,82,98,105,261,288,774-D\), virginiana, II. \(332,334,343,353\); III. \(104,191,248,411,682,769,773-\) D. Avare, iII. 721-D. opossum, iII. 581, 648-D. ursina, II. 360 -D. canorivora, II. 332 ; III. 289, 38 - D. brachyura, tiI. 411,677 -D. philander, H1. 191, 420-D. murina, In. 104-D. dorsigera, min. 681, 682, 771-Phascolotherium, I. xxxi. ; 1I, 350 ; III. 790Perameles, п. 336, 337, 342, 351, 352, 363 ; tix. 13, 16, 191, 208, \(228,287,385,412,420,576,577,774-P\). nasuta, II. 339 ; III 288, 420, \(513-\) - P. Gunnia, II. 352 ; III. 288 -P. lagotis, II. 333, \(335,338,340,343.346,347,352,359,363\); III. 14, 228, 584, 647, 648-P. obcsula, III. 288, 683-Choeropus, II. 351, 354 ; HI, 13-Tursipes, HII. 265, 289-Myrmecobius, IX. 335, 336, 342, 343, 349; III. 287, 288, 204, 302—Thylacotherium (syn. Amphitherium), 1. xxxi. ; III. 287, 294, 302—Plagiaulax, II. 350 ; III. 294, 314, 790 -Thylacoleo, II. 343, 350; int. 293, 294, 790—Phascolaretos, in. 334, 342, 3 ̄1, \(353,357,359\); 111. 290, 420, 648, 769-Nototherium, 11. 335 ; III. 293 - Phalangistt, 11. 328, 329, 330, 331, 332, \(334,336,337,341,342,343,344,347,348,349,350,351,355\), \(359,360,361\); гм. 8, 290, 769-Ph. vulpina, п. 332, 347; пй. 16, 289, 290, 398, 420, \(606-\) Ph. fuliginosa, iıI. 565, 576-Ph. unsina, II. 362 ; 1II, 290 —Ph. Cookii, II. \(331,345,352,355,362\); III. 289, 290-Ph. gliviformis, 11, 355, 359; III. 290-Pataurus, II. \(320-344,347,350,353,355,356,358,359,361,362\); III. 612, \(770-P\). Tagranoides, п. 343, 352, 360, 362; imi. 418, 682, 683P. macrurus, п. 331, 332, 352—P. sciurcus, п1. 332, 336, 337, 342, \(343,345,352-P\). flaviventer, 11. 336, 345-P. Bernettiv, II. 337, \(338-P\). (Acrobates) pygmeus, 11. 335 ; пıг. 290, 336, 338, 340, 343, 349, 418, 681-Hypsiprymmus, 11. 275, 329, 331, 333-336, 339-345, 347, 349-351, \(354-361\); III, 105, 290, 291, 648, 769 -H. murinus, II. 345 ; III. 290, 681-H. myosurus, III. 338, 342 -H. setosus, II. 345; in1. 420-H. (Dendrolagus) ursinus, II. 332, \(338,342,345,360,363\); ini. 181, 290-M. (D.) inuetus, im. 104 -H. (D.) dorcocephalus, 11, 363 ; III. 290, 415, 419-Halmaturus Bennettit, II. 345, 358; mi. 683-Macropus, II. 329-345, 350,

Order: MARSUPLALLA-continued.
855-357, 363 ; mil. 111, 228, 288, 291-M. major, in. 266, 345, \(349,354,359\); ini. 105, 291, 411, 413, 414, 420, 446, 560, 576, 881, 883, 752, 770, 772-M. Parryi, i11. 415, 576, 606, 680, 718 -M. penioillatus, M1. 415-M. rufiventer, M. 291, 379, 385-M. psilopus, III. 291—M. Brunit, II. 345 ; m. 721-Osphranter, mi. 205-Diprotodon, I. 405 ; m. 291, 293-Phascolomys, II. 269, \(328-330,331,333-345,347-356,358-362\); mi. \(98,105,111\), \(292,313,420,648,682,769\).
Ordor: MONOTREMATA-ח. 174, 275, 296, 316-328; ini. 168, 226, 228, 289, 271, 410, 516, 638, 639, 643, 677, 715, 760-Echidna, ı. 275, 297, 311, 312, 316-319, 325-328; ㅍ․ 7, 74, 89, 102, 103, \(128,147,151,193,208,228,265,383,385,396,397,409,640\), 644, 787-Ornithorhynchus, II. 275, 297, 315, 318-321; пі. 2-7, 82, 100, 102, 103, 148, 150, 187, 193, 208, 226, 248, 260, 265, 271, 272, 383, 410, 564, 572, 636, 644, 715-717, 760-787.
Grenetic Section: Pneyarootora.
Class: AVES-I. Xxxviii. 6; 11. 5-285.
A. Altaiges-ili. 7, 29, 265.

Order: RAPTORES-11. 8, 12, 19, 27, 32, 41, 54, 59, 63, 71, 72, 81, \(84,146,153,158,158,184,167,168,170,177,218,219,221\), 232, 258, 285-Falco, II. 32, 60, 137, 230, 235, 242-Astur, in. 17, 85, 171-Milutes, in. 118 -Buteo, in. 171, 220-Aquila, 1. 25 ; н. 12, 21, 32, 36, 53, 72, 76, 77, 80, 119, 122, 158, 171, 176, 220, 259-Pandion, 11. 21-Halietus, 1. 21, 171-Happeia, in. 17, 36-Gypogeranus, 11. 23, 81, 171-Gyps, 11. 17, 35, 40Vultur, 1. 19, 58, 89, 139, 174, 185, 230—Sarcoramphus, п. 27 , 81, 221-Hierax, iI. 27-Cathartes, II. 27, 175, 184, 185, 230Strigidie, II. 27, 49, 134, 139-141, 143, 171, 214, 227-Strix flammea, 1. 25 ; 1. 28, 171, 232-S. praticola, II. 28-Syrnium, i1. 175, 184 -Bubo maximus, i1. 140, 242-Scops, iI. 32-Sumia ulula, il. 67.
Order: SCANSORES-n. 11, 28, 81, 265—Ramphastide, r. 12, 67, 173 -Ramphustos, 1x. 28, 130, 131, 151, 177-Bucconide, 11. 12, 28 -Cuculide, ir. 12, 177 -Cvoulus, in. 28, 166, 177, 255, 257Grococcy:, i1. 34, 36-Centropus, 11. 32, 75-Picidm, II. 12, 37, 116-Picus, in. 19, 28, 58, 60, 152, 155, 178-Musophagidee, II. 12, 28, 56, 173-Corythaix, II. 34, 36-Turacus, II. 32-Colïde, II. 12-Psittacide, II. 12, 55, 78, 81, 119, 173, 177, 224, 258Psittacts, 11. 28, 30, 32, 51, 224-Calyptorhyuchus, п. 21, 28, 50, 58, 63-Mlyctclophus, in. 58, 63-Microglossus, n. 58-Macrocercus, ix. 58, 63-Striyops, II. 28, 58-Nestor, II. 258-Licmetes, if. 58 -Lathamus, in. 58-Pazoports, n. 28, 67.
Order: VOLITORES-a. 10, 20, 28, 35, 77, 81, 113, 117, 224, 265Copselific, in. 11, 21, 74, 96, 117-Cypselus, 11. 28, 32, 81, 83, 1.97-Trochilider, IL. 11, 21, 28, 74, 96, 117, 147-Trockilus, II. \(22,32,59,66,81,151-\) Orthorhynchus, in. 147-Androdon, In. 258-Furnaria, ⒈ 224-Caprimulgide, 11. 11-Caprimalgus, in. 52, 55, 83, 147, 156, 178, 221, 232-Podargits, II. 28, 34, 51, 53, 81-Colopterts, II. 221-Trogonida, II. 11 -Prionitide, in. 12 -Meropida, II. 11 -Merops, 11. 256-Galbulide, 11. 11—Coracide,

Order: YOLITORES-continued.
n. 11-Capitonidce, 11. 11-Alcedinide, 11. 11-Alcedo, 11. 161, 221, 256, 257-Todus, 11. 28-Halcyon, i1. 256-Dacelo, 11. 81Harpoctes, 1I. 28-Bucerotide, IT. 11-Buceros, 11. 40, 41, 55, 59, 63, 175-Colopterus, 11. 229.
Order: CANTORES-11. 10, 28, 219, 224, 227, 245, 258-Thamnophilks, II. 224-Dentirostres, in. 10-Tyrannus, x1. 233-Vanga, 11. 146-Lanius, in. 20, 57, 146-Furnaria, ㅍ. 224-Philedon, נI. 129—Troglodytes, 11. 257-Motacilla, ir. 257-Euphones, u. 161, 166-Curruca luscinia, ㅍ. 224-Tuerdus musious, 11. 11, 237, 246 -T. pilaris, 1. 153-Merula daciyloptera, 11. 71-Conirostres, in. 10, 146-Chlamydera, 11. 258-Ptilonorhynchus, 258-Paradisia, 1ı. 10-Corens, 11. 10, 130, 146, 257-C. corax, 1. 222C. frugilegus, in. 139-Fregilus, II. 32-Sturnus, II, 10, 257Coracias, ⒈ 63-Caryocatactes, 11. 157-Cracticus, wr. 57-Emberiza, 11. 10-Parus, u. 10-Alauda, 11. 10, 257-Loxia, II. 57, 146, 151-Cassious, 11. 32, 36-Fringilla, 11. 10, 128-Fr, colebs, ㅍ. 257-Pyrgita, n. 243, 245-Coccothraustes, in. 10-Pyrrhula, 1I. 257, 422-Tenuirostres, 11. 10, 147-Anthochara, II. 57Cinnyras, 11. 10-Sitta, 11. 10-Certhio, II. 10, 178-Upupa, к. 178, 230-Fissirostres, і. 10, 147-Pioceus, ј. 257-Hirundo, г. 10, 811, 257-Glaucopis, II. 129, 171—Thamnophilus, II. 224.
B. Priecoces-11. 7, 265.

Order: RASORES-II. 10.22, 26, 29, 67, 75, 81, 130, 150, 156, 161, 164, 169, 171, 172, 219, 221.-Sub-order : Coltmbacer-ir. 10, 53, 70, 82, 116, 169, 173, 177, 257-Columba, и. 10, 32, 49, 58, 66, 120, 159, 160, 161, 162, 168-C. galeata, 12, 66-Vizago, ㅍ. 10-Goura, ir. 10, 27, 32, 257-Didus, n. 12, 13, 48, 49, 57Pezophaps, in. 13.-Sub-order: Galuinacei-in. 10, 27, 32, 159, 173-Hemipodius, II. 32-Megapodius, п1. 74-Numida, IL. 150, 220-Perdix, 11. 21, 22, 26, 27, 29 - Francolinus, 11. 27Coturnix, I. 27-Callipepla, ㅍ. 277-Pavo, пr. 27, 74, 81Polypleetron, xı. 27-Lophophorus, 1I. 27-Phasianus, x. 27, 171, 257-Oreophasis, II. 27, 32, 36, 65-Gallophasis, 11. 257Gallus, 1. 14, \(27,118,122,150,203,243,245,248-254,259-\) 262-Ortyx, ㅍ. 26, 27-Lophortyx, II. 27-Ortalida, II. 220 -Tetrao, 11. 27, 57, 66-T. urogallus, 11. 57, 129, 257-Syrrhaptes, in. 27, 49 -Pterooles, II. 27, 256-Melcagris, 1. 26 ; II. 27, 258-Crax, п. 27, 32, 34, 68-Ourax, 27, 65 -Penelope cristato, if. \(171-P\). mirail, II. 220.
Order : CURSORES (syn. Struthionida)-11. 12, 20, 51, 85, 118, 134, 153, 171, 221-Rhynchotus, 11. 55-Tinamus, 1. 16, 32, 34, 36, 49, 53, 65-Apteryx. 1. xxxiii. 25; 13. 12, 18-22, 30, 34, 35, 36, 38, \(48-52,53,55,62,63,64,65,66,70,74,75,76,81,82,85,91\), 130, 140, 162, 177, 214, 248, 256, 258-Palapteryx, 1ı. 12, 82Dinornis, x. хxxiiii. ; ди. 12, 13, 20, 21, 31, 35, 48-51, 56, 61-66, 75, 76, 256-Aptornis, 11. 13, 43, 48, 50, 58, 75, 76-Cnemiornie, II. 13, 79-Z2pyornis, II. 13, 256-Casuarius gateatus, 6, 23, 30, 55. 59, 64, 66, 101, 162, 173, 177, 206, 232, 235, 243-C. Bennettii, ㅍ. 64, 138, 139, 140, 257-Dromaius, 11. 23, 24, 33, 34, 36, \(52,53,64,66,102,162,177,185,188,210,220,227,235,257-\) Rhea, 11. 19, 23, 35, 49, 52, 54, 64, 66, 161, 257, 311—Struthio,

Order: CURSORES-continued.
iI. \(8,12,13,16,18,21,22,24,29,33,35,43-49,50,51,53,54\), \(84,73,80,81,83,98,98,99,101,102,103,104,113,133,139\), \(140,158,181,167,169,170,171,173,177,184,185,206,214\), \(215,219,229,235,243,245,251,256,257\).
Order: GRALLATORES-KI. 8, 9, 15, 23, 49, 60, 67, 80, 81, 112, 115 -Otis, in. 23, 26, 82, 133-Charadrius, n1. 82, 257-Edicnemus, 11. 26, 82-Vanellus, 11. 49, 58-Hamatopus, 11. 82-Tachydromus, iI. 82-Grus, 1I. 173, 178-G. virgo, II. 23, 81, 177, 220, 243-G. Antigone, 11. 23, 81, 220-G. cinerea, II. 58, 218, 220G. Stanleyanus, 11. 220-Psophia, 11. 21, 23, 32, 67-Cancroma, 11. 81, 148-Baleniceps, ㅍ. 61, 148-Ardea, 11. 22, 39, 147, 163, 232, 257-Ciconia, in. 23-C. argala, tr. 54, 162, 217, 218, 219, 229-C. alba, 11. 257-Mycteria, 11. 147-Tantalue, 11. \(57-\) Platalea, 11. 23, 82, 148-Scolopax, 11. 23, 26, 32, 54, 82-Numenius, n. 28, 81-Rhynchea australis, II. 220-Limosa, 1. 23, 26Tringa, II. 28-Machetcs, in. 258-Totanus, in. 26-Recurvirostra, 11. 61-Parra,'11, 74, 258-Palamedea, ni. 74, 232—Rallus, 11. 113 Porphyrio, 11. 57-Notornis, I. xxxiii. ; 11. 21, 23, 24, 57-Gallinula, II. 113-Fulica, Ir. 113-Glareola, 11. 26-Brachypterys, I. xxxiii. ; in. 24, 26.

Order: NATATORES (Syn. Palmipedes), in. 8, 2, 24, 29, 61, 67, 75, 82, 113, 183, 17.0, 172, 177, 219, 232-Phenicopterus, п. 9, 16, 23, 82, 149, 152, 157-Lamellirostrate (syn. Anatide), 11. 9, 26, 31, 81, 172, 112, 123, 151, 153, 184, 218-Cygnus, 上. 9, 127, \(128,136,139,140,148,151,161,164,165,187,212,220\), 229, 230, 241, 244, 255, 265-C. atratus, i1. 241, 257-Cereopsis, iI. 25 -Anser palustris, iI. 118, 120, 123, 136, 139, 142, 144, 148, 152, 181, 178, 181, 193, 206, 209, 216, 220, 221, 229, 245, 284-A. gambensis, ㅍ. 74-Anas fusca, II. 220-A. semipalmata, i1. 220-A. sand vicensis, i1. 257-A. clangula, 1. 220, 225-A. boschus, 1. 32, 136, 140, 148, 190, 193, 235, 244-A. moschata, II. 230-A. vulpanser, 11. 257-A. (Casarca) rutila, II. 257A. sponsa, II. 257-A. galericulata, n. 257-Biziura, w. 83Mergus serrator, п. 149, 220, 225-M. merganser, in. 220M. cutoullatus, 11. 257-Podiceps, n. 25, 31, 34, 36, 54, 82, 174, 188-Totipalmate, i1. 9 -Pelecanus, 15. 23, 26, 34, 40, 64, 70, 103, 148, 153, 188-Phalacrocorax carbo, 1. 61, 157, 163-Sula, i1. 23, 54, 71, 130, 157, 161, 163-Plotus, 11. 9-Phaëton, 11. 9Tachypetes, II. 9, 21, 23, 34, 63, 67, 68, 70-72, 75-Lonyipennate, 11. 9, \(\mathbf{7} 2,265\)-Diomedea, 11. 9, 15, 23, 31, 61, 67, 71, 82, 116, 25.5-HIAladroma, n. 82-Procellaria, n. 9, 23, 31, 131, 165Thatassidroma, in. 21-Larus, u. 9, 119, 255-Lestris, in. 255Cittorrhactes, 1r. 16-Sterna, n. 9, 70-Rhyncops, п. 9, 57, 147Brevipennate, п. 9-Colymbus, пк. 9, 28, 31, 34, 54, 61, 71, 75, 78, 82, 113, 178, 190—Uria, 19, 25, 31, 34, 36, 57, 82, 83, 2.57Phateris, 19, 25-Frateroula, 11. 61, 257-Alca, in. 17, 21, 24, \(25,183-A\). impenais, 11. 21, 25, 41,56,58, 71, 214-Sphenisures, II, 256-Aptenodytes, 1. 25 ; 1I. \(9,16,17,25,31,41,66,67,69\), 156, 180, 214.
C. Uroons.

Archeopteryn', i1. 13-Sp. Arch. macrurus, 38, 74, 586.

Class ：REPTITIA，ı． \(5,169,181,198,215,290,309,321,327,337,347,385,433\) ， \(448,453,458,500,501,505,516,527,530,537,550,563,565,579,614,616\), 630.

Sub－class：Monopnoa，i．7， 9.
Onder：PTEROSAURTA，I．Ixxviii．6，18，70，161， 175 －Pierodactylus， ィ．xxxviii． \(18,70,158,161,176,177,265,405,406\)－Ram－ pharhynchus，1．18，70－Dimarphodon，1．18， 405.
Order：DLVOSAORLA，п．18，70－Megalosaurus，x．18，387，400，405－ Scelidosaurus，1．18，19－Cardiodon，1．387－Hylwosaurus，1． 199 －Iguanodon，I．xxxvili．18，357， 403.

Order：CROCODILIA，т．17，65，135，406，510—Amphiccelia，x．xxxviji． 17，69－Teleosaurus，1．17，198－Goniopholis，1．199—Galesaurus， 1．409－Paleosaurus，1．405－Cladeiodon，1．387－Opisthacerlia，1． 17，69－Streptospondylus，x．17，34，69－Cetiosaurus，I．69－ Proccelia，1．xxxviii．17， 69 －Crocodilus，л．25，135，173，188，190， \(263,323,439,638-C\). acutus，1．66，67，157，219，510－C．bipor－ oatus，1． \(67,68,139,145,223,341,349,406,451,526-\) Champsa（syn．Alligator palpebrosa），1．198－C．trigonata，工． 198 —C．gibluceps，1．198－C．lucius，х．66，67，70，138－C．nigra， 1. 138，406，451－C．missisippiensis，1．408，446，450—Gavialis，. 406，451．
Order：CHELONLA，ェ．xxaviii．16，60，126，171，184，231，295， 385 ， 617， 639 ；it． 314 ；imi．313，522，579，640－Chelone，．． 17,26 ， \(171,173,185-\mathrm{Ch}\). mydas，․ \(126,128,189,292,293,295,297\) ， \(313,323,328,331,340,348,440,442,444,445,453,525\) ， 618，638－Ch．imbricata，1． 445 －Ch．caretta，1．61，63，446， 450，454，560－Ch．planiceps，1．135－Ch．pulehriceps， \(1.135-\) Pleurosternon，1．64－Sphargis，61，62，557，659－561，618－ Chelydra（syn．Chelonura）serpentina，131，136，447，450，454， 525，560，561，587，618，638－C．Temminckï，土．131，135－ Trionyx， \(.17,61,62,63,131,134,186,187,189,327,331\) ， \(385,448,526,530,541,557,583,615-T e t r o n y x, ~ 1 . ~ 130,131-\) Gymnopus，1．61，130－Aspidonectes spinifer，1．615－Platypeltis ferox， \(1,446,615\)－Chelys， ． \(172,178,187,327,331,509\) ， \(560-\) Emy．s，1．17，61，64，127，130，134，187，454，639－E．（syn．Cistudu） europсe，І．60，61，131，132，173，186，187，231－242，322，339， 340，441－445，447－450，454，461，501，510，529，541，582，583， 587－E．picta，г．618， \(639-\) E．serrata，\＆． \(446,450,454,501-\) E． reticulata，1．446，450，454，501－E，terrapin，1．450， 454 Cistudo triunguts，1．526－Nannemys，1．618－Hydraspis，I．186—Podo－ cnemys，1．134－Emyda ceylonensis，1．557，558－Cryptopus Petersii，I．557－Cinosternon，1．61，560，618－Ptychemys rugosa， I．526－Homopus，г．173－Testudo，х．17，61，64，157，174，186， \(292,344,385,451,558,559,560-T\) ．graca，x．188，313，314， 340，445，452，459，509，529，582—T．indiec，1．327，445，562－ T．elephantopus，工．65，88，452，520－T．tabulata，․ 187，445， 529，541－T．polyphemus，I．446，450，454，526－T．Coueï，1． 529.
Order：LACERTILIA－T．17，57，154，175，387，399， \(508,525,531\) ， 555，581，583，585．－Sub－order：Cratieura：Protorosaurus，i． 405．－Sub－order：Natantia－I．17－Mosasaurus，i．xxatiii．157， 401，402－Leiodon，1．387．－Sub－order：Repenria－r．17－Fam．

\section*{Order: \(L_{A C E R T I L I A-c o n t i n u e d . ~}^{\text {- }}\)}

Varanus, 1. 58-F. niloticus, 1. 155, 174, 190, 191, 339, 386, 404-V. bivittatue, 1. 404-V. variegatue, 404-Monitor, 1. 445, 638-Regenia ocellata, 1.525-Crocodilurus, ı. 556-Tupinambis teguexin, 1. 401 -Tejus nigropunctatus, 1. \(156,158,388\)-Crocodilurus, 1. 546 -Lacertide, 1. 58, 157, 401-Liacerta, 58, 174, 292, 401, 433, 679, 833-L. agilis, 401, 529, 592, 617L. ocellata, 1. 440, 508, 544, 580-L. meuricata, 1. 544, 555, 565, 587-L. bilineata, .1. 586 -Zootoca muralis, 1. 583, 587, 599Tachydromus, 1. 263, 401-Psammosaurus griseus, 4. 519, 585, 817-Phrynosoma, 1. 403, 555-Thopidurus, 1. 556-Hoplurus, 1. 558 -Stellio, 1. 445,529 -Hyperanodon, 1. 403-Ardiscosoma, 1. 445 -Ameiva, 1. 567 -Agama, 1. 445, 555, 586-Lialis,. 557-Tropidolepis, 1. 403-Otocryptic, 1. 402-Xiphosurus velifer, 1. 198 -Lophyrus Basiliscus, 1. 402, 556-Histiurus (syn. Lophura), I. 60, 198, 402, \(556-\) Draco volans, I. xii. 58,156 , \(175,264,268,438,434,441,445,449,451,556,580-C h l a-\) mydosaurtu, 1. 558 -Callisaurus, 1. 403-Cyclura, 1. 198 Calotes, 1. 402-Galiotes, 1. 445-Iguanides, 1. 402-Iguana, 1. 57, 157; I. 21 -Ig. tubcroulata, 1. 60, 158, 159, 327, 403, 556 -Metopoceros, 1. 403-Amblyrhynchus ater, 1. 403-Semiophorus, 1. 556 -Polychrus, .525 -Corythopkanes, 1. 556 -Anolius, 1. 49 -Geckotider, 1. 283, 529—Gecko, .. 567-Plyodactylus fimbriatus, 1. 525-Platydactylus guttatus, 1. 449, 529— N. vittatus, 1. 529 Phyllurus, 1. 556—Platurus, 1. 554 -Ascalahotes, 1. 529—Pygopus lepidopus, ᄃ. \(657-\) Zonurus, 1. \(555-\) Zonosaurus, 1. 555-Tribolonotus, 1. 565-Trachysaurus, 1. 555-Rhynchocephalue (syn. Hatteria), 1. 67, 154, 159, 388-Chameleo, 1. 58, 156, 175, 178, 101, 436, 439, 452 -Ch. bifurcus, 1. 156, 193-Soiacide, 1. 198, 388-Scincus, 1. 175, 198-Sc. oficinalis, 1. 401-Cyclodus, 1. 58 -C. niger, 1. 155, 198, 387, 388, 402—C. nigroluteus; 1. 402, 540-Tiliqua scincoüdes, s. 198, 527,580-Seps, 1. 401-Chalcis, 1. 525-Pseudopus, 1. 57, 459, 525-Bipes lepidopus, 1. 525Chirotes, 1. 555-Ophisaumis, 1. 158, \(555-A n g u i s\), 1. 58, 158, 330, 447, 451, 524 ; ii. \(65-\) -. fragilis, 1. 417, 524, 543, 580Amphisbcenide, 1. 59-Amphisbana fulininosa, 1. 153, 313-Am. alba, 1. 388, 451, 555-Lapidosternon, n. 120, 153.

Orlor: OPHTDIA-1. 17, 53, 146, 224-231, 261, 291, 338, 348, 393\(398,440,448,451,480,500,501,503,507,524,531,538,541\), 553, 579, 585, 634-637, 640-Tortrix, i. 395-Typhlops, м. 348 -hhinophis, 1. 348-Boidce, 1. 338 -Boa, 1 528, 539, 540, 554 -R. constrictor, 1. \(56,291,617\)-Python, 1. 60, 148, 225, 292, 451, 450, 520, 554 - P. tigris, ц. \(56,147,224,228,316,338,394\), 453, 519, 524, 539, 554, 565-P. Schlcgclii, 1. 505-P. amethystiwus, i. 558, 565-P. bivittatus, 1. 617-Eryx jaculus, I. 554Jenodormus, I. 554 -Colubride, I. 395, 453-Oligodon bitorquatus, 1. 395—Deirodon (syo. Rachiodon) scaber, 1. 56, 57, 393, 440 -Dondrophis, i. 261 -Psammophis, I. 446, 450 -Coluber, 1. 447-C. guttatus, 1. 446, 450-C. constrictor, г. 446, 450Elaphis 4-lincatus, 1 580-Dipsadide, 1. 338-Dipsas cynodon, 1. 395-Passerita, 1. 327 -Dryinus nasutus, 1. 395-Dryophis, r. 327, 338-Bucephalus capensis, 1. 395-Natricide, 1. 394, 555Natrix lorqtuala, 1. 520, 524, 539, 555, 592, 616, 634, 625-

Order：OPHIDLA－continued．
Heteradon niger，1．446－Homalopsis，1．395－Herpeton tenta－ culatum，1．327，555－Dispholidus，－451－Hydrophide，I． 564 －Hydrophis，1．307，397，444，563－Pelamys，1．448， 554 Nazide，1．56， 5 ธ5－Bungarus，1． 564 －Naia，1．225，231－N．tri－ pudiars，1．54，397， 524 ， 555 －Viperide，工．524，616－Vipera berus，І． \(338,397,563,586,616,636,637-V\) ．cerastes，1． 554,599 —V．（Echidna）arietans，1．524－Crotalidae， \(1.5 \overline{0}, 152,225,554\) Trigonocephaius，工．398， \(555-C r o t a l u s ~ h o r r i d u s, ~ 1 . ~ 56, ~ 394, ~ 395, ~\) 398，441，505－C7．adamanteus，1，446，450， 454 －Cr．durissus， 4．227，228，229， 539 ．
Order：\(A N O M O D O N T T A, 1.16-D i c y n o d o n t i d a, 16-D i c y n o d o n, 1.159\), 160，399－D．tigrieeps，工．192－Ptychognathus，1． 400 －Crypto－ dontida，1．16－Oudenodon，1．385，400－Rhynchosaurus，1．385， 400.

Ordex ：SAUROPTERYGIA，x，x＿xiii．16，51，388－Plesiosourus，1．16， 51，52，181，330，388－Polyptychodon，x．xxxviii．387－Pliosaurus， r．xxxvili．16，53，171，387－Sphenosaurus，1．53－Nothosaurus， 1．16，58，182－Placodus，I．16，387－Taxystropheus，1． 53.
Order：ICIITHYOPTERYGIA，1．Exxviii． \(15,50,158,170,388-\) Ichthyoscurus，I．16，158，170，171，181，330，339， 364 ；jii．281－ Ich．communis，工． \(50-\) Ich．tenuirostris，1． 159.

Genetic Section：Branchootoca．
Sub－class：Drenoa－r．7， 8.
Order ：BATRACHLA—I．15，46，85，171，501，512，550，552，576，579，588， 591，596，619－Sub－ordex：Theriomorpha（syn．Anourra）－1．15， 533，629－Aglossa，1．15－Pipide，х．327－Pipa，r．15，34，46，49， \(50,183,184,327,330,337,347,523,528,551,628\)－Dac－ bylethra， \(1,392,527,551-D\). Millleri，工．551－Ceratophrys cor－ wuta，I．392，459，551－Bombinator igneus，x．527，567，591－ Rhinophrynus，I．436－Kalophrynus，1．552－Bufonides，1．15－ Bufo，I．177，183，614， \(629-B\) ．vulgaris，I．50，528，553， 624 － B．agua，1．184，552－B．cinereus，I． 527 －B．tuberosus，1．551— B．asper，s．551－B．calamita，土．552，629－Hylide，I．15－Hyla， 1． \(262,327,434,436\)－H．verrucosa，1．527， 628,558 －Nototrema marsupiatum，1．551，588，606－Opisthodelplis ovifera，1． 615 ， 551，588，616－Eucnemis，1．392—Phatymantis plicifera，1．552－ Polypedates，1．435，454，458，502，513，516，518，523，527，538， \(552,553,567,577,579,585,591,592,615,619-624,629,640\) －Elosia，1． 436 －Hylorana，1． 552 －Ranina，1． 15 －Cystignathus pochypus，у．50－Pelobates fuseus，I．591，592－Alytes，工． \(553-\) Al．obstetricans，I．597，616，622－Uperoleia，1．392，552－Rana temporaria，1．15， \(49,{ }^{*} 86,89,157,183,316,319,337,392,435\) －R．oatesbiana，1．446，450，454—R．esculenta，1．47，622－\(R\) ． boans，1．49－Discoglossus，1．392－Leptobrachium，1．392－Oxy－ glossus，1．392，436－Myobatrachus paradoxus，1．91，386，392， 629. －Sub－order：Ichthyomorpha（Urodela）－1．15，89，215－Sala－ mandrida，1，15， 182 －Salamandra maculosa，1．15，49，182，215－ \(222,521,552,584,585,614-\) Sal．atra，1．49，216－218，337，458， \(462,502,506,507,515,516,521\)－Sal．japonica（syn．ungui－ culata），工．551，615－S．glutinosa，1，386－Triton，2．15．48，290， \(337,434,502,507,513,514,518,521,538,566,591,614,625-\)

Order: BATRACHIA-continued.
628-Tr. cristatus, 1. 615, 816, 629-Th. marmoratus, 1. 566Tr. teniatus, 1. 578-Lissotriton punctalus, 1. 597, 616-Ambystomu, 1. 552-Plethodon, 1. 555-Plestiodon, 1. 551-Plectrodeles, 1. 49-Sicboldia, 1, 576, 577 -Menopoma (syn. Oryptobranchus), 1. \(48,89,170,390,440,448,451,453,506,515-517\), 627, 637, 560., 576-Amphiuma, 1. xxxii. 5, 163, 170, 182, 330, 451, \(453,508,515,516,527\); m. 164 -Menobranchus, 1. 88, 453, \(508,514,518-\) Axolotes (8ya. Sitedon), 1. 87, 506, 514, 527, 552 , 583-Ax. marmoratus, 1. 87, 170, 347-Proteus, 1. xxaì. 170, \(181,182,330,337,347,506,514-516,585,578\)-Siren, 1. 5, \(47,179,391,448,45 \mathrm{I}, 501,506,514,515,527,537,543,552,565\), 683.-Sub-order: Ophiomerpha-1. 15, 49-Crecilia, 1. 15, 50, 444, 449, 516, 551-C. albiventer, I. 453-C. interrupta, 1, 453.
Order: LABYRINTHODONTIA-1, xxxviii. 6, 14-Rhombopholis, r. 15-Labyrinthodon salamandroïdes, 1. 363, 366-L. leptognathus, 1. \(392,393\).

Order: GANOCEPHALA-1. xxxviii. 8, 14, 85-Archegosaurus, 1. 158.
lasa: PISGES-I. xxitiii. 4, 34, 76-84, 92, 125, 163, 179, 193, 202, 243, 253, 268, \(297.320,331,342,350,368,409,428,458,463-499,533,548,588-575,592\), 599-813.

Ordor: \(\operatorname{PROTOPTERI-1.14,46,82,330-Protopterus~annectens,~} \mathbf{1}\). mxii. \(37,41,47,108,162,181,277,282-285,413,415,417\), \(451,474,475,477,482,485,486,491,498,610 ;\) 11. 302,306 ; ini. 163, 165-Lepidosiren paradora, 1. \(5,37,38,82,83,107,163\), \(165,249,277-280,282-285,290,298,370,378,383,385,391\), \(415,417,425,448,451,481,494,499\).
Sub-class: Plagrostomiri. \(7,8,253,255\).
Ordor: CHONDROPTERI-I. 13, 41-Sub-order: Batides-1. ․ 13, 381 - Cephalopterides, I. 13-Cephalopterus, I 474 -Myliobatides, 1. 13-Myliobatis, 1, 13, 81, 369, 370, 373, 375, 378, 474 ; H1. 273-Cyclobatis oligodactylus, 1. 181-EEtobatis, f. 418-7rygonidre, 1. 13-Trygon, 1. 194, 474—Edestes, 1. 194—Raitde, 1. 13 -Raia batis, 1. 80, 201, 271, 299, 302, 319, 474, 649, 561, 598— R. clavata, 1. 36, 271 -R. maculata, i. 575 -R. oxyrynchus, 1. 590 -Rhinoptora, 1. 82-Spinachorhinus, I. 36-Torpedinidce, s. 13 -Torpedo Galvanii, 1. 350, 415, 474-T. narce, 1. 213, 325, 590, 591-T. narmorata, 1. 593-Narcinr, 1. 78-Rhinolatide, 1. 13Rhinobates, 1. 36, 169, 474-Pristides, 1. 13-Pristis, 4. 81, 252, 329, 373, 378, 383, 426, 427,611—Sub-order: Setachir-r, 13Zyganidee, 1. 13, 336-Zygana, 1. 36, 81, 336, 423, 426, 427, 809 -Squatinide, 1, 15-Squatina, 1. 33, 36, 76-78, 81, 82, 471Scymuitide, 1. 13 -Scymunus, I. 35, 373, 474-Sc, lichia, I. 78Sc.nicaersis, I. 590-Alopioider, 1. 13 -Lamnida, I. 13-Lamra, 1. \(33,204,361,372,377,382,423,474,490-\) L. corntubica, 1. 33, 366-Solache maxima, ィ. 33, 273, 334, 415, 417, 423, 426, 534, 670,611-Prionodon, 1. 377, 378-Nictitantes, 1. 13, 336 -Galeus, I. \(33,35,334,336,423,426,427,474,536,575-S c o l i o d o n, 1,422\), 575 -Galeocerdo, 1. 422—Otodks, у. 372—Carcharias, 1. 33, 35, 39, 80, 81, 273, 276, 283, 372,42!. 474-Carcharodon megajodon, 1. 372-Scylliide, 1. 13, 423-Scylium, 1. 32, 35, 325, 474, 575 , 500, 609, 610-Sc. canicula, i. 598, 610—Spinacider, I. 13, 423-

Order: CHONDROPTERI-continued,
Acanthias, 1. 32, 35, 474, 486-Spinax, 1. 413, 423, 570, 590, 610
-Sp. acanthias, 1. 168, 415, 573-Alopias, 1. 39, 422, 423, 474, 610-Centrina, 1. 35-Centrophorus, 1. 474-Notidanida, 1. 13Notidanus cinereus, 1. 32, 35, 373, 598--Mustelus, 1. 35, 474, 486 -M. levis, .. \(575,610-H e x a n c h u s, ~ 8 . ~ 474-H e p t a n c h u s, ~ 4 . ~ 39, ~\) 474-Thalassorhinus, 1. 422.-Sub-order: Cestropyori-q 13Fam. Cestraciontida, 1. 13-Cestracion Philigpi, 1. 79, 378, 384, 398-Fam. Hybodontidk, 1. 13-Hybodus, 1. 378-Ctenodus, 1 , 369, 378-Ceratodus, 1. 369, 385-Petalodus, 1, 371—Psammodus, 1. 378 -Acrodus, 1.378.

Order: HOLOCEPHALI-1. 12, 35, 41—Chimeride, i, 13, 293—Chimara monstrosa,", \(\mathbf{1}, 32,35,276,304,378,489,590\)-Callorhynchus australis, 1.598.
Sub-class: Teleostomy-1, 7,572,
Order: GANOIDE1-1, muvii. 12, 41.-Sub-order: Placoganombi1. ¥xxviii. 12—Ostracostei, I. 12—Coccosteus, 1. 196, 197, 247Pterichthys, 1. 12, 197-Cephalaspis, 1. 197—Sturionide, 1. 12, 41, 246, 478-Aoipenser sturio, 1. 12, 32, 34, 74, 196, 274, 411, 415, 474, 468-A. brevirostris, у, 196-A. scypha, у, 196-Planirostra (syn. Spatularia) spatula, 1, 75,410,411,415,416, 421, 482, 486. -Sub-order: Lepinoganomei-1,12-Holoptychides, r. 12-Dersdrodus, 1. 367, 368, 378-Holoptychius, 1. 378-Rhizodus (probably a Ganocephate), 1. 378-Ccelaeanthi, 2, 12-Maeropoma, L, 424-Gyrosteus, 1. 24-Bothriolepis, I. 378-Dipteride, 1. 12Dipterus, 1. 12-Acanthodei, 1. 12-Acanthades, 1. 12-Leptolepidee, 1. 12, 193 -Leptolepis, x. 12-Lepidoidei, 1. 12-Dapedius, 1 . 12-Lepidotus, I. 247 -Amblypterus, 工. 196-Megaliohthys, x. 378, 424-Pycnodontide, 1. 12, 378-Pycnodus, 1. 12-Microdus, 1, 248 —Salamandroidei, 1. 12, 111-Lepidosteus, i. 33, 108, 195, 247, 275, 378, 485, 499, 548, 549-L. oxyurus, 1. 378-L.platyrhinus, 1. 348 -Polypterus, . xavii. \(37-39,43,44,107,108,111,118\), \(120,129,156,162,167,195-197,247,417,422,427,480,491\), 494, 499, 500, 549 -Sudis (syn. Arapaima) gigas, 1. 41, 118, 120, \(123,247,372\)-Amia, 1. 37, 38, 108, 247, 422, 474, 492.
Order: LOPHOBRANCHII-1.12, 149-Syngnathides, 1. 12-Syngnathus, i, \(38,195,421,569,576-S\). acus, 1. \(613-S\). ophidion, 1. 614-Hippocampide, 1. 12-Hippocampus, 1. 614-Pegasus draco, 1. 195 ,

Order: PLECTOGNATH1-r. 11.-Sub-order: Apleuri-r. 11-Ostraciontide, 1, 11—Ostracion, 1. 26, 212, 421—Gymnodontidus, I, 11-Orthagoriscus, 1. \(212,271,331,334-336,422,480,536-\) Tetrodon, 1. 41, 42, 43, 83, 272, 350, 415, 481, 491—Diodon, 1 . \(109,118,124,198,272,306,378,415,478,481,491-\) Suborder: Sclerodermi-r. 11 - Balistini, i. 11, 417-Baligtes, 1 . \(107,193,194,306,377,382,378,421\).
Order: ACANTHOPTERT-1. 10, 11, 112, 193—Lophizaœe, 1. 11Lophius piscatorius, I. \(39,119,124,166,180,196,200,374,376\), \(378,381,383,417,421,472,478,481,493,536,567,572,612\) -Antennarius, т. 430, 477, 480, 567-Batrachus, у, 164, 630, 481, 489-Malthea, 1. 326, 430, 481-Halieutea, 1. 326, 478-

Onder：ACANTHOPTERI－continted．
Blenniides，1．11，599－Blennius，I，278，298，302，595－Salarias， 1．599－Zoarces，1．548，574，800－Anarrhichas lupus，1．378，421， 457－Gobidke，I．14－Gobius，I．814－Periophthalmus，1． 275 － Callionymus，у．812－Discoboli，1．114－Cyclopterus lumpus，1．180， 284，298，306，421，534，538，589，©12－C．liparia，1．481－ Lepadogaster，1．484－Gobiesor，1．480－Cotylis，I．481－Fistu－ lariide，I．13，41－Centriscus，1．164，193，421－C．scolopax， 1. 164，193－C．humerosus，\＆．194－Aulostomus fistularia，1． 107, 109，124－Theutidide，1．11－Acanthurus，1．377－Priadon， ェ．372，377，378－Naseus，Sigamus，1．184－Naseus unicornis， I．114－Lepidopus，r．xxxili－Lepidopus argenteus，1．180， 426 —Thyroites，1．812－Gempyilus，I．xxiiij．，612－Trichiurus，. xxxiii． 370 －Teniodei，I． 11 －Gymnetrus， ． 493 －Trachy－ pterus，工．417，493－Sclerogenide，1．11，123，166－Trigla，1．271， 284，298，326，421—Tr．Lyra，I，101，426，430，478，589—Tr． coculus，．491－Tr．hirundo，1．491，497－Dactylopterus（syn． Cephalacanthus），․ 119，167，257，271，491，812－Cottus，1．168， 284，298，302，415，421，430，448，480，569－Platycephalus，1． 43 —Prionotus，1．491－Sebastes，I．427，480－Apistes，I．480－ Scorpana，1．430，480—Se．serofa，1． 473 －Gasterosteus，1．193， 298，421，594，598，599，601，614－Scomberide，1，11，254－ Scomber scombrus，1．204，297，306，418，421，542－Sc．trachinus， 1．283－Thynnus vulgaris，I． \(38,43,107,468,490,648-\mathrm{Na}\)－ crates，1． 812 －Echeneis remora，I．198，211， \(274,298,377,428\) ， 812－Auxis Cybium，1．490，493－Lichia，Caraux，Fomer， 1. xxxiii．－Argyreiosus setipinnis，工． 44 －A．vomer，1．108，118， 154 －Zeus，r．119，480－Lampris，i，186－Lactarius delicatulus， \(\mathbf{I}\) ， 492－Stromateus，r．xxxii．，612－Str．fiatola，1．415，612－ Coryphana（syn．Lampugus），1．811－Xiphias，1．38，107，118， 179，262，332，334，420，427， 479 ；II．64－Histiophorus，4． 114 －Sphyrenide，1．11—Sphyrana，工．372，375，377，378，382，426， 491－Atherinide，1．11—Mugilide，1．11，410－Mugil，1．37，166， 418－M．labrosnt，1．410－M．cephalus，I．550－Atherina pres－ byter，1．425－Tetragonumis，1．415－Mullus，I．283，300－ Upeneus，1．120，308，427－Labyrinthobranchii，1．5，11－Tri． chogaster，․ 328－Anabas，1．11，478，487－Ophiocephalus，1． 491 －Helostomus，1．373－Osphromenus，1，326－Scienide，1，11－ Scient，1．421，427， 492 －Corvina，r．426，492－C．trispinosa，г． 492－Micropogon，1．491—Johnius lobatus，I．418，490－Sparida， 1．11，421－Chrysophris，I．382－Sparus（Epibulus）insidiator，I． 119，122，250－Pagris，1．812—Cantharus vulgaris，1．491—Box，r． 415－B．vulgaris，1． \(421-\) B．salpa，1．421－Sargus，1．21，283， 390，377，382，417－Boops，1． 371 －Haplodactylus，1． 371 － －Lethrinus allanticus，1．491－Pristipomatide，1．415－Menide， 1．110－Mena，1．491－Conodon antillanus，1．491－Cbsio， 1. 415－Smaris，1．491－Squamipinnes，1．11－Chatodon，1．11， 370－Ephippus，1．108，110，111，343，612－Psettue，1．5xxili． －Platax，1．39，371， 812 －Drdes maculatus，1． 491 －Per－ cilce，．．11， 378 －Perca，1．11，43， 107 －P．fuviatilis， 1. \(94,105,108,109,125,202,205-211,277,278,297,304\) \(308,386,342,389,418,430,432,467,472,571,590\)－Lates viloticus，I．426－Lates nobilis，I．427－Labrax lupus，i．428－ Anthias，4．812－Lucioperca sandra，I．283，297，305，416－

Order: ACANTHOPTERI-continued.
Centropristis gigas, 1.254 -Acerina, 4.430 -Polyprion, I. 108, 120-Nardus, 1. 489-Holocentrum orientale, 1. 425-H. hastatum, I. 425-H. Sogho, I. 426, 438-Myripristis, 1. 331 -Beryx Trackinidce, 1. 493-Trachinus draco, 1. 283-Trichodon, 1. 377 -Percis, 4493 -Uranoscopus, 1. 119, 326, 331-Sillago 1. 491-Percophis, 1. 493-Eleginus, 1. 493-Polynemus, i. 271, 326, 493-Sub-order: Praryngognathi-1. 11, 120Ctenolabride, 1. 11, 329-Helustes insolatus, s. 491-Glyphisodon, 1. 44-Gl. saxatilis, 1. 426-Pomacentrus, 1. 11-Cyclolabride, I. 11-Labtus, 1. 363, 370-372, 375, 377, 410, 421, 612-L. turdus, .. 426-Cossyphus, 371-Scarus, 1 34, 168, 369-372, 377, 378, 382-Coricus, 1. 119-Crenilabrus, x. 374, 410 -Julis, 1. 410 -Cheilinus, 1. 120-Charops, 1. 410-Chromidee, L. 11—Chromis, I. 11-Holconoti, 1. 614.

Order: ANACANTHINI-I. 10-Pleuronectide, 1. 10, 109, 110, 112, 275, 331, 334, 569, 574-Pleuronectes, 土. 10, 421, 468-Pb. solea, I. \(45,278,546-\mu l\). platessa, 1. 46, 278, 431, 432, 596—Rhombus maximus, 1, 42, 278, 427, 430-Rh. santhurus, \&. 415 -Citharinus, \(1,116,370\)-Hippoglossus vulgaris, \(1.42,110,112,115\), 297, 299-Buglossus, 1. xuxiii.-Achirus, I. צxxili,-Monochir, I. 1xxilh.-Synaptura, 1. xnxiii.-Soleotalpa, , кxxiii.—Gadide, I. \(10,163,425,430,493\)-Gadus, 1. 43, 297, 421, 432, 468, 481, 489, 492-G. aglefinus, 1. 40-G. navaga, . 38, 492-G. callarias, 1, 483-Morrhua vulgaris, 1. 73, 93, 95-100, 107, 109-\(113,115,117-121,123-126,164-166,179,271-274,276,278-\) \(280,282,284,298,301-303,305,306,308,309,421,480\), 495, 569-Phyozs, 1. 180-Merluccius, 1. 300, 514, 572-Lota, I. 297-Mcrlangus vulgaris, 1. 428, 431-Raniceps trifurcatus, \(I_{1}\) 180-Ammodytes, 1, 417, 426, 468, 547-Am. tobianus, 1. 468, 543, 568.

Order: MALACOPTERI-I, 9-Sub-order: Opamudes, i. 10-Ophidium, i. 10-O.barbatum, 1. 43-Sub-order: Pharysgognathr, د. 10—Scomberesux, 1. 10-Belone, 1. 21, 283, 297, 306, 432, 468Exocotus, i. 167, 257, 271, 377, 413—Sub-order: Abdominales, A. 10 -Alepisaurus, 4. 10 -Silurides, \(193,248,299,325,421\), 425-Silurus, 1. 166, 167, 335, 371-S. glanis, 1. 369, 457, 468, 489-Amphipnous Cuchic, 1. 481, 487-Saccobranchus, 1. 488-Heterobranchus, 1. 108, 487-Malapterurus electricus, 1. 350, 355: 496-M. beninensis, 1. 350-Arius, 1. 491-A. gagora, 1. 491, 500-Bagrus filamentosus, 1. 491, 492-Loricaria, 1. 38, 41, 42, 493-Pimelodus, 1. 247, 335., 374, 427, 491 - Pangasius, 1. 491 - Hypostoma, 1.493 -Rhinelepis, 1. 493-Synodontis, 1. 108, 335-Auchenipterus furcatzs, I. 491, 496-Callichthys, i. 108, 290, 614-Cyprinide, 1. 10, 43, 410, 417, 489-Cyprinus carpio, у. 104, 116, 275, 286, 297, 345Tinca, н. 297, 370, 488, 602-Leuciscus cyprinus, 1. 275, 286, 302 —Labeobarbus, i. 410-Brama (syn. Abramis), i. 297, 432, 589, 612-Cobitiss, 1. 279, 297, 302, 335, 417 ; II. 303-C. barbatula, 1. \(345,500,547\)-C. fossilis, I. 491, 590-Cyprinodontide, I. 10 -Cyprinodon, 1. 10-Anableps, \(1.373,421\)-Pacilia, 1. 373Mormyride, 1. 10-Mormyrus, \&. 10, 118-M. longipinnis, 1.

Order: MALACOPTERI-continued.
350, 355, 416, 417, 488-M. oxyrhynchus, 1. 350-M. dorsalis, I. 350-M. Petersii, I. 410-Gymnarchus niloticus, I. 350Esocide, i. 10-Esox lucius, 1. 10, 37, 297, 340, 381, 421, 468, 489, 547, 595, 603-Galaxide, 1. 10-Characinidce, .. \(10-\) Erythrinus, 1. 116, 120-E Ealvus, 1. 492-E. teniatus, 1. 492, 494-Myletes, 1. 362-Hydrocyon, 1. 116-Cotylis, 1.481-Scopelide, 1. 10-Saurus, 1. 10—Salmontide, 1, 10, 37, 114, 180, 254, 372--Salmo, \(4.38,44,179,297,306,421,432,468,481,547\), \(502,505-S .8 a l a r\), т. \(179,333,429,612,613-S\). eriot, 1. 44, 165, 180-S.fario, 1. 179, 814-Eperlarus, 1. 298-Thymallue, г. 43-Mallotus, 1. 600-Clupeide, 1. 10, 272-Clupea, 1. 38, 297, 308, 421, 468-C. harengus', \(5.43,283,420,432-C\). sprattus, 1. 283, 430-Alosa vulgaris, 1. 481, 569-C. pilchardus, 1. 431 —Elops, i. 125-Hetcropygii, i. 10-Amblyopsis, s. xxxiii. 10A. spelaus, 1. 275, 277, 284, 287, 298, 299, 331, 424 ; mi. \(98 .-\) Sub-order: Apodes-1. 10.-Gymnotide, 1. 10, 179-Gymnotus, 1. \(43,211,350,409,489-G\). elcetricus, I. \(352-354,356,357\), 491, 569 -G. equilabiatus, 1. 491—Murenide, 1. 10, 41, 118, 315, 411-Murana, 1. 122, 370, 421, 489; т. 65--M. helena, 1. 45, 113-Muronophis, 1. 125, 478, 489-Anguilla, 1. 10, 124, 275, 284, 298, 468, 495, 546-Conger vidgaris, д. 43-Apterichthys cacus, 1. 331-Sphagelranchus, 1. 478-Lcptocephalus, 1. 611Synbranchide, .. 10-Monopterus, 1.481, 486-Synbranchtes, 1. 116, 478, 482, 486.
Sub-class: Dermopten-r. 7, 31, 271,
Order : CYCLOSTOMI-1. 9, 211-Petromyzon (syn, Ammocetes), i. 7, \(9,32,72,114,212,328,412,425,471,475,534,536,568,571\), 690, 611-Myxine, т. 日, 31, 299, 369, 488, 471, 476, 598Bdellostoma heptatroma, 1. 468, 471, 475, 477, 635.
Order: CIRROSTOMI-1. 9-Branchiostoma (syn. Amplioxus), I. 3, \(9,26,31,71,269,270,328,413,414,513,611\).

\section*{GENERAL INDEX.}

\section*{ABD}

BDOMINALES, character of, i. 10
Abramis. See Brama
Absorbent system of Aves, ii. 178
Firhes, i. 455
Hamatocrya, i. 455
Mammalia, iii. 504
Reptiles, i. 458
Acanthiss, gills of, i. 488
heart, i. 474
vertebral column, i. 32, 35
Acanthini, characters of, i. 10
Acanthodei, characters of, i. 12
Acanthodes, charscters of, i. 12
Acanthopteri, characters of, i. 10, 11
dermoskeleton, i. 193
skull, i. 112
Acanthurus, teeth of, i. 377
Acerina, pyloric appendage and pancreas of, i. 430
Acerotherium incisivum, characters of, ii. 286 bones of limbs, ii. 455
development, iii. 742
horns, iii. 824, 631
teeth, iii. 358
Acetabulum in Man, ii, 574
Achirus, characters of, \(\mathrm{i}, \mathrm{xxxiil}\)
Acipenser brevirostris, dermoskeleton of, i. 198

Acipenser scypha, dermoskeleton of, i. 196
Acipenser sturio, characters of, i. 12
alimentary canol, i. 411, 415
dormoskeleton, i. 196
heart, i. 474
myolencephalon, i. 274
skull, i. 74
veins, 1. 468
vertebral column, i. 32, 34
Acrodus, toeth of, i. 378
Adipose substances, iii. 783
Adrenals of Homatocryn, i. 542
Ayes, 1i. 229
Tishes, i. 642
Reptiles, i. 543
Mammalia, iii. 568
Ftobatis, alimentary canal of, i. 418
※pyornis, characters of, ii. 13 generntive system, ii. 256
Agama, alimentary canal of, i. 445
tegaments, i. 585
female organs of goneration, i. 686
\(\triangle \mathrm{MB}\)
Aglossa, characters of, i. 16
Ai, bones of, ii. 398, et seq.
Aigoceros. See Antilope equina
Ailurus, alimentary canal of, iii. 445
limb-bones, ii. 501
mammary glands, iii. 780
teeth, iii. 334
vertebral column, ji. 494
Air swallowed by some fishes, i. 255
Air-bladder of Fishes, i. 5, 255, 491
Air-cells of bones, i. 26
of Aves, ii. 211
Air-passages of \({ }^{\circ}\) Ares, ii. 217
Alactaga, characters of , ii. 276
Alauda, characters of, ii. 10
Alca, alimentary canal of, ii. 163 osseous system, ii. 17, 21, 24, 25
Alea impennis, air-cells of, ii, 214
osseous system, ii. \(21,20.41,56\), 58, 71
Alcedinidse, characters of, ii, 11
Alcedo, alimentary canal of, ii. 161
oggs, ii. 256, 257
lowor laryax, ii. 221
Alces, characters of, i. zxxii
horns, iii. 630
larynx, iti. 594
skull, ii. 478
teoth, iii. 351
Alepisaurus, charscters of, i. 10
Alimentary canal in Aves, ii. 156
Fishos, 1. 409
Mammalia, iii. 383
Reptiles, i. 433
Allantoic orifices, roptiles, i. 447
Alligator. Sea Champsa
Alopecidæ, characters of, i. 13
Alopias, alimentary canal of, i. 422, 423
development, i. 610
heart, i. 474
vertebral column, i. 39
Alosa vulgeris, gills of, i. 481
male organs of generation, i. 569
Alytes obstetricans, dovelopment of, i. 622
oviposition, i. 616
orulution, i. 597
Alytes, tegumenta of, i. 553
Amblyopsis, characters of, i. xxiii. 10
Amblyopais spelæus, alimentary canal of, i. 424
\(A M B\)
Amblyopsis spelæus-continued.
mesencophalon, iii. 98
myelencephalon, i. 275, 277, 284, 287
пerves, i. 298, 299
organ of sight, i. 331
Amblypterus, dermoskeleton of, i. 196
Amblyrhynchus ator, teeth of, i. 403
Ambystoma, teguments of, i. 552
Ameiva, reproducible parts of, i. 567
Amia, sir-hladder of, i. 492
yertebral column, i. 37, 38
skull, i. 108
locomotion, i. 247
alimentany canal, i. 422
heart, i. 4.74
Ammocates. See Petromyzon.
Ammodytes, alimentary canal of, i. 417
liver, i. 426
tegument, i. 547
veins, i. 468
Ammodytes tobianus, adreaals of, i. 543 male organs of generation of, i. 568 reins, i. 468
Amphiccelia, cbaracters of, i. xxxriii, 17 rertebral column, i. 69
Amphicyon, teeth of, iii. \(34 \%, 372,375\)
Amphipnous Cuchia, gills of, i. 481, 487
Amphisbæena alba, liver of, i. 451
teeth, i. 386
teguments, i. 555
Amphisbæna fuliginosa, nerves of, i, 313 skull, i. 153
Amphisbænidæ, vertebral column of, i. 59
Amphisorex tetragonurus, alimentary canal of, iii. 427
skull, ji. 389, 390
teeth, iii. 305, 306
Amphiuma, characters of, i. sxxiii, 5 arteries, i. 516
gills, i. 515
heart, i. 506
larynu, i. 527
liver, i. 451
orgen of smell, i. 330
pancreas, i. 453
pectoral limb, i. 163, 170
pelvic arch and limb, i. 182
scapula, iii. 164
Anabas, characters of, i. 11 gills, i. 478, 487
Anableps, alimeutary canal of, i. 421 teeth, i. 373
Anacanthini, characters of, \(i_{1} 10\)
Anarrhicas lupus, absorbents of, i. 457
alimentary canal, i. 421
teeth, i. 376
Anas boschas, arteries of, ii. 190, 193
beak, ii. 148
generative system, ii. 244
organ of sight, ii. 136, 140
sacral vertebre, pelvis, and tail, ii. 32 tegumentary system, ii. 235
Anas clangula, lower larynx of, ii، 220, 225

ANT
Anas fusca, lower larynx of, ii. 220
Anas galericulata, period of incubation of. ii. 257

Anas moschate, scent-glands of, ii. 230
Anas (Casarca) rutila, period of incubation of, ii. 257
Anas sandyicensis, external sexual charactors of, ii. 257
Anas somipalmata, lower laryns of, ii. 220
Anas sponsu, period of incubation of, ii. 257
Anas vulpanser, period of incubation of, ii. 257
Anatidx. See Lamellirostratæ
Ancitborinm, characters of, ii. 284; iii. 792
Audrodon, semual characters of, ii. 258
Anguilla, characters of, i. 10
aip-bladder of, i. 495
myelencephalon, i. 275, 284
nerves, i. 298
skull, i. 124
teguments, i. 546
reins, i. 468
Anguis, alimentary canal of, i. 447
liver, i. 451
lungs, i. 524
organ of smell, i. 330
scapular arch, ii. 65
skull, i. 158
vertebral column, i. 69
Anguis fragilis, alimentary canal of, i. 417 adrenals, i. 543
lungs, i. 524
male orgaus of generation, i. 680
Animalia, i. ष. viii.
Anolius, vertebral column of, i. 49
Anomalurus, derm of, jii. 612
scales, iii. 623
Anomodontia, characters of, i. 16
Anoplotherium, characters of, i، xvii, nxi,; ii. 266,286
teeth, 1ii. 340, 341, 375, 790
Anser gambensis, claw or spur of, ii, 74
Anser palustris, absorbents of, ii. 181
adrenals, ii. 229
air-cells, ii. 216
alimentary canal, ii. 161
arteries, ii. 193
beak, ii. 148
derelopment and poculiarities of the chick, ii. 264
generativo system, ii. 245
lower larynx, ii. 221
lunge, ii. 209
myelencephalon, ii. 118, 120
дerres, ii. 123
organ of sight, ii. \(136,139,142,144\)
pancreas, ii. 178
tongue, ii. 152
trachea, ii. 220
reins, ii. 206
Anteater, Cape, bones of, ii. 305, 404
Anteater, Grent, bones of, ii. 397

\section*{ANT}

Anteater, Great-continued.
muscles of tongue, iii. 23
salivary systern, iii. 400
stomsch, fil. 446
Anteater, scaly, bones of, ii. 398
skeleton, il. 279
Antechinus, prosencepbslon of, iii. 104
Antelope, bones of, ii. 482, 472
Antelopes, peculiur glands of, iii. 632
Antennatius, gills of, i. 477, 480
pyloric appendages sud pancreas, i. 430
reproducible parts, i. 667
Anthiss, changes of, accompanying growth, i. 612

Anthochera, skull of, ii. 57
Anthracothevium, charseters of, ii. 286 teeth, iii. 343
Antibruchial bones of Carnivors, ii. 507
Antilocspra Americana ( (3yn. Dicranoceros, horns of, iii. 625,626 skull, ii. 473
Antilope cervieupra, horns of, iii. 626 gland opening upon the head, iii. 632 limb-bonce, il. 482
Antilopo (Aigoceros) equina, alimentary conal of, iii. 462
liver, ili, 482 skull, ii. 473
Antilope corinna, gland opening upon the hend of, iii. \(63 \overline{0}\)
Antilope clama, mammary glands of, iii. 779
Antilope doreas, mammery glands of, iii. 779 reins, iii. 655
Antilope (Cephslophus) mergens, horns of, iii. 626
- skull, ii. 473

Antilope oreas, mammary glands of, iti. 779
Antilope (Tetraceros) quadricornis, horns of, iii. 625 skuil, ii. 473
Antilope rupiespra, suborbital pit or sinus of, iii, 632
Antilope strepsicerus, myelon of, iii. 77 skull, ii. 473
Antilope tragelephus, horns of, iii. 626
Antilopidno, charsctors of, ii. 286
glunds opening upon the head, iii. 633, 634
horns, iii. 624, 625
limb-bonos, ii, 483
Apintes, gills of, i. 480
Apleuri, chameters of, i. 11
Apodem, characters of, i. 10
Aptenodytes, characters of, i. 25 ; ii. 9
absorbents, ii. 180
air-cells, ii. 214
Mimentary canal, ii, 166
osseonts system, ii. \(16,17,25,31,41\), 68, 67, 69
Apterichthys crecns, organ of smell of, i. 331
Apteryx, charactars of, i. xxxiii. 25 ; ii. 12
\(\Delta R^{\prime} T\)
Apteryz-continued.
air-cells, ii. 214
alimentary cansl, ii. 162
generative system, i1. 248, 256, 258
liver, ii. 177
muscular syatem, ii. 86, 91
organ of sight, ii, 140
organ of smell, ii. 130
ossenus system, ii. \(18-22,30,34-36\), \(38,48-53,55,62-66,70,74-76,81\), 82
Aptornis, cbarscters of, ii. 13
osseous system, ii. \(43,48,50,58,75\), 76
Aquila, chsracters of, ii, 12
slimentary canal, ii. 158, 171
development, ii. 259
liver, ii. 176
lower larynx, ii. 220
myelencephalon, ii. 110, 121
osseous system, i. 25 ; ii. 21, 32, 36, 53, 72, 76, 77, 80
Arbor vitze, Fishes, i. 275
Archegosmurus, sknll of, i. 158
Archencephala, chsracters of, ii. 247 ; iii. 127, 138
Archeopteryx, cbaracters of, ii. I3
restoration of, ii. 586
sespular arch and limbs, ii. 74
tail, ii. 38
Arctictis (syn. Ictides) albifrons, alimentary canal of, lii. 445
limb-bonees, ii. 508
liver, iii. 491
lymphatics, iii. 508
vertebral colurm, ii. 491
Arctocephalus australis, sknll of, ii. 496
Arctomys, alimentary caual of, iii. 424
limb-bones, ii. 382
organs of generation, male, iii. 654
Aretonyx, teeth of, iii. 333
Ardea, alimentary canal of, ii. 163
beak, ii. \(147^{7}\)
generative system, ii. 267
osseous system, ii. 22, 39
tegumentary system, ii. 232
Ardiscosoma, alimentary canal of, i, 445
Argentine, composition of, i. 550
Argyreiosus vomer, skull of, i. 108, 116, 154
Argyreiosus setipinnis, yertebral column of,
i. 44

Arius, sir-bladder of, i. 401
Arius gagora, air-bladder of, i. 491
bloud, i. 500
Armadillo, alimentary canal, iii. 446
organ of hearing, iii. 231
teeth, iii. 273
bones, ii. 393, ef seq.
Armour-plates of fishes, i. 246
Artories of Apes, ii. 189
Fishes, i. 488
Msmmalis, iii. 532
Reptiles, i. 509,516 ; iii. 537

ART
Artibeus, organ of taste of, iii. 192
Artiodactyla, alimentary canal, iii. 465
characters, ii. 283
muscles, iii. 27
organs of generation, iii. 662
male, iii. 662
female, iii. 694
osseous system, ii. 457
skeleton, ii. 457
A. vertebral column, ii. 457
cervical, ii. 457
dorsal, ii. 457
lumbar, ii. 457
sacral, ii. 457
caudal, ii. 457
B. skull, ii. 465
frontals, ii. 465-478
jaws, ii. \(465-478\)
nasals, ii. 465-478
lacrymal, ii. 465-478
premaxillaries, ii. 466 478
maxillaries, ii. 466-478
C. bones of the limbs, ii. 479
scapula, \(4 i .479\)
humerus, ii. 479
ulna, ii. 480
radius, ii. 480
ileum, ii. 480
ischia, ii. 480
femur, ii. 480
tarsus, ii. 480
teoth, iii. 34.3
Arvicola amphibia, alimentary canal of, iii. 421
limb-bones, ii. 381
lungs, iii. 577
mouth, iii. 386
organs of generation, male, iii. 653
organ of smell, iii. 209
teeth, iii. 298
Ascalabotes, larynm of, i. 629
Aspidonoctes spinifer, fecundation of, i. 615
Ass. See Equus nsinus
Astur, alimontary canal, ii. 171
muscular system, ii. 85
osseous system, ii. 17
Ateles belzebut, brain of, ii. 273 , note
Ateles niger, brain of, iii. 146
larymx, iii. 598
organ of toucb, iii. 187
osseous system, ii. 515, 516, 530, 543
prehensile tail, iii. 71
Ateles paniscus, dorso-lumbar vertebre of, 1i. 515
osseous system, ii. 307
Atberina presbyter, liver of, i. 425
Atherinid \(x\), characters of, i. 11
Auchenia lama, characters of, ii. 286
alimentary canal, iii. 468
blood, iii., 515

\section*{AVE}

Aucbenia lama-continued.
hair, iii. 618
prosencephalon, iii 122
teeth, iii. 849
tbyroid gland, iii. 565
skull, ii. 470
vertebral column, ii. 460
Aucbenia vicunia, blood of, iii. 515 skull, ii. 470
Auchenipterus furcatus, air-bladder of, i. 491, 496
Aulostomus fistularia, skull of, i. 107, 109, 124
Australian, skull of the, ii. 563
Auxis Cybium, air-bladder of, i. 493
arteries, i. 490
Aves, characters of the class, i. 5
orders, i. 8
I. Natatores, ii. 9
II. Grallatores, ii. 9
III. Rasores, ii. 10
IV. Cantores, ii. 10
V. Volitores, ii. 10
VI. Scansores, ii. 11
VII. Raptores, ii. 11
absorbent system, ii. 180
lacteals, ii. 180
lymphatics, ii. 180
thoracic ducts, ii. 180
brain, iii. 118
development, ii. 118, 119
varieties in weigbt and size, ii, 121
compared with that of the Rep-
tile and of the Mammal, ii. 121
circulating system, ii. 184
blood, ii. 184
blood-dises, ii. 184
heart, ii. 185
pericardium, ii. 185
auricles, ii. 185
ventricles, ii. 186
arteries, ii. 189
aorta, ii. 188
arteria innominata, ii. 189
carotid, ii. 190
external maxillary, il. 102
laryngeal or posterior pala-
tine, it. 192
lingual, ii. 192
iuternal maxillary, ii. 193
vertebral, ii. 193
subclavian, ii. 194
humeral, ii. 194, 195
mammary, internal, ii. 194 great pectoral or tboracie, ii. 196
articular, ii. 195
profunda bumeri, ii. 195
ulnar, ii. 195
interosseous, ii. 196
doscending aorta, ii. 196
bronchiul, ii. 197
intercostal, ii. 197
AVE
Apes-circulating system-continued. celiac, ii. 197 gestric, posterior, ii. 197 splenic, I. 197 hepatic, right, ii. 197 pancreatic, ti. 198
gastric, anterior, ii. 198
hepatic, small, ii. 198
mesenteric, muperior, ii. 198
arteria epermatica, ji. 199
femoral, it. 199
ischiadic, ii. 200
articular, ii. 201
tibial, posterior, ii. 201
anterior, ii. 201
plantar, ii. 202
sacre media, ii. 202
lumbar, ii. 202
mesenteric, inferior, ii. 202
hypogastric, ii. 202
coccygeal, ii, 202
incubating plexus, ii. 203
veins, ii. 203
vertobral, ii. 203
jugular, ii. 203
axillary, it. 205
vena cara, inferior, ii. 205
hopatic, ii. 20б
iliac, ii. 205
emulgent, ii. 208
hemorrhoidal, ii. 206
vean porta, ii. 206
splenic, ii. 206
gastric, posterior, ii. 207
anterior, ii. 207
pancreatic mesentoric, ii. 207
inferior mesenteric, ij. 207
femoral, ii. 207
tibiul, ii. 207
poroneal, ii. 208
digestive systcm, ii, 145
beak, ii, 145
tongue, ii. 151
muscles, ii. 253
mylo-hyoideus, ii. 153 stylo-hyoideus, ii. 153 genio-hyoideus, ii. 154 cerato-hyoideus, ii. 154 storno-hyoideus, ii. 164
anlivary glands, ii. 154
necessory folliclos, ii. 156
alimentary canal, ii, 156
mouth, ii. 166
dilatation of the faucial membrane, ii. 157
ossophagus, ii. 157
ingluvies, or crop, ii. 168 cesophagus, lowor, ii. 160 proventriculus, ii. 160
proventricular glands, ii. 161
gastric glinds, ii. 162
gizzard, ii. 163

AVE
Aves-digestive system-continued.
intestines, i.i. 167
duodenum, ii. 168
mesentery, it. 168
ileum, ii. 168
rectum, ii. 168
cloaca, ii. 168
varieties, ii. 168
liver, ii. 174
size, ii. 174
position, ii. 175
lobes, ii, 176
ligaments, ii. 176
colour, ii. 176
gall-bladder, ii. 177
cyst-hepatic duct, ii. 177
eystic duct, ii. 178
hepatic duct, ii. 178
pancreas, ii. 178
structure, ii. 179
ducts, ii. 178
development of Birds and peculiaritios of the chick, ii. 259
generative system, ii. 242
male organs, and semination, ii. 242
-estes, ii. 242
periodical variations of size, ii. 242
devolopment, ii. 243
vas deferens, ii. 244
penis, ii. 244
spermatozoa, ii. 245
spermatoa, ii. 245
fomaleorgans and ovulation, ii. 248
oтarium, i. 248
derelopment of the ovarian orum, ii. 246-250
calyx, ii. 247
mesomatrium, ii. 249
clitoris, ii. 251
fecundation in Birds, and struc-
ture of tho laid egg, ii. 251
accessory generative structures
and external sexual characters, ii. 256
periods of incubation, ii. 257
nidlification, ii. \(25 ?\)
locomotion, ii. 112
progressiou on land, ii, 112
climbing, ii. 113
flying, ii. 113, 114
velocity of flight, ii. 115
nction of the tail in, ii, 115
varicties in manner of, ii. 116
muscular system, ii. 84
general characters, ij. 84
vertobre, muscles of the, ii, 84
sacro-lumbalis, ii. 85
long'ssimus dorsi, ii. 86
obliquus colli, ii. 86
fasciculj obliqui, ii. 86
longus colli posticus, ii. 87
spinalis dorsi, i. 88
\begin{tabular}{|c|c|}
\hline \(A \nabla E\) & AVE \\
\hline Aves-muscular system-continued. & Aves-muscular system-continued. \\
\hline multifidus spinæ, ii. 88 & muscles of the pinion or \\
\hline obliquo-spinales, ii. 89 & hand, ii. 99 \\
\hline intorarticulares, ii. 89 & lege, muscles of the, ii. 99 \\
\hline obliquo-transtersales, ii. 89 & gluteus externus, ii. 100 \\
\hline intertransversales, ii. 89 & medius, ii. 100 \\
\hline levatores costarum, ii. 89 & minimus, ii. 100 \\
\hline complexus, ii. 80 & magnus, i1. 100 \\
\hline recti capitis postici, ii, 90 & quartus, ii. 101 \\
\hline trachelo-mastoideus, i1. 90 & quintus, ii. 101 \\
\hline longus colli, ii. 90 & use, ii. 101 \\
\hline rectus capitis anticus major, & iliacus internus, ii. 101 \\
\hline ii. 90 & pyramidalis, ii. 101 \\
\hline \begin{tabular}{l}
minor, \\
ii. 90
\end{tabular} & udductor brevis femoris, ii. 101 \\
\hline rectus capitis lateralis, ii. 90 & adductor longus, ii. 101 \\
\hline ohliquus externus abdominis, & adductor magaus, ii, 101 \\
\hline ii. 90 & obturator internus, ii. 102 \\
\hline internus abdominis, & gemellus, ii. 102 \\
\hline ii. 91 & quadratus, ii. 102 \\
\hline rectus abdominis, ii. 91 & abductor magnus, ii. 102, 109 \\
\hline trunsversalis abdominis, ii. 91 & vastus extornus, ii. 102 \\
\hline diaphragm, Hi .91 & crureus, ii. 102 \\
\hline appendico-costales, ii. 92 & sartorius, ii. 102 \\
\hline levator caudir, ii. 92 & biceps flexor cruris, ii. 103 \\
\hline adductor caudes superior, ii. 92 & semimembranosus, ii. 103 \\
\hline \begin{tabular}{l}
inferior, i \\
depressor caudæ, ii. 92
\end{tabular} & semintendinosus, ii. 103 cruræu゙s, ti. 104 \\
\hline quadratus coccygis, ii. 92 & gracilis, ii. 104 " \\
\hline pubo-coccygeus, ii, 92 & vastus internus, ii. 104 \\
\hline ilio-coccygeus, ii. 92 & popliteus, ii. 104 \\
\hline ischio-coccygeus, ii. 93 & gastrocnemius externus, ii. \\
\hline head, muscles of the, ii. 93 & \[
104
\] \\
\hline temporalis, ii. 93 & internus, ii. 105 \\
\hline masseter, ii. 93 & soleus, ii. 106 \\
\hline biventer maxille, ii, 93 entotympanicus, ii. 94 & \begin{tabular}{l}
flexor perforans digitorum, \\
ii. 106
\end{tabular} \\
\hline pterygoideus externus, ii. 94 internus, ii. 94 & \begin{tabular}{l}
Hexor perforatus digitorum, \\
ii. 106
\end{tabular} \\
\hline wings, mucles of the, 1i. 94 & pectineus, ii. 107 \\
\hline trapezius, ii. 94 & peroneus longus, ii. 107 \\
\hline rhomboideus, ii. 94 & tibialis anticus, ii. 108 \\
\hline levator scapule, ii. 95 serrator magnus anticus, ii. 9.j & extensor longus digitorm, ii. 108 \\
\hline parvas anticus, ii. 90 & extensor brevis digitorum, ii. \\
\hline pectoratis minor, ii. 95 & 108 8 \\
\hline supra-spinatus, ii. 95 & extensor pollicis brevis, iz. 108 \\
\hline infra-spinatus, ii. 9 \% & peroneus medius, ii. 108 \\
\hline teres major, ii. 95 & skin, muscles of the, ii. 109 \\
\hline subscapularis, ii. 95 & constrictor colli, ii. 110 \\
\hline latissimus dorsi, ii. 95 & use, ii. 110 \\
\hline deltoides, ii. 95 & sterno-cervicalis, ii. 110 \\
\hline pectoralis, first, ii. 96 & use, ii. 119 \\
\hline second, i1. 96 & sterno-maxillaris, ii. 111 \\
\hline third, ii. 97 & dermo-transversalis, ii. 111 \\
\hline coraco-brachialis, ii. 97 & platysma myoides, ii. 111 \\
\hline extensor plicæ alaris, ii. 98 & dermo-spinalis, ii. 111 \\
\hline extensor nuetacarpi radialis & dermo-iliacus, ii. 111 \\
\hline longus, ii. 98 & dermo-costalis, ii. 111 \\
\hline extensor metacarpi radialis & dermo-ulnaris, ii. 112 \\
\hline brevis, ii. 98 & dermo-humeralis, ii, 112 \\
\hline extensor carpi ulnaris, ii. 99 & nerrous system, ii. 121 \\
\hline flexor metacarpi radialis, if. 99 & olfactory or first pair, ii. 121 \\
\hline
\end{tabular}

\section*{AVE}

Ave月-nervozts system-continued,
optic, i. 122
third, or oculomotorial, ii. 122
fourtb, ii. 122
fifth or trigeminal, ii. 122
ophthalmic division, ii. 123
first, ii. 123
eacond, ii. 123
third, ii. 123
superior maxillary, ii. 123
inferior maxillary, ii. 123
facial, 3i. 124
anditory nerve, ii. 124
eightb, i1. 124
pneumogastric, ii. 124
hypoglossal, ii, 125
spinal, ii. 125
cervical, ij, 125
sacral, ii. 125
brachial plexue, ii. 125
obturstor, ii. 128
femoral, ii. 128
ischiatic, ii. 128
tihial, ii. 126
peroneal, ii. 128
organ of touch, ii. 128
taste, ii. 129
mmell, ii. 130
hearing, 1 i .133
might, ii. 133
size of eyes, ii. 135
form, ii, 136
sclerotic coart, ii. 136
cornea, ii. 137
choroid cont, ii. 137
iris, if. 137
marsupium, or pecten, ii. 138
retina, ii. 140
aqueous humour, ii. 141
crystalline lons, ii. 141
vitreous humour, ii. 141
muscles of the cyeball, ii. 142
recti, ii. 142
obliqui, ij. 142
eyolids, iti. 142
membrana nictitans, ii. 143
lacrymal glands, ii. 143
ossoous system, \(\mathbf{i i} 14\)
general cbaracters, ii. 14
skeleton, ii. 14
dorsal vertebrre, 31.14
eternum, ii. 20
keel, ii. 23
sacral vertebre, ii. 29
polvis, ii. 32
varintions in its general form and proportions, ii. 36
ilium, il. 33
- ischinm, ii, 35
pubic bones, 11.35
caudal vertebre, ii. 37
tail, it. 37
cervical vertebres, ii. 39

Ave
Ares-osseons system-contintued. sknill, ii. 41
separate cranial bones, ii, 43
basioccipital, ii. 43
exoccipitals, ii. 44
basisphenoid, ii. 44
hæmal arch, ii. 46
orbitosphenoids, ii. 46
occipital condyle, ii, 48
mastoid, ii. 50
nasal, ii. 51
premaxillary, ii. 51
maxillary, i. 52
palatines, ii. 52
pterygoids, ii. 53
malar, ii. 54
tympanic, 31.54 , 55
mandible, or lower jaw-
bone, ii. 56
hyoid, ii. 58
lacrymal, ii. 58
in Raptores, ii. 59
in Cantores, ii .59
in Grallatores, ii, 60
in Natatores, ii, 61
limited range of size of the
cranial cavity, ii. 61
formmina, ij. 62
tympanic cavity, ii. 62
orbits, ii. 62
olfactory cerebral crura, ii. 63
cranial peculiarities, ii. 64
scapular arch and limbs, ii. 65
scapula, ii. 65, 66
coracoid, ii. 65, 66
clavicles, i1. 65, 67
humertts, ii, 68
radius, ii. 71, 72
ulna, ii. 72
metacarpus, ii. 73
anchylosis of, ii, 73
pectoral limb, ii. 74
pelvic limb, bones of, ii. 75
femur, ii. 75
tibia, ii. 77
fibula, if. 79
tocs, ii. 82
patella, il. 83
ossification of parts of tendons,
ii. 83
peculiar secretions in birds, ii. 230
respiratory system, ii. 209
lungs, ii. 209
numher, ii. 209
colour, ii. 210
bronchi, ii. 210
arteries, ii. 210
air-cells, ii. 211
air-persseges, 11.217
laryma, superior, ii. 217
rima glottidis, ii. 218
tracher, 1i. 219

AVE
Aves-air-passages-continued. larynx, lowor, it. 220
sympathetic system, ii. 127
tegumentary system, ii. 231
composition of the tegument, ii. 231
corium, ii. 231
rete mucosum, ii. 231
epiderm, ii. 232
scales of the legs, ii. 232
appendages of the tegument, ii. 233
feathers, ii. 233
development, ii. 236
moulting, ii. 241
urinary system, ii. 226
adrenals, ii. 229
kidneys, ii. 226
number, ii. 226
size, ii. 227
varieties, ii. 227
lobes, ii. 227
texture, ii. 228
colour, ii. 228
tubuli uriniferi, ii. 228
arteries and veins, ii. 228
ureter, ii. 228
cloaca, ii. 229
spleen, ii. 230
Axolotes marmoratus, organ of hearing of, i. 347
pectoral limh, i. 170
skulls, i. 87
Azolotes (syn. Siredon), female organs of generation of, i. 583
gills, i. 514
heart, i. 506
larynx, i. 527
skull, i. 87
teguments, i. 552
Aye-aye, bones of, ii. 513, et seg.
muscles, iil. 52
salivary syatem, iii. 405

RADGER, bones of, ii. 501
D. Bagrus flamentosus, air-bladder of, i. 491,492

Balæna australis, skull of, ii. 423,426
Balæna longimana, skull of, ii. 426
limh-hones, ii, 428
Balæna mysticetus, characters of, ii, 280, 296
alimentary canal, iii, 452
brain, iii. 143
development, iii. 732
limh-bones, ii. 428, 429
mouth, iii. 383
nerves, iii. 152
teeth, iii. 278
thymus gland, iii. 568
vertehral column, ii. 415, 416, 418
Balæniceps, beak of, ii. 148
skull, ii. 61

BAT
Balmenidæ, characters of, ii. 296
larynx, iii. 587, 588, 589, 590
lungs, iti. 578
nerves, iii. 152
prosencephalon, iii. 119
skull, ii. 426
teeth, iii. 278, 279
vertehral column, ii. 415
Balænoptera, alimentary canal of, ii. 453, 454
arteries, iii, 546
brain, iii. 143
larynx, iii. 587
limb-hones, ii, 426, 428
lungs, iii. 579
organs of generation, male, iii. 659
organs of sight, iii. 249
organs of touch, iii. 189
skull, ii. 419
spleen, iii. 561
teeth, iii. 265, 274, 277, 278, 279
vertebral column, ii. 418
Balistes, alimentary canal of, i. 421
dermoskeleton, i. 193, 194
nerves, i. 306
skull, i. 107
teeth, i. \(377,378,382\)
Balistini, characters of, i. 11
alimentary canal, i. 417
Bassaris astuta, limb-bones of, ii. 610
Bat, skeleton of a, ii. 278. See Vespertilio
Bathyergus, alimentary canal of, iii. 422,424
limb-hones, ii. 381
mammary glands, iii. 776
mouth, iii, 399
organs of generation, female, iii. 687
organ of hearing, iii. 231
organ of sight, iii. 246
spleen, iii. 560
teeth, iii. 265, 269, 296
thyroid gland, iii. 565
Batides, characters of, i. x. 13
teeth, i. 381
Batrachia, ahsorhent system of, i. 458
adrenals, i. 543
alimentary canal, i. 437
arteries, i. 516
hlood, i. 501
hrain, i. 290
characters of, i. 15
fecundation, i. 614
oviposition, i. 616
development, i. 619
generative system, i. 576 male organs, i. 576
female organs, i. 583
generative products and development, i. 591
ovulation, i. 592
gills, i. 512
hearing, organs of, i. 347
heart, i. 507
ichthyomorphous, i. 215

Bat
Bitrachia, ichthyomorphous-continued. muecles of, i. 215
kidneys, i. 538
larynx, i. 627
locomotion, j. 282
lunge, i. 521
respiratory actions, i. \(\mathbf{5 3 0}\)
osscons system, i. 48
vertobral column, i. 46
skull, i. 88
ovulation, i. 505
reproduction of parts, i. 586
eight, organs nf, i. 337
mell, organs of, i. 330
sympathctic nerrous syatem, i. 321
teeth, i. 385, 392
teguments, i. 552
periorlical shedding of thsepidsrm, i. 553
thymus hody or gland, i. 565
touch, organs of, i. 326
voing, i. 501, 502
Batrachus, arteries of, i. 489
gills, i. 481
pectoral limb, i. 184
pyloric appondage and pancreas, i. 430
Bdellostoma hoptatrema, blood of, i, 488
gills, i. 476,477
hasrt, i. 471
kidneys, i. 535
Bdeogale, teeth of, iii. 307
Bear, gestation of, iii, 745
muscles, iii. 60
organs of generation, iii. 689
organ of hearing, jii, 234
organ of sight, iii, 252
bones, ii. 490, et seg.
teeth, iii, 335
Beaver, alimentery canal of, iii. 422
hrain, iii, 111
organs of generation, iii. 653, 686
skeleton, ii. 384
Belone, developrant of bone of, i. 21
myelencsphalon, j. 283
nerves, i, 297, 306
pyloric eppendage and pancreas, i. 432 Fsiny, i. 468
Beryx Trachinidse, air-hloddsr of, i, 493
Bile in reptiles, i. 452
Bimnno, chardetors of, i. xvii. xxxviii; ; ii. 292
olimentary caual, iii, 434-442
blood, iii. 516
development, iii. 747, 761
heart, 1ii. 525
locomntion, iii. 70, 72
mammary glands, iii, 780, 783
nervous system, iii. 88
macromyelon, iii. 88
prossncephalon, ii3. 132
nervas, iii. 147
orgnes of gencration, male, iij. 646,673
ferale, iii, 704

BRA
Bimana-continued.
osseous gystem, ii. 553-586
placenta, iii. 750
teeth, iii. 822-326
veing, iil. 555
Bipes lepidopus, lungs of, i. 525
Birds. See Aves.
Bison, i. xxxii.
Bison americantus, horns of, iii. 825
female organs of generation, iii. 697
Bison suropens, organ of taste of, iii. 196
skull, i1. 472, 473
teeth, iii. 351
vertebral column, ii. 462
Biventer maxills muscle in Aves, ii. 93
Biziura, pelvic limbs of, ii. 73
Blennidæ, characters of, i. 11 orulation, i. 599
Blennius, myelencephalon of, i. 276
nerves, i. 298, 302
ovulation, i. 695
Boa, kidneys of, i. 539, 540
larynx, i. 628
tegumente, i. 554
Boa constrictor, oriposition in, i, 617
myelencephalon, i. 291
vertebral column, i. 58
Boidx, organ of sight of, i, 338
Bornbinator igneus, larynx of, i. 627
reproducible parte, i. 567
semination, i, 591
Boops, teeth of, i. 371
Bos, charecters of, i. xi. ; ii. 286
developmeut, iih. 738
horns, iii. 625, 631
nerves, iii. 159
prosencephalon, iii. 128
testh, ii. 362
vertebral column, ii. 462
Bos grunniens, limb-bones of, ii. 483
Bos taurus, characters of, i. xxxii.
cerebellum, iil. 90
liver, ii. 482
muscles, iii. 42-47
skull, ii. 472
vertobral column, ii. 461
Boschisman, skull of the, ii. 564
Bothriolepis, teeth of, i. 378
Bovidæ, arteries of, iii, 547
horns, iii, 624
limb-bones, ii. 486
mammary glands, iii. 779
skull, ii. 472
teeth, iii. 351
urinary system, iii. 607
Box, alimentary canal of, i. 415
Box salpa, alimentary canal of, i. 421
Box vulgaris, slimentary canal of, i. 421
Brachypterix, characters of, \(j, ~ x x i i i\).
dorsal vertebre and sternum, ii. 24, 26
Bradypodidæ, characters of, ii. 296
limb-bones, ii. 414
teeth, i. 363

BRA
Bradypus didactylns. See Cboloepus
Bradypus tridactylus, characters of, ii. 278 development, iii. 731
larynx, iii. 586
liver, iii. 484
lungs, iii. 578
organs of generation, female, iii. 690
osseous system, ii. 298
limb-bones, ii. 307, 411, 412
vertebral column, ii. 398, 400
skull, ii. 405, 406
placenta, iii. 731
prosencephalon, iii. 410
Brain of Aves, ii. 118
Fishes, i. 271
Mammalia, ii. 269, 270 ; iii. \(81,102,751\)
Reptiles, j. 290
Brama (syn. Abramis), changos accompanying growth of, i. 612
nerves, i. 297
pyloric appendage and pancreas, i. 432 semination, i. 589
Bramatberium, borns of, iii. 625
skull, ii. 473
Brancbiostoma (syn. Ampbioxus), cbaracters of, i. 3, 9
alimentary canal, i. 413, 414
gills, 1. 513
growth, i. 611
myel encephalon, i. 269, 270
organ of smell, i. 328
osseous system, i. 26, 31, 71
Brovipennatre, characters of, ii, 9
Bruta, alimentary canal of, iii. 446
characters, ii. 278
mouth, iii. 387
muscles, iii. 19
organs of generation, iii. 655
male, iii. 655
female, iii. 689
organ of sight, iii. 246
osseous system, ii, 393 skeleton, ii. 393
A. vertebral column, ii. 393
cervical, ii. 393-402
dorsal, ii. 393-402
lumbar, ii. 393-402
sacral,-ii. 393-402
caudal, ii. 393-402
B. skull, ii. 403
C. bones of the limbs, ii. 407
scapula, ii. 407
clavicle, ii. 411
humerus, ii. 407
ulna, ii. 407
radius, ii. 407
olecranon, ii. 407
carpals, it. 408
fempr, ii. 408
tibia, ii. 408
fibula, ii. 408
foot, ii, 409
salivary system, iii. 399
teeth, iii. 272

CES
Bruta-continued.
tongue, iii. 193
Bubalus, mammary glands of, iii. 770
skull, ii. 473
organ of hoaring, iii. 233
Bubalus caffer, horns of, iii. 626
Bubalus gnu, borns of, iii. 626 limb-bones, ii. 482
Bubalus moscbatus, borns of, iii. 626
mammary glands, iii, 779
Bubo maximus, organ of generation of, male, ii. 242
organ of sight, ii. 140
Bucconidx, charactors of, ii. 12
osseons system, ii. 28
Bucephalus capensis, teeth of, i. 395
Buceros, liver of, ii. 175
osseous system, ii. 40 cervical vertebre, \(\mathrm{ji}, 40\)
skull, ii, 41, 55, 59, 63
Bucerotidæ, cbaracters of, ii. 11
Bufo, development of, i. 629
fecundation, i. 614
pectoral limb, i. 177
pelvic arch and limb, i. 183
Bufo agua, pelvic arch and limbs of, i, 184
tegument, \(\mathrm{i}, 552\)
Bufo asper, teguments of, i. 551
Bufo culamita, development of, i, 629 tegument, i. 552
Bufo cinereus, larynx of, i, 527
Bufo tuberosus, teguments of, i, 551
Bufo vulgaris, development of, i, 624
larynx, i. 528
teguments, i. 653
vertebral colnmn, i. 50
Bufonidæ, cbaracters of, i. 15
Buglossus, characters of, i, xxxiii
Bungarus, tegument of, i. 554
Buteo, alimentary canal of, ii, 171
larynx, lower, ii. 220

CACHALOX, teeth, iii, 281
Cæcilia, cbaracters of, i. 15
alimentary canals, i. 444
arteries, i. 516
liver, i. 449
teguments, i. 651
vertebral column, i. 50
Cæcilia albiventer, pancreas of, i. \(4 \overline{5} 3\)
Crecilia interrupta, pancreas of, i. 453
Cælacanthi, cbaracters of, i. 12
Cxelogenys, alimentary canal of, iii. 423
larynx, iii. 585
lungs, iii. 577
mammary glands, iii. 775
mouth, ifi. 386
organs of generation, male, iii. 652
organ of hearing, iil. 230
organ of smell, iii. 208
salivary glands, iii. 399
skı11, ii. 371
Cæsio, alimentary canal of, i. 415

\section*{CAL}

C'allichthye, feenndation of, i. 814 myelencephalon, i. 290 gkull, i. 108
Callionymus, prolongation of the fin-rays of', with age, i. 612
Culligaurus, teeth of, i. 403
Cullithrix personata, larynx of, iii. 598 osseous sygtem, ii. 529
Callithrix sciureus, development of, iii. 745,748
osscous system, ii. 515, 530, 543
prosencephalon, iii. 114, 124, 125, 129, 131 orgen of taste, iii. 190
Callithrix spixii, osseous system of, ii. 515
Callorhynchus australis, ovalation in, i. 508
Calotes, teeth of, i. 402
Calyptorhynchus, ossecus system of, ii. 21, 28,50,58, 83
Camelida, characters of, i, xxxij.
development of, iji. 737
limb-hones, ii. 481, 482
liver, iii. 478
lunge, iii. 581
mammary glands, iii. 779
muscles, iii. 43, 44
organ of taste, iii. 196
prosencephalon, iii. 122
skull, ii. 474
urinary system, iii. 807
vertobral column, ii. 480, 462
water-cells, iii. 489
Camelopardalis Giraffa, characters of, 1. xxxii.; ii. 288
alimentary canal, iii. 471
hrain, iii. 143
cerebellum, iii. 90
gestation, 1ii. 730
horns, iii. 831
larynx, iii. 695
limh-hones, ii. 482
mammary glands, iii. 779
museles, iii. 47, 40
myelon, iii. 75
orgen of taste, iii. 196
ploconta, iii. 739
prosencephalon, iii. 122
skull, ii. 475
vertebral column, ii. 484
Camelus, charncters of, ii. 286
female organs of generation, iii. 695
mngeles, iii. 48
teoth, i11. 340
Camelus buctrianus, humps of, iii. 784
nitmeutary canal, iii. 459, 471 muscles, iii. 40
Camelus dronedarius, hnmp of, iii. 784 inuseles, iii. 49
Caneromn, benk of, ii. 148 skull, ii. 61
Canidx, locomotion of, iii. 69
limb-tioncs, ii. 289
mnmmury glands, iii, 780

CAP
Canidx-continued. prosencephalon, iii. 118
tongue, iiii. 197
urinary organs, iii. 808
vertebral column, ii. 492
Canis, organ of hearing, iii. 235
organs of generation, msle, iii. 670
placenta, iii. 744
gulivary glands, iii. 405
teeth, iii, \(330,331,332,370\)
Canis aureus, skull of, ii. 503
Canis australis, skull of, ii. 503, 504
Canis domesticus, chargetera of, ii. 298
adrenale, iii. 570
alimentary canal, iii. 444
development, iii. 709, 710, 715, 744
lungs, iii. 582
lymphatics, ini. 512
mental activitios, iii. 820
nerves, iii. 158
organs of generation, male, iii. 670
female, iii. 700
organ of hearing, iii. 234
organ of smell, iii. 215
радсreas, iii. 498
prosencephalon, iii. 118
salivary glands, iii. 404, 405
skull, ii. 506, 571
spleen, iii. 561
Fertebrel column, ii. 492
Canis lupus, skull of, ii. 503
vertebral column, ii. 492
Canis pictus, limb. bones of, ii. 510
Canis rufus, vertebral column of, ii. 492
Canis vulpes, nerves of, iii. \(175,176,180\)
prosencophalon, iii, 117, 118
scent glands, iji. 637
skull, ii. 503
Cantharis vulgaris, air-hladder of, i. 491
Cantores, characters of, i. 10
pelvis, ii. 82
sternum, ii. 28
vocal organs of, ii. 224
Capitonjda, characters of, ii. 11
Capra hircus, development of, iii. 738
skull, ii. 475
Caprimulgids, characters of, ii. 11
Caprimulgus, alimentary canal of, ii. 158
beak, ii. 147
lower larynx, ii. 221
osseous system, ii. 52 skull, ii. 52, 55 polvic limbs, ii. 83
pancreas, ii. 178
tegument, composition of, ii. 232
Capromys Fournieri, alimentary canal of, iii. \(423,424,425\)
liver, iii. 485, 488
mammary glands, ini. 775
mouth, iil. 387
organs of generation, mule, iii. 652
organ of taste, iii. 192
apleen, iii. 560

CAP
Capromys prehensilis, vertebral column of, ii. 367

Capuchin monkey, bones of, ii. 516, et seq.
Caraux, characters of, i, xxxiji
Carchardon megalodon, teeth of, i. 372
Carcharias, alimentary canal of, i. 422 heart, i. 474
myelencephalon, i. \(273,276,283\)
skull, i, 80, 81
teetb, i. 372
vertebral column, i. 33, 35, 39
Cardiodon, teeth of, i. 387
Carnivora, adrenals of, iii. 569
alimentary canal, iii. 442
arteries, iii. 548
brain, iii. 116
cacum, iii. 445
characters of, ii. 288
development, iii. 742
dual glaud-bags, iii. 636
heart, iii. 523
liver, iii. 485
locomotion, iii. 60
mouth, iii. 395
muscles, iii. 49
nerves, iii. 175
organs of generation, iii. 668
male, iii. 668
female, iii. 698
organ of hearing, iii. 234
sigbt, iii. 252
smell, iii. 215
osseous system, ii. 457
skeleton, ii. 457
A. vertebral column, ii. 458 dorsal, ii. 458 lumbar, ii. 458 sacral, ii. 458 caudal, ii. 458
B. skull, ii. 494
bones of 'the, ii. 494-506
C. bones of the limbs, ii. 506
scapula, ii. 506
clavicle, ii. 510
antibrachial, ii. 507
radius, ii. 507
pelvic arch, ii. 507
femur, ii. 507
tibia, ii. 507
fibula, ii. 507
astragalus, ii. 507
foot, ii. 507-511
pancreas, iii. 495
placenta, iii. 743
respiratory system, iii. 581
spleen, iii. 561
sympalbetic system, iii. 181
tbymus, iii. 568
tongue, iii. 197
veins, iii. 555
Cartilage, temporary, stages of its ossification, 1.21
Caryocatactes, alimentary canal of, ii. 157

CAY
Cassicus, sacral vertebre and sternum, ii: 32, 36
Castor canadensis, characters of, ii. 269 ulimentary canal, iii. 422
castoreum, iii. 636
organs of generation, male, iii. 653
organ of hearing, iii. 231
prosencephalon, iii. 111
Castor fibres, castoreum glands of, iii. 635
mesencophalon, iii. 98
organs of goneration, male, iii. B49
female, iii. 686
prosencephalon, iii. 110
skull, ii. 374
vertebral column, ii. 364
Casuarius Bennettii, generative system of, ii. 257
organ of sight, ii. 138, 139, 140
skull, ii. 64
Casuarius galeatus, characters of, ii. 6
alimentary canal, ii. 162, 173
generative system, ii. 242
liver, ii. 177
muscles of tbe legs, ii. 101
osseous system, ii. 23, 30, 55, 39, 61,66
tegumentary system, ii. 232, 235
veins, ii. 106
Cat, brain of, iii. 114, 117
generation, iii. 742
Iocomotion, iii. 69
muscles, iii. 50
organ of sight, iii. 252
organs of generation, iii, 671
teeth, iii. 374
Catarhina, characters of, ii. 291
alimentary canal, iii. 432
development, iii. 746
generative organs, male, iii. 673
female, iii, 703
larynx, iii. 599
liver, iii. 487
mammary glands, iii. 780
organ of hearing, iii. 236
sight, iii. 252
smell, iii. 216
pancreas, iii. 496
skeleton, ii. \(517,531,543\)
teeth, iii. 316
Catarrbactes, dorsal vertebræ, ii. 16
Cathartes, blood of, ii. 184
heart, ii. 185
liver, ii. 175
osseous system, ii. 27
spleen, ii. 230
Caucasian, skull of, ii. 569
Canda equina in Fisbes, i. 272
Cavia aperea, mammary glands of, iii. 775 salivary glands, iii. 398
Cavia cobaya (syn. Porcellus), development of, iii. 727
limb-bones, ii. 380
liver, iii. 485
mammary glands of, iii. 775

\section*{cay}

Cavia cobaya-continued. mesencephalon, iii. 98
organs of generation, male, iii. 652
Cabus Apella, osseous system of, ii. 529,534 proanncephalon, iii. 131 taoth, iii. 315
Cebas capuciuus, arteries of, iii. 543
dovelopment, iii. 736
larynx, iii. 508
organs of generation, male, iii. 672
os seuns systom of, ii. 373, 516, 630
Cebas hypoleucus, dorso-lumbar vortebre of, ii. 515
Centetes, alimentary canal of, iii. 428
development, iii. 730
batr, ifi. 621
bybornation, ii. 4
liver, iii, 484
organs of generation, female, iii. 689
organ of hearing, iii, 230
teetb, ii1. 310
vertebral column, ii. 385
Centrina, rertebral column of, i. 35
Contriscus, alimentary canal of, i. 421
pectoral limb, i. 164
dermoskeleton, i. 193
Centriscus humorosus, dermoskeleton of, i. 194
Contriscus scolopax, dermoskeletoit of, 1.193 pectoral limb, j. 164
Contropborus, beart of, i. 474
Contropristig gigas, locomotion of, i. 254
Centropus, osseous system of, ii. 32, 75
Caphalaspis, dermoskeleton of, i. 197
Cophalophus. See Antilope mergens
Caphalopteride, cbaracters of, i, 13
Cophalopterus, beart of, i. 474
Ceratodus, teeth of, i. 369, 385
Ceratophrys cornuta, absorbents of, \(i, 459\) teotb, i. 392
teguments, i. 551
Cercolabee(sym. Synotheres), liver of, iii. 485 mammary glands, iii. 775
vertebral column, ii. 367
Carcoleptes caudivolvalue, limb-bones of, 1i. 509
mammary glands, iii. 780
teeth, iii. 334
vertebral column, ii. 491
Cercopithecus albogularis, osseous system of, ili. 533
Corcopithecus ruber, osseous system of, ii . 683
Cercopithecus sabreus, nlimentary canal of, iii. 433,434
development, iii. 746
larynx, iii. 600
organ of hearing, iii. 236
orgnns of gonoration, female, iii. 703
osseous system, ii. 633
Careopsis, period of incubation of, 1i. 257
Corthia, cbaracters of, ii. 10
pancreas, ii. 176

CET
Corvical nerves in Aves, ii. 125
Cervidæ, cbaractera of ii, 266
development, iii. 738
horne, iij. 627
limb-bones, ii. 486
mammary glands, iii. 779
prosencephalon, iii. 122, 123
Cervus capreolns, horns of, iii. 639
organs of generation, female, iii. 696
dovelopment, iii. 738
gestation, iii. 736
Cervus dama, horns of, iii. 629, 631
skull, ii. 478
Cervus davidianus, borns of, iii. 628, 630
Cervus olephas, development of, iii. 738
horns, iii. 628
Cervus muntjac, horne of, iii. 631
limb-bones, ii, 479
skull, ii. 476
Coryus rupus, female organs of generation of, iii. 697
borns, iii. 631
Cervus simplicicornis, horns of, iii. 631
Cervus tarandus, characters of, i. exsii.
horns, iii. 630
organs of generation, females, iii. 697
skull, ii. 476
vetebral column, ii. 464
Cestracion Philippi, skull of, i. 79
teeth, i. \(376,364,398\)
Cestraciontidae, characters of, i. 13
Cestrophori, characters of, i. 13
Cetacer, adrenals of, iii. 570
alimentary canal, iii. 452
artories, iii. 546
balcen, iii. 276
brain, jii. 119
characters, ii. 280
derm, iii. 609
development, iii. 732
diapbragm, iii. 2
heart, iii. 520
liver, iii. \(\mathbf{4 7 6 - 4 8 6}\)
muscles, iii. 24
nervous system, iii. 75
organs of generation, jii. 655
male, iii. 655
fomale, iii. 691
organ of hearing, iii. 224
organ of sight, iii. 246
organs of sight, iii. 258
organ of smell, iii. 210
organ of toucb, iii. 166
osseous system, ii. 415
skeleton, ii, 415
A. vertebral column, ii, 415
cervical, ii. 415
dorsel, 1i. 417
B. skıll, ii. 419
frontals, ii. 420
vomer, it. 420
palatal, ii. 421
pterygoid, ii. 421


Cetacea-osseous system-continued. maxillary, ii. 421
premaxillaries, ii. 421
melar, ii. 421
jaws, ii. 422, 428
C. bones of limbs, ii. 426
scapula, ii. 426
hnmerus, ii, 427
ulna, ii. 427
radius, ii, 427
carpus, ii. 427
metacarpals, ii. 428
ischia, ii. 429
tibia, ii. 429
sacral, ii. 429
paдcreas, iii, 495
respiratory system, iii. 578
ealivary glands, iii. 396
spleen, iij. 561
thymus, iii. 568
tongue, iii. 193
veins, iii. 553
Cetiosaurus, vertebral column of, i, 69
Chæropotamus, charactere of, ii, 286
teeth, iii. 343,375
Chærops, alimentary canal of i. 410
Chætodon, characters of, i. 1 f
teeth, i. 370
Chalcis, lunge of, i, 525
Chameleo, alimentary canal of, i. 436, 439
liver, i .452
locomotion, i. 263
pectoral limb, i. 175, 178
pelvic arch and limb, i. 191
skull, j. 156
tongue, i. 436
vertebral column, i, 58
Chameleo bifurcus, dermoekeleton of, i. 193 skull, i. 156
Champsa (syn. Alligator palpebroea), dermoskeleton of, i. 198
Champea gibbiceps, dermoskeleton of, i. 198
Champsa lucius, skull, of, i. 138 vertobral column, i. 66, 67, 70
Champsa mississippiensis, alimentary canal of, i. 446
liver, i. 450
teeth, i. 408
Champsa nigra, liver of, i. 451
skull, i. 138
teeth, i. 406
Champsa trigonata, dermoskeleton of, i. 198
Characinidæ, characters of, i. 10
Charadrius, generative system of, ii. 257 pelvic limbs, ii. 82
Cheek-pouches of Mammals, iii. 386
Cheilinus, skull of, i. 120
Cheirogaleus griseus, skull of, ii. 529
Cheiromeles caudatus, glandular eac of, iii. 634
Cheiromeles torquatus, glandular sac of, iii. 634

CEE
Cheiroptera, characters of, ii, 278, 296
alimentary canal, iil. 428
arterice, ili. 536, 542
cerebellum, iii. 90
derm, iii. 612
development, iii. 730
larymx, iii. 586
limb-bones, ii. 392
mammary glands, iii. 776
mesencephalon, iii. 98
mouth, iil. 387
muscular system, iii. 1
myelon, iii. 74
organs of generation, male, iii. 657
female, iii. 689
organ of hearing; iii. 228
organ of touch, iii. 189
pancreas, iii. 484
placenta, iii. 730
prosencephalon, iii. 109
skull, ii. 387
teeth, iii. 310
thyroid gland, iii. 565
veine, iii. 553
vertebral column, ii, 387
Chelone, chacacters of, i. 17
growth of bone, i. 26
pectoral limb, i. 171, 173
pelpfe arch and limb, i. 185
Chelone caretta, alimentary canal of, i. 446
liver, i. 450
pancreas, i. 454
teguments, i. 560
vertebral column, i. 61, 63
Chelone imbricata, alimentary canal of, i.445
Chelone mydus, alimentary canal of, i. 440, \(442,444,445\)
development, i, 638
lungs, i. 525
myelencephalon, i. 292, 293, 295, 297
nerves, i. 813, 323
organ of hearing, i. 348
organ of sight, i. 340
organ of smeil, i. 328
oviposition, i. 618
pancreas, i. 453
pelvic arch and limb, i. 189
skull, ii. 126, 128
Chelone planiceps, skull of, i. 135
Chelone pulchriceps, skull of, i. 135
Chelone Temminckii, skull of, i. 131, 135
Chelonia, absorbent system of, i. 459
adrenale, i. 544
alimentary canal, i. 433
arteries, i. 520
blood, i. 501
brain, i. 292
characters of, i. 16
fecundation, i. 615
oviposition, i. 617
devolopment, i. 634, 638
generative organs, i. 581 male, i. 581

CHE
Chslonia-continued.
generative organg, female, i. 586
hearing, organs of, i. 348
heart, i. 508
kidneys, i. 541
larynx, i. 528
liver, i. 449
lunge, i. 525,530
capacity, i. 526
respiratory actions, i. 531
muscular system of, i. 231
osseous system, i. 126
skull, i. 126
vertebral column, i. 60
scent-glands, i. 582
sight, organs of, i. 339
smell, organs of, i. 330
teath, i. 385
teguments, i. 557
neural plates, i. 657
thymus body, i. 586
thyroid body or gland, i. 565
veins, i. 505
Cholydra (syz. Chelonura) serpentina, ali-
mentary canal of, i. 447
development, i. 638
generative organe, female, i. 587
liver, i. 450
lunge, i. 525
oviposition, i. 618
pancreas, i. 454
skull, 1. 131, 136
Chelys, heart of, i. 509
organ of sight, i. 331
organ of taste, i. 327
pectoral limb, i. 172, 178
polvic nrch and limb, i. 187
teguments, i. 560
(hilunycteris, teeth of, iii. 310
('himera monstrosa, arteries of, i. 489
myelencephalon, i. 276
muryes, i. 304
nomination, i. 590
weth, i. 378
vrtebral colnma, i. 32, 35
(hismeride, charactore of, i. 13
myolencephalon, i. 293
Chimprazee. See Troglodytes niger
Chinchilla, limb-bones of, ii. 385
skull, ii. 370
teeth, iii. 298, 299
Chinchilla lanigera, skull of, 370
Chinese, skull of, ii. 569
Chiromys madagascariensis, as compared
with the genus Lemur, i. xxxy
Chiromys madagascariensis, anal glands of, iii. 637
brain, iii. 124, 125
larynx, iii. 596
lungs, iii. 582
muscles, iii. 53, 64
organ of hearing, iii. 235
orgen of sight, ini. 242

\section*{CLU}

Chiromys madagascariensig-continued.
organs of generation, male, iii. 672 female, iii. 780
osseous system, ii. \(512,513,529,539\), 541, 542
tseth, iii. 313, 314
tongus, iij. 198
Chirotes, tegumente of, i. 555
Chlamydera maculata, nest of, ii. 258
Chlamydosaurus, teguments of , i. 556
Chlamyphorus, limb-bones of, ii. 409
organs of smell, iii. 209
skull, ii. 405, 407
Chosropus, limb-bones of, ii. 351, 354 mnsclos, iii. 13
Cholopus diductylus, charactors of, ii. 297
alimentary canal, iii. 450
female oryens of generation, iii. 690
larynx, iili. 586
limb-bones, ii. 306, 411, 412
lungs, iii. 578
skull, ii. 406
spine of, ii, 279
teeth, iii. 274
Cholcepus Hoffmanni, vertebral column of, ii. 400

Chondropteri, characters of, i. 13
vertebral column, i. 41
Chromide, charactors of, i. 11
Chromis, characters of, i. 11
Chryochloris, hnir of, iii. 621
limb-bones, ii. 392
mals organs of generation, iii. 656
skull, ii. 389
teeth, iii. 301, 302, 303
Chrysophris, teeth of i. 382
Ciconia alba, genorativo system of, ii, 257
Ciconia argala, adrenals of, ii, 229
air-passages, ii. 217-219
alimentary canal of, ii. 162
skull, ii, 54
Ciconia, dorsal vertebræand sternum of, ii. 23
Cinnyrus, characters of, ii. 10
Cinosternon, oviposition in, i. 618
teguments, i. 560
vertebral column, i. 61
Cirrostomi, characters of, i. 9
Cistudo europæa. See Emys europæa
Cistudo triunguie, lunge of, i. 526
Citharinus, skull of, i. 116
teeth, i. 370
Civet, bones of, ii. 492, et seq.
Cladeidon, teeth of, i. 387
Cladobates. Ses Tupaia
Claspers of Fishes, i. 570
Clows of Aves, ii. 74
Mammalis, iii. 623
Clupeidge, characters of, i. 10
myelencephalon, i. 272
Clupea, alimontary canal of, i. 421
nerves, i. 297, 306
veins, i. 468
vertobral column, i. 38

CLU
Clupea harengus, alimentary canal of; 1,420 myelencephalon, i. 283 pancreas, i, 432
vertebral column, i. 43
Clupea sprattus, myelencephalon of, i. 283 pancreas, i. 430
Clupea pilchardus, pylorie appendage of, \(i\). 431
Comiornis, characters of, ii, 13
pelvic limbs, ii. 79
Coati, bones of, ii. 501
Cobitis, alimentary canal of, i. 417
cervical vertebræ of, ii, 303
myelencephalon, i. 279
nerves, i. 297, 302
organ of sight, i. 335
Cobitis barbulata, blood of, i. 500
organ of hearing, i. 345
teguments, i. 547
Cobitis fossilis, air-bladder of, i. 491
semination, i. 590
Coccosteus, dermoskeleton of, i. 196, 197 locomotion, i. 247
Coccothraustes, characters of, ii. 10
Cod, blood-dises of, i. 4
Coleopterus, lower larynz of \({ }_{6}\) ii. \(^{2} 221\)
Coliidæ, characters of, ii. 12
Colobus ursinus, alimentary cenal of, iii. 433
osseous system, ii. 519, 543
Colopterus, urinary system of, ii, 229
Coluber, alimentary canal of, i. 447
Coluber constrictor, alimentary canal, i. 446 liver, i. 450
Coluber guttatus, alimentary canal of, i. 446 liver, i. 450
Colubrides, pancreas of, 1. 453 teeth, i. 395
Colugo, bones of, ii. 393
Columba, charactors of, ii, 10
alimentary canal, ii. \(159,160,161,162\), 168 myelencephalon, ii. 120 sacral vertebre, pelvis, and tail, ii. 32 ! scapular arch and limbs, ii, 66 skull, ii. 49, 58
Columba galeata, scapular arch and limbs of, ii. 66
Columbacei, characters of, ii. 10 alimentary canal, ii. 173
liver, ii. 177
locomotion, ii. 116
pelvie limbs, ii. 82
scaptilar arch and limbs, ii. 70
serual characters, it. 257
skull, ii. 53
Colymbus, characters of, ii. 9
arteries, ii. 190.
locomotion, i1. 113
osseous system, ii. \(28,31,34,54,61\), \(71,75,78,82\)
pancreas, ii. 178
Condylura, organ of smell of, iii. 209

CRO
Conirostres, characters of, ii. 10 beak of, ii. 146
Conger vulgaris, vertebral column of, i. 43
Conodon antillanus, air-bladder of, i. 491
Contest of existence, law of, i, xxxiv; iii. 798
Coprolites, or petrified faeces, of Fishes, i. 424
Coracias, skull of, ii. 63
Coracidæ, characters of, ii. 11
Coricus, skull of, i. 119
Corpuscless, Panician, i. 323
Savian, i. 324
Correlation, law of, i. xxvii ; iii. 787
Cortina, air-hladder of, i. 492 liver, i. 426
Corvina trispinosa, air-bladder of, i. 492
Corvus, characters of, ii. 10 beak, ii. 146
eggs, ii. 257
organ of smell, ii. 130
Corrus corax, lower larynx, ii. 222
Corvus frugileus, organ of sight of, ii. 139
Coryphæna (syn. Lampugus), changes accompanying growth, i. 611
Coryphodon, characters of, ii. 284
geological remains of, iii. 792
teeth, iii. 377
Corythaix, osseous system of, ii. 34, 36
Corythophanes, teguments of, i. 556
Cossyphus, teeth of, i. 371
Cottus, alimentary canal of, i. 415
gills, i. 480
liver, 1. 448
male organs of generation, 1. 569
myolencephalon, i. 284
nerves, i. 298, 302
pectoral limb, i. 168
pyloric appendages and pancreas, i. 430
Coturnix, dorsal vertebre and sternum of,
ii. 27

Cotylis, gills of, i. 481
Cow, development of, iii. 738
muscles, 42-45
Cratseura, teeth of, i. 405
Craticus, skull of, ii. 57
Crax, osseous system of, ii. \(27,32,34,68\)
Crenilabrus, alimentary canal of, i. 410 teeth, i, 374
Cricetus, alimentary canal of, iii, 421
liver, iii. 485
mouth, iii. 386
Crocodilia, blood-dises of, i. 4
adrenals, i. \(\overline{0} 44\)
alimentary canal, i. 433
arteries, i. 520
blood, i. 501
brain, i. 295
character, i. 17
development, i. 634, 638
fecundation, i. 615
generative organs, i. 583
male, i. 583
female, i. 588
hearing, organs of, i. 348

\section*{CRO}

Crocodilia-continued.
beart, i. 610
kidney日, i. 641
larynx, i. 629
liver, i. 460
locomotion, i. 263
lungs, i. 628
muscles, i. 222
vertebral column, i. 85
skull, i. 135
oriposition, i. 819
respiratory sctions, i. 631
ecent-glands, i. 662
aigbt, organs of, i. 340
amsll, organs of, i. 331
teeth, i. 408
tegumsnts, i. 557
tbymus body or gland, i. 568
tongue, i. 438
veing, 1. 606
Crocodilurus, teguments of, i. 546,558
Crocodilus, alimentary canal of, i. 439
development, i. 838
growth of bones, i. 25
locomotion, i. 262
pactoral limb, i. 173
psolvic limb, i, 188,190
akull, i. 135
sympatbetic norvous syatsm, i, 323
Crocodilus acutus, beart of, i, 510
myology, i. 219
akull, 1. 137
vertebral column, i. 66, 67
Crocodilus biporcatus, liver of, i. 451
lungs, i. 628
myology, i. 223
organ of bearing, i. 349
orgnn of sight, i. 341
skull, i, 139, 146
teeth, i. 408
vertebral column, i. 87, 68
Crop, or ingluviss, of Aves, ii. 158
Crotalides, muscles of, i, 225, 227
skull, j, 162
teguments, i. 654
vertebral column, i. 66
Crotalus edamanteus, alimentary canal of, 1. 448
liver, i, 450
pancreas, i. 464
Crotalus durissus, kidnsys of, i. 539
muscles, j. 227, 228, 228
Crotalus horridus, liver of, i, \(\$ 48\)
teoth, i. 394, 395, 398
tegument, i, 5.55
vertebral column, i. 66
Gryptobranchus. Ses Menopoma
Cryptodontin, cheracters of, i, 16
Cryptodontidoe, charucters of, i. 16
Cryptopus Peteraii, teguments of, i. 657
Crystalline lena in Avea, ii. 141
Ctalolubridue, characters of, 1. 11
organ of amell, i. 329

CYP
Ctenodne, teeth of, i. 389, 378
Cteronys, organs of aigbt, iii. 250

Cnculida, "cbaracters of, ii. 12 liver, ii. 177
Cuculus, alimentary canal of, ii. 166 dorsal vertebre and sternum, ii. 28 generative system, ii. 255, 257 liver, ii. 177
Curruca luscinia, lower larynx of, ii. 224
Cyclobatis oligodactylus, pelvic areh and limb of, i. 181
Cyclodus, vertebral column of, i. 58
Cyclodus niger, dermosksleton of, i. 198 skull, i. 155
teetb, i. 387, 388, 402
Cyclodus nigroluteus, kidneys of, i. 542 teeth, i. 402
Cyclolabridx, characters of, 1,11
Cyclopterus liparis, gille of, i. 481
Cyclopterus lumpus, alimentary canal of, i. 421
changes accompanying age, i. 612
kidneys, i. 534, 536
myslencephalon, i. 284
nerves, i. 98,306
organs of generation, male, i. 569
pelvic urch and limb, i. 180
Cyclostomi, characters of, i. 9
muscular system, i. 211
Cyclura, dermoskeleton of, i. 198
Cygnus, characters of, ii. 9
adrenals, ii. 229
air-cells, ii, 212
alimentary cannl, ii. 161, 184, 165
beak, ii. 148
development and peculiarities of the cbick, ii. 265
development of feathers, ii. 241
egge of, ii. 255
gsnerntive system, ii. 244
gland for lubricating its featbers, ii. 230
- heart, ii. 187
lowsr larynx, ii. 220
orgun of sight, ii. 136, 139, 140
spleen, ii. 230
sympnthetic syatem, ii. 127, 128
tongue, ii. 151
Cygnus etratus, development of feathers of, ii. 241
period of incubstion, ii. 257
Cynocephnlus porcnrius, osseous sy日tem of, ii. \(517,531,632\)
spleen, iii. 562
Cynocephslus spbinx, cesophagus of, iii. 432
Cynocepbalus Toth, osseous system of, zi . 517
Cynogale barbatus, limb-bones of, ii. 510
tsetb, iii. 331
Cyprinide, cbaractars of, i. 10
shimentary canel, i, 410,417
sarteries, i. 489
vertebral column, i. 43

\section*{CYP}

Cyprinodon, characters of, i. 10
Cyprinodontidx, characters of, i. 10
Cyprinus carpio, myelencephalon of, i. 275, 286
nerves, i, 297
organ of hearing, i. 345
skull, i. 104, 116
Cypselidx, characters of, ii, 11
muscles of the wings, ii. 96
myelencephalon, ii, 117
osseous system, ii. 21
donsal vertebræ and sternum, ii. 21
scapular arch and limbs, 74
Cypselus, alimentary canal of, ii, 157
dorsal vertebre and sternum, ii, 28 pelvic limbs, ii. 81, 83
sacral vertebræ and tail, ii. 32
Cystignathus pachypus, vertebral column of, i. 50
Cystophyra' cristata, heart of, 524
teeth, iii. 336
vertebral column, ii. 496, 497
Cystophora proboscidea, skull of, ii. 496,497 teeth, iii. 337

DACELO, pelvic limbs of, ii. 81
Dactylethra, laryns of, i. 527 teeth, i. 392 teguments, i. 551
Dactylethra Mülleri, tegument of, i. 551
Dactylopterus (syn. Cephalacanthus), airbladder of, i. 491
changes with age, i. 612
locomotion, i. 257
myelencephalon, i. 271
pectoral limb, i. 167
skull, i. 119
Dapedius, characters of, i. 12
Dasypodidæ, characters of, ii. 279, 296
organs of taste, iii. 193
Dasyprocta, characters of, ii. 270
alimentary canal, iii. 423
limb-bones, ii. 379
lungs, iii. 577
mammary glands, iii. 776
organs of geueration, male, iii. 651
organ of taste, iii. 192
vertebral column, ii. 365
Dasypus 6-cinctus, alimentary canal of, iii. 447
fomale organs of generation, iii. 690
limb-bones, ii. 408
liver, iii. 484
lungs, iii. 578
Dasypus gigas, skull of, ii. 408
Dasypus macrurus, thyroid gland of, iii. 556
Dasypus peba, alimentary canal of, iii. 440 development, iii. 731
heart, iii. 520
limb-bones, ii. 408,409
liver, iii. 484

DEL
Dasypus peba-continued.
lungs, iii. 577
mouth, iii. 390
organ of taste, iii. 193
organs of generation, female, iii. 689
salivary glands, iii. 400, 402, 409
skull, ii. 404
spleen, iii. 560
vertebral column, ii. 393, 394
Dasyuridx, museles of, ii. 14
Dasyurus laniarius, teeth of, ili. 291
Dasyurus macrurus, alimentary canal of, iii. 412, 420
limb-bones, ii. 360, 361
muscles, iii. 14
organ of taste, iii. 191
salivary glands, iii. 398
thymus, iii. 567
thyroid gland, iii. 565
urinary system, iii. 606
Dasyurus Maugei, skull-bones of, ii. 311
Dasyurus ursinus, chargcters of, ii. 269
alimentary canal, iii. 411
larynx, iii. 585
limb-bones, ii, 359
mesencephalon, iii. 98
prosencephalon, iii. 104
skull, ii. 342, 343
teeth, iii. 286
urinary system, iii, 606
Dasyurus viverrinus, female organs of generation of, iii. 681
organ of taste, iii. 191
urinary system, iii, 606
Deer, bones of, ii. 464, 478
horns, iii. 627
skeleton, ii. 285
Degeneration, i. xxxii ; ii. 12 ; iii. 795
Deirodon (syn. Rachiodon) scaber, alimentary canal of, i. 440
teeth, i. 393
vertebral column, i. 56, 57
Delphinidæ, larynx of, iii. 587, 588
limb-bones, ii, 427
nerves, iii. 162
organ of hearing, iii. 224, 225
organ of smell, iii. 204
organ of taste, iii. 194
prosencephalon, iii. 119
skull, ii. 424
teeth, iii. 279
thyroid gland, iii. 565
vertebral column, ii. 419
Delphinus delphis, arteries of, iii. 536
brain, iii. 146
cerebellum, iii. 91
female organs of generation, iii. 691
macromyelon, iii. 84
prosencephalon, iii. 115, 120
teeth, iii. 266, 281, 282
vertebral column, ii. 417
Delphinus griseus, organ of sight, iii. 255
teeth, ini. 265, 280

\section*{DEL}

Delphinns lencas, skull of, ii. 425 teeth, iii. 281
Delphinus tureio, limb-bones of, \(\mathrm{ii}, 427,428\) organ of hearing, iii. 224 vertehrate column, ii. 418, 418
Dendrodus, toeth of, i. \(367,388,378\)
Dendrophis, locomotion of, i. 281
Dontine, osteo- and vaso-, of the teeth of Fishes, i. 378
Dentirostres, characters of, ii. 10
Derivative law, ini. 799
Dorm, i, 545
white and yellow fibres, i. 545
of Mammalia, iii. 810
Dermoukeleton of Fishes, i. 193
Reptiles, i. 198
Dermopteri, characters of, i. 7
devalopment of vertabre of, i. 31 myelencephalon, i. 271
Desmodus, alimentary canal of, iii. 429
organs of taste, ili. 182
organs of touch, iii. 190 teeth, iii, 311, 313
Development, initisi steps of i, 840
Birds, ii. 259
Fishes, i. 801
Mammalia, iii. 711
Reptiles, i. 830
Developmental anatomy, i. rii
Dichobane, characters of, ii. 288
Dichodon, characters of, ii. 288, 287 teeth, iii. 288, 340, 375
Dicotyles, claracters of, ii. 288 alimentary canal, iii. 458 glund opening on tho trunk, iii. 635
limb-bomes, if. 480, 481
livor, iii. 481
organs of smell, iii. 213
teeth, iii. 340
vortebral column, ii. 458
Dicynodon, skull of, i. 169, 180 teoth, i. 399
Dicynodontidxe, characters of, i. 18
Dicynodontia, charecters of, i. 16 skull, i. 159
Dicynodon tigriceps, pelvic arch and limb of, i. 192
Jidelphis Azure, development of, iii. 723
Didelphis brachyura, alimontary canal of, iii. 411
lungs, iii. 577
Didelphis canerivora, mouth of, iii. 385 teeth, iii. 289
vertehral columm, ii. 332
Didelphis, characters of, ii. 275
limb-bunes, ii. 355
macromyelon, iii. 82
mammary glands, iii. 774
mosencophalon, iii. 105
muscles, iii. 14
organ of aight, iii. 261
sknll, ii. 341
toeth, iii. 288

\section*{DIP}

Didelphis dorsigera, mammary glands of, iii. 771
organs of generation, female, iii. 681, 682
Didelphis murina, prosencephalon of, iii. 104
Didelphis opossum, larynx of, ini. 584
male organs of generation, iii. 648
Didelphis philander, alimentary canal of, iii. 420
organ of taste, iii. 191
Didelphis ursina, teeth of, iii. 360
Didelphis virginiana, alimentary canal of, iii. 411
limh-bones, ii. 353
mammary glands, iii. 769, 773
organs of generation, female, iii. 682
organ of sight, iii. 248
organ of taste, iii. 191
prosencephalon, iii. 104
4kull, 343
vertebral column, ii. 332, 334
Didus, characters of, ii. 12, 13
skull, i1. 48, 49, 57
Dimorphodon, characters of, i. 18
teeth, i. 405
Dinornis, charafters of, i. xxxiii. ; ii. 12, 13
generative system, ii. 256
osseous system, ii. \(20,21,31,35\), 48-51, 58, 61-66, 75, 76
Dinosauria, characters of, i. 18 vertehral column, i. 70
Dinotherium, characters of, ii, 282, 296
teeth, iii. \(343,358,359,378\)
vertobral column, ii, 440
Diodon, air-bladder of, i, 491
alimentary canal, i. 415
dermoskeleton, i. 198
gills, i. 478, 481
myelencephalon, i. 272
neryes, i. 306
skull, i, 109, 118, 124
tepth, i, 378
Diomedxa, characters of, ii. 9
locomotion, ii. 116
lower laryax, ii. 225
osseous system, ii. \(15,23,31,61,67\), 71, 82
Diphyodonts, teeth of, iii. 283
Sironia, iii. 283
Marsupialia, iii. 285
Rodentia, iii. 294
Insectivora, iii. 301
Quadrumana, iii. 313
Bimana, iii. 322
Carnivora, iii. 327
Dipnoa, characters of, i. 7, 8
Dipodidæ, organ of sight of, iii. 248
Diprotodon, teeth of, ii.. 405 ; iii. 291, 293
Dipsadidae, organ of sight of, i. 338
Dipsas cynodon, teeth of, i. 395
- Dipteridæ, characters of, i. 12

Dipterus, chameters of, i. 12
Dipus sagitta, limb-bones of, ii, 383

DIP
Dipus sagitta-continued.
liver, iii. 485
organs of generation, male, iii. 654
skull, ii. 376
vertebral column, ii. 366
Discoboli, Ekull of, i. 114
Discoglossus, teeth of i. 392
Dispholidus, liver of, i. 451
Dog, alimentary canal of, iii. 443
bones, ii. 492, et seq.
ear, iii. 235
locomotion, iii. 69
organs of generation, iii. 670
organ of smell, iii. 215
teeth, iii. 330, 331, 373
Dolichotis, mammary glands of, iii. 775
skull, ii. 377
teoth, iii. 297
Dolphin, bones of, ii. 416, 418
brain, iii. 115, 119
teeth, iii. 282
Dorcatherium, characters of, ii. 286
Doucs, bones of, ii. 519 , et seq.
Draco volans, characters of, i. xii.
alimentary canal, i. \(433,434,441\), 445
liver, i, 449, 451
locomotion, i. 264
male organs of generation, i. 580
mnyelencepphalon, i. 268
pectoral limb, i. 175
skull, i, 156
teguments, i. 556
vertebral column, i. 58
Drills, bones of, ii. 532, et seq.
Dromaius, alimentary canal of, ii. 162
heart, ii. 185, 188
kidneys, ii. 227
liver, ii. 177
lower laryax, ii. 220
lungs, ii. 210
osseous system, ii. 23, 24, \(33,3 \pm, 36,52\), 64, 65
tegumentary system, ii. 235, 257
Dromedary. Sse Camelus.
Dryinus nasutus, teeth of, i. 395
Dryophis, organ of sight of, i. 338
organ of taste, i. 327
Dngong, alimentary canal of, iii. 455
bones, ii. 430
diaphragm, iii. 2
heart, iii. 521
pancreas, iii. 495
respiratory system, iii. 579
teeth, iii. 283
urinary system, iii. 607
Dules maculatus, air-bladder of, i. 491

E
AR, parallel between the eye and the, iii. 261

Echeneis remora, changes with growth of, i. 612
dermoskeleton, i. 198

\section*{ELE}

Echeneis remora-continued.
liver, i, 426
myelencephalon, i. 274
myology, i. 211
teeth, i. 377
Echidna. See Vipera arietans.
Echidna, characters of, ii. 275, 297
cerebellum, iii. 89
development, iii. 767
mammary organs, iii. 766
mouth, iii. 383, 385, 396
muscles, iii. 7
myelon, iii. 74
organs of genoration, female, iii. 840, 644
organ of hearing, iii. 228
organ of smell, iii. 208
osseous systom, ii. 311, 312
vertebrel column, ii. 316-319
limb-bones, ii. \(325-328\)
prosencephalon, iii. 102, 103, 128
salivary glands, iii. 396, 397, 409
teeth, iii. 265
Echimyidze, teeth of, iii. 299
Echimys, liver of, iii. 485
mammary glands. iii. 775
Eehinops, teeth of, iii. 309
Edentate, characters of, ii. 278, 295. Sco Bruta.
Edentula, characters of, ii. 296
Edestes, dermoskeleton of, i, 194
Elaphis 4-lineatus, male organs of generation of, i. 580
Elasmotherium, characters of, ii, 284
Electric organs of Fishes, i. 213, 350
Electricity, relations between, and the nervous and muscular' forces, i. 316-318
Eleginus, air-bladder of, i. 493
Elx, hones of, ii, 478
Elephant, alimentary canal of, iii. 457
bones, ii. 437
generation, iii. 740
liver, iii. 479
mouth, iii. 390
muscles, iii. 49
nerses, iii. 162
nervous system, iii. 75
organ of hearing, iii. 232
organ of sight, iii. 246
organ of smell, iii. 210
peritoneum, iii. 503
proboscis, iii. 390
respiratory system, iii. 580
skeleton of the, ii. 282
teeth, iii. 276, 359
tusks, iii. 359-361
tongue, iii. 194
Elephas, characters of, ii. 282
cerebellum, iii. 90
muscles, iii. 49, 66
myelon, iii. 75
teeth, iii. 265, 343, 359-361
rertebral column, iii. 440
Elephas africanus, skull of, ii. 438, 439

\section*{ELE}

Elephas indicus, brain of, iij. 143
development, iii. 740
limh-bones, ji. 443
month, iii. 390
organe of geoeration, female, iii. 692
orgen of bearing, iii. 232
organ of sight, iii. 280
prosencephalon, iii. 123
skull, ii. 439
vertehral colomn, ii. 437
Elophas primigenius, hair of, iii. 818
teeth, iii. 362
Elops, skull of, i. 125
Elomia, alimentary canal of, i. 438
Emballonura, glandular cutaneous sac on
the anterior border of the wing of, iii. 838
Emberiza, charactors of, ii. 10
Embryology, ii. vii, Ix
Emyda ceylononsis, teguments of, i.657,558
Emye, characters of, i. 17
development, i. 639
pancreas, i. 454
pelvic arch and limb, i. 187
skull, i. 127, 130, 134
vertebral column, i. 81, 84
Emys (sym. Cistudo) europæa, absorbents of, i. 481
alimentary cansl, i. 441-445, 447
blood, i. 501
benri, i. 610
kidneys, i. 641
laryox, i. 529
liver, i. 448,450
myolog7, i. 231-242
organs of generation, male, i. 582,583 female, i. 587
organ of sight, i. ' 389,340
pancreas, i. 454
pectoral limb, i. 173
polvic arch and limb, i. 188, 187
akeloton, i. 60
skull, 131, 132
sympathetic nervous system, i. 322
Emy picta, dovelopment of, i. 639
opiposition, i. 618
Emys reticulata, alimentary canal of, i. 464
blood, i. 501
liver, i. 450
pancreas, i. 454
Emys mermata, nlimentary canal of, i. 446
blood, i. 501
livor, i. 450
pancreas, i. 454
Fimya torrapin, liver of, i. 450, 454
Enliydra, alimontary canal of, iii. 445
mammary glands, iii. 780
organ of hearing, iii. 234
teeth, iii, 338, 886
Entelodon, charnctors of, ii. 286
Eperlanus, norvos of, i. 298
Ephippus, changes accompanying growth of, i. 812
organ of heuring, i. 343

\section*{ERI}

Ephippus-continued
sknll, 3. 108, 110, 111
Epihulus, See Sparus
Epiderm, i. 545
Aves, ii. 232
Mammalia, iii. 613
Epigenesis, iii. 809
Equation, organic, i. xsrii
Equidx, charactera of, ii. 283,296; iii. 791
arteries, iii. 534
develonment, iii. 737
epiderm, iii. 618
larynx, iii. 593
limb-hones, iii. 308
skull, ii, 451
Equus caballus, characters of, i. xxiii, 360;
ii. \(285,305,310\)
adrenals, iii. 570
alimentary canal, iii. 458-460
cerebellum, iii. 91
derelopment, iii, 734-736
epiderm, iii. 616
hair, iii. 617
beart, iii, 522
lerynx, iii. 692
limb-bonge, ii. 456
liver, iii. 479
mammary glands, iii. 778
macromyelon, iii. 85
mesencephalon, iii. 98
mouth, iii. 391
muscles, iii. 27, 32, 34, 39, 40, 41, 67
organs of generation, male, iii. 664-667 frmalo, iii. 694
organ of hearing, iti. 232
organ of smoll, ili. 212
organ of taste, iii. 195
prosencephalon, iii. 114, 120, 121, 123
pancreas, iii. 495
salivary glands, iii. 403
skull, ii. 451, 453
spleen, iii. 561
teeth, iii. \(340,343,352,355\)
thyroid gland, iii. 565
urinary system, iii. 607
vertobral column, ii. 447
Equue asinus, alimentary canal of, iii. 448
epidcrm, iii. 6 I6
prosencophalon, iii. 142
thyroid gland, iii. 665
Fquus quagga, alimentary cansl of, iii. 448
Equus zebra, alimontary canal of, iii. 448
epiderm, jii. 616
habitat, iii. 794
Esquimaux, skull of, ii. 566
Erethizon, liver of, iij. 485
ranmmary glands, iii. 775
Ericulus, teeth of, iii. 309
Erinaceide, characters of, ii. 296
skull, ii, 390
Erinaceus nuxopeus, alimentary canal of, iii. 427

\section*{ERI}

Erinaceus europens-continucd.
arteries, iii. 535
brain, iii. 108
characters, ii. 297
development, iii. 730
hair, iii. 621
hybernation, ii. 4
larynx, iii. 586
liver, iii. 484
lungs, iii. 577
mammary glands, iii. 776
muscles, iii. 18, 19
myelon, iii. 74
argans of generation, male, iii. 689
pancreas, iii. 494
placenta, iii. 730
prosencephalon, iii. 109
skull, ii. 390
spines, iii. 622
spleen, iii. 560
subcutaneous fat, iii. 785
teeth, iji, 308
thymus, iii, 668
veins, iii. 553
vertebral column, ii. 385
Erythrinus, skull of, j. 116, 120
Erythrinus salvus, air-bladder of, i. 402
Erythrinus trniatus, air-bladder of, i. 492, 494
Eryx jaculus, teguments of, i. 554
Esocidex, characters of, i. 10
Esox lucius, characters of, i. 10
alimentary canal, i. 421
arteries, i. 489
developmeat, i. 603
nerves, i. 297
organ of sight, i. 340
ovulation, i. 595
teeth, i. 381
teguments, i. 647
reins, \(i, 468\)
vertehral column, i. 37
Eucnemis, teeth of, i. 392
Euphones, alimentary canal of, ii, 161, 166
Euphysetes simus, laryna of, iii. 588
skull, ii. 426
teeth, iii. 281
vertehral column, ii. 416
Eupleres, limb-bones of, ii. 510
Euphractus, teeth of, iii. 273
Evolution, iii. 809
Exocretus, alimentary canal of, i. 413
locomotion, i. 257
myelencephalon, 1. 271
pectoral limb, i. 168
teeth, i. 377
Eje of Aves, in, 142
of Fishes, i. 332
Mammalia, iit. 246
Reptiles, i. 337
ACLAL angle, progression of the, ii. 571 , 572

FEL
Fwces, petrifed, or coprolites, of Fishes, i. 424
Reptiles, i 446
Fulco, adrenale of, ii. 230
appendages of the tegument, ii. 235
male organs of generation, iii. 242
organ of sight, ii. 137
osseous system, ii. 32, 60
Feathers, component parts of, ii, 233
development, ii. 236
moulting, ii. 241
unctuous fluid of Birds for lubricating, ii, 230
Felidæ, alimentary canal of, iii. 433
brain of, iii. \(116,118,125,128\)
locomotion, iil. 69
mammary glands, iii. 780
muscles, iii. 51
nerves, iii, 159, 181
organ of hearing, iii. 235
osseous system, ii. 488 skeleton, iii, 488
limb-bones, iii. 510
placenta, iii. 742-744
teeth, jii, 328, 330, 369, 370
urinary system, iii. 605
Felis caracal, organ of taste of, iii. 198
Felis catus, development of, iii. 743
larynx, iii. 596, 597
mammary glands, iji. 780
muscles, iii. 51
organs of generation, male, iii. 671
organ of sight, iii. 252
pancreas Asellii, iii. 512
prosencephalon, iii. 116, 117
skull, ii. 506
tongue, iii, 198
Felis juhata, brain of, iii. 1 I8
Felis leo, alimentary canal of, iii. 442, 443
arteries, iii, 535
development, iii. 744
heart, iji. 523
laryux, iii. 596
liver, iii. 485
locomotion, iii, 70
lungs, iiii. 582
mane, iii. 641
muscles, iii. 51
organs of generation, male, iii. 671
organ of sight, iii. 252
organ of smell, iii. 216
osseous system, ii. 288 et seg. limb-bones, ii. 288, 289
vertebral column, ii. 492, 493
skull, ii. 505, 506
polvis, ii. 511
pancreas, iii. 496
teeth, 1. 362 ; iii. 327, 328
tongue, iii. 198
Felis loopardus, female organs of genera-
tion of, iii. 700, 701
organ of taste, iii. 198
Felis onça, nerves of, iii. 175, 181
organ of taste, ini. 198

FEL
Folis tigris, heart of, iii, \(\mathbf{5 2 3}\)
lungs, iii. 582
male organs of generation, ini. 671
organ of hearing, iii. 234, 235
skull, ii. 505
Fiber zibethicus, uknll of, ii 375
Fins of Fishes, i. 262
Fishea. Sce Piecer
Fistulariidm, charactors of, i. 13 settebrsl column, i, 41
Fissirostres, characters of, ii. 10 benk, ii. 147
Flat-head Indian, skull of, ii. 568
Flounders, shsence of air-hladder in, i. 255
Fcetal formation in Mammalia. See Mammalia.
modifications, iii, 751
circulation, iii. 755
Foot in Artiodactyln, ii. 286
Bruta, ii. 409
Carnivora, ii. 507
Man, ii. 676
Marrupialia, ii. 361 pedes saltatorii, ii, 361
Perissodnctyla, ii. 457
Proboscidin, ii. 444
Formifaction, iii. pp. 499, 514, 55y, \(\mathbf{2 6 3}\), 509, 813
Fox, bones, ii. 492, et sey.
brain, iii. 118
nerves, ii. 175
Francolinus, dorsal vertohre and sternum
of, ii. 27
Fratercula, external sexual charncters of, ii. 267
skull, ii. 61
Fregilun, hones of, ii. 32
Fringilla, characters of, ii. 10 organ of touch, it. 128
Fringilla colehs, eggs of, ii. 257
Frog, blood-dises of, i. 4
Galvani's, i. 315-317
locomotion, i. 262
Fulica, locomotion of, ii. 113
Furatria, lowor lurynx of, ii, 224
GA
DID.E, characters of, i, 10
uir-bludder, i. 493
liver, i. 425
pectoral limb, i. 163
pyloric uppenduges and panerears, \(i\). 430
Gadus, airobladder of, i, 492
nlimontnry canal, i, 42l
artories, i. 489
gills, i. 481
norves, i. 297
pyloric appendages and pacreats, i . 432
veins, i. \(\$ 68\)
vertebral coltunn, i. 43

GAS
Gadus æglefinus, vertebral column of, i. 40
Gadus callarias, gille of, i. 483
Gadus navaga, air-hladder of, i. 482 vertebral column, i. 38
Galago calabariensis, cecum of, iji. 431
Galago Moboli, cecum of, iii. 431
Galaxidx, characters of, i. 10
Galbulidfe, characters of, ii. 11
Galecynus, skull of, ii. 503
Gsloocerdo, slimentary canal of, i. 422
Galeopithecus Philippinensis, alimentary canal of, iii. 429
interfemorsl flap, jii. 612
lungs, iii. 577
mele organs of generation, iii. 657
vertebral column, ii. 512
Galeopithecus rolans (syn. Temminckii), alimentary canal of, iii, 430
limh-hones, ii, 393
nipples, iii. 776
skull, ii. 387, 526
spleen, iii. 562
teeth, iii. 311, 312, 313, 369
vertehral column, ij. 512
Galesaurus, alimentary canal of, i, 409
Galeus, alimentary canal of, i. 423
fomnle organs of gencration, i, 575
heart, i. 474
kidurys, i. 536
liver, i. 426, 427
organ of sight, i. 334, 336
vertetral column, i, 33, 30
Galiotes, ulimentary canal of, i. 445
Ciall-hladider, i. 427, 451 ; ii. 177
Gallinacei, characters of, ii. 10
alimentary canal, ii. 15?, 173
dorsal vertelrae and sternum, ii. 27
sacral vertebre, pelyis, and tail, ii, 32
Gallinula, locomotion of, ii. 113
Gallophasis, generative system of, ii, 257
Gallus, charactere of, ii. 14
slimentary canal, ii. 159
arterips, ii. 203
developmont, ii، 259-262
generative system, ii. \(243,246,216\) 204
nerves, ii, 122
nervous system, ii, 118
ossecus system, ii, 14,27
Galvani's frog, i, 315-317
Ganglionic, or sympathatic sestem, i. 267
Ganglions, sbsorbent, iii. 504
Ganocophala, characters of, i, xxxrini, 6, 14
skull, i. 85
Ganoidei, characters of, i, xxvii, 1 ?
vertebral coliman, i. 41
Gastorosteus, alimentary canal of, i. 121
dermoskeleton, i, 193
development, i. 601
fecundation, i, 61:
nerres, \(\mathrm{i}_{\text {, }} 298\)
orulation, i. 594, 596, 590
(rusterosteus, orarian egg of the, \(\mathrm{i}, 1\)

\section*{Gas}

Gastric glands, ii, 162
Gastric juice, iii. 437
Gavialis, liver of, i, 45 I teetb, i. 406
Gecko, reproduciblo parts of, i. 667 locomotion, i. 263
Geckotider, larnyx of, i. 529
locomotion, i. 263
Gempylus, characters of, i. xxxiii changes accompanying growtb, i. 612
Generative products and development in Hzematocrya, i. 589
Fishes, i. 589
Reptiles, i. 614
Aves, ii. 251
Geococcyr, osseous system of, ii, 34, 36
Geomys, thyroid gland of, iii. 565
Gibbons, bones of, ii. 520, et seq. muscles, iii. 53
Giraffe, alimentary canal of, iii. 471 bones, ii. 463, 475 brain, iii. 114 development, iii. 739 horns, iii. 627 liver, iii. 480
Glareola, sternum of ii. 26 .
Glaucopis, wattles of, ii. 129 alimentary canal of, ii. 171
Glisorex. See Tupaia
Glyphisodon saxatilis, liver of, i. 426
Glypbisodon, vertebral column of, i. 44
Glyptodon, characters of, ii. 297
limb-bones, ii, 409
skull, ii. 405
teeth, iii. 271, 273
vertebral column, ii. 393, 395
Gyps, osseous system of, ii. \(17,35,40\)
Goat, organs of generation of, iii. 667
Gobiesox, gills of, i, 480
Gobioid fishes, locomotion of, i. 257
Gobius, fecundation of, i. 614
Gobiidæ, characters of, i. 14
Goniopholis, dermoskeleton of, i. 199
Goose, blood-discs of, i. 4
Gorilla. See Troglodytes Gorilla
Goura, cbaracters of, ii. 10
dorsal vertebræ, ii. 27
sacral vertebre, pelvis, and tail, ii. 32
sexual characters, ii. 257
Grallatores, character of the order, i. 9
Grampus, teeth of, iii. 281
Greenlander, skull of, ii. 565
Grus. alimentary canal of, ii. 173
pancreas, ii. 178
Grus antigone, lower larynx of, ii. 220 osseous system, ii. 22, 81
Grus cinerea, air-passages of, ii. 218 lower larynx, ii. 220 skull, ii. 58
Grus Stanleyanus, lower larynx of, ii. 220
Grus virgo, geuerative system of, i1. 243 Jiver, ii, 177

\section*{H. EM}

Grus virgo-continued.
lower larynx, ii. 220
osseous system, ii. 23, 81
Guinea-pig, generation, iti. 727 organs of generation, iii. 652 osseous system, ii. 380
Gulo arcticus, orgen of bearing of, iii. 235 skull, ii. 501
Gymnarebus niloticus, electric organs of, i. 350

Gymnetrus, air-bladder of, i. 493
Gymnodontidæ, cbaracters of, 1. 11
Gymnopus, skull of, i. 130
vertebral column, i. 61
Gymnotidæ, charactors of, i. 10 pelvic arch and limb, i. 179
Gymnotus, alimentary canal of, i. 409 arteries, i. 489
electric organs, i. 350
muscles, i. 211
vartebral column, i. 43
Gymnotus electricus, air-bladder of, i. 491 electric organs, i. 352-354, 356, 357 male organs of generation, i. 569 nerves, i. 273
Gymnotus equilabiatus, air-bladder of, i. 491
Gymnura, skull of, ii. 390 teeth, iii. 308
Gypogeranus, alimentary canal of, ii. 171 osseous system, ii. 23
dorsal vertebre und sternum, ii. 23
pelvic limbs, ii. 81
Gyrencepbala, cbaractors of, ii. 272
brain, iii. 114
generative organs, iii. 641
locomotion, iii. 24
nerves, iii, 147
nervous system, iii. 98, et seq.
mesencephalon, iii. 98
prosencephalon, iii. 99, 114, 128
urinary system, iii. 604
Gyrosteus, growth of bones of, i. 24

HABROCOMA, mammary glands of, iii. 775
Hæmatocrya, absorbent system of, i. 455
circulating system, i. 463
digestive system, i. 359
dental tissues, i. 3 ริ
generative products and development, i. 589
generative system, i. 568
muscular system, i. 200
nervous system, i. 266
nerrous tissues, i. 266
myencephalic membranes, i. 296
sympathetic nervous system, i. 318
organ of touch, i. 325
taste, i. 327

HEM
Hematocrya-continued.
organ of smeIl, i. 328
sight, i. 331
hearing, i. 342
electric organs, 1. 350
orders, i. 9
I. Cirrostomi, i. 9
II. Cyclostomi, i. 9
III. Malacopteri, i. 9 IV. Anacunthini, i. 10.
V. Acantbopteri, i. 10
VI. Plectognathi, i, 11
VII. Lophobranchii, i. 12
VIII. Ganoidei, i. 12
IX. Holocephali, i. 12
X. Plagiostomi, i. 13
XI. Protopteri, i. 14
XII. Ganocephula, i. 14
XIII. Labyrintbodontia, i. 14
XIV. Batrachia, i. 15
XV. Ichthyopterygia, i. 25
XVI. Sauropterygia, i. 16
XVII. Anomodontin, i. 18
XVIII. Chelonia, i. 16
XIX. Lacertilia, i. 17
XX. Ophidia, i. 17
XXI. Crocodilia, i. 17
XXII. Dinosauria, i. 18
XXIII. Pterosauria, i. 18
osseous system, i. 19
classes of bone, i. 26
composition of bone, i. 19
proportions of hard and soft
matter, i. 19
chemical composition, i. 20
dermoskelaton, i. 193
development, i. 21
growth, i. 23
peetoral limh, i. 163
pelvic arcb and limb, i. 179
scapular arcb and appendages, \(i\). 161
skull, i. 71
vertebre, i. 30
poculiar and ductless glands and reproduciblo parts, i. 662
respiratory system, i. 463
subclasses, i. 7
I. Dermoptori, i. 7
II. Toleostomi, i. 7
III. Plagiostoni, i. 8
IV. Dipnon, i. 8
V. Monopnon, i. 9
tegumentary system, i. 545
urinsry syatom, i. 533
Hemutopus, pelvic limbs of, ii. 82
Ilumutothrema, charneters of, i. 7 ; ii. 1-s thermogenous orgnnic conditions, ii. 1 their results, ii. 3
charncters and onders of the class Ares, ii. \(\overline{6}\)
Hair of Mammala, iii. 616
Huludroma, pelvic limbs of, ii. 82

\section*{HEL}

Halizetus, bones of, ii. 21
alimentary canal, ii. 171
Halicbomıs griseus, vertebral column of, ii. 494
Halicore, characters of, ii. 281, 296
alimencary canal, iil. 455,457
arteries, iii. 547
heart, iii. 521
larynx, iii. 589
lungs, iii. 579
muscles, iii. 2
organs of generation, male, iii. 660 female, iii. 692
organ of sigbt, iji. 250
organ of smell, iii. 210
organ of taste, iii, 184
pancreas, iii, 495
skeleton, i, 381, 363, 365
vertebral column, ii. 429, 430
skull, ii, 433-436
spleer, iii. 561
teetb, iii. 283
urinary system, iii. 607
11aleyon, eggs of, ii. 256
H:klieutan, gill of, i. 478
organ of tanch, i, 326
Halmaturus lfmettii, female organs of g"tervatiun of, iii. 683
linit-Jame 4 , ii. 318
kkull, ii. 34.5
llamalira, nlimentary canal of, iii. 421

1lagale facebns, alimentary canal of, iii. 432

l.tryax, in. 598
usncons: सy-1411, ii, ill \(5,529,530\), 542
prosencephalon, iii. 129
teeth, iii, 315
Hapalotis, teeth of, iii. 365, 382
Inploductylus, teeth of, i. 371
Hare. See Lepus
Harpactes, dorsal vertebre and stepnum of, ii. 28

Harpeiz, bones of, ii, 17, 36
Hatteria, See Rhynchocephalus,
Hedgehog, alimentary canal of, iii. 427
bones, ii, 385
muscles, iii. 18
organs of generatiou, iii. 650
orghan of bearing, iii. 229
spires, iii. 621
teeth, iii. 301
 home. iii. 6:3.
mal upers the trunk, iii. 636

limb-bones, ii. 382, 383
liver, iii. 485
lungs, iii. 577
skull, ii. 376
vertebral column, ii. 365

\section*{HEL}

Heliastes insolatus, air-bladder of, i. 491
Helostomus, teeth of, i, 373
Hemipodius, sacral vertebre of, ii. 32
Heptanchus, beart of, i, 474
vertebral column, i, 37
Herpestes Ichneumon, mammary glands of, iii. 780
skull, ii, 503
Herpestes mungo, skull of, ii. 503
Herpestes pencillata, limb-bones of, ii. 610
Herpeton tentaculatam, organ of taste of, i. 327
tegument, i. 555
Heterobranchus, gills of, i. 487
skull, i. 108
Heterodon niger, slimentary canal of, i. 446
Heteropygii, characters of, i. 10
Hexantluns, heart of, i. 474
Hexaprotodom, teetb of, iii. 347
Hierax, osseous system of, ii. 27
Hippocampide, characters of, i. 12
Hippocampus, marsupium of, i. 614
Hippoglossus vulgaris, nerves of, i. 297, 299
skull, i. 110, 112, 115
vertebral column, i. 42
Hippobyus, teeth of, iii. 343
Hipparion, characters of, i. xxxii ; ii. 284 ; iii. 791
limb-bones, ii. 309
teetb, iii. 340, 342
Hippopotamus, characters of, ii. 283, 286
alimentary canal, iii. 466
bones, ii. 457, 465
lungs, iii. 581
organ of bearing, iii. 232
organ of smell, iii. 213
prosencepbalon, iii. 122
skull, ii. \(465,466,470\)
teeth, iii. \(340,343,346\).
Hirundo, characters of, ii. 10
eggs, ii. 257
muscular system, ii. 84
Histiopborus, skull of, i. 114
Histiurus (syn. Lopbara), dermoskeleton of, i. 198
teeth, i. 402
teguments, i. 556
vertebral column, i. 60
Histology, i. viii.
Holconoti, development of, i. 614
Hog. See Sus
Holocentrum hastatum, liver of, i. 425
Holocentrum orientale, liver of, i. 425
Holocentrum Sogbo, alimentary canal of, i. 438
liver, i. 426
Holocephali, characters of, i. 12
vertebral column, i. 35,41
Holoptychidx, characters of, i. 12
Holoptychius, teeth of, i. 378
Homalopsis, teeth of, i. 395

HOM
Homo, characters of, i. xii, xvi, xxxp, Exxviii, 4; ii. 273, 274, 291, 292, 293, 298
absorbent system, iii. 507
alimentary canal, iii. 383, 434
moutb, iii. 396
salivary system, iii. 405-409
stomacb, iii. 434
arteries, iii. 436
iutestinal canal, iii. 437
colon, iii. 440
duodenum, iii. 441
cacum, iii. 441
rectum, iii. 442
pelvis, iii. 442
circulating system, iii. 513
blood, i. 4 ; iii. 514
heart, iii. \(525,530-532,534,548\) pericardium, iii. 525 auricles, iii. \(525-627\)
ventricles, iii. 526, 527
endocardium, iii. 628
muscles of, iij. 528
arteries, iii. 634, 548
veins, iii. 550, 556
spleen, iii. 567, 562
thyroid, iii. 566
thymus, iii. 568
adrenals, iii. 569, 570
generative system, iii. 673
male, iii. 642, 673, 674
femele, iii. 704-708
ovaria, iii. 704
oviduct, iii. 704
uterus, iii. 704
external parts, iii. 708
generative products and development, iii. 709
ovulation, iii. 709
ovipont, iif. 711
corpus luteum, iii. 712
impregation, iii. 713
development, iii. 747, et seg.
liver, iii. \(483,487,488,491\)
locomotion, iii. 64, 65
lymphatics, iii. 507, 500-511
mammary glands, iii. 780
muscles, iii. \(54,55,59,61,62\)
nerves, iii. 148, 149, 154, 157-159,
\(161,166,167,178,181,184\)
nerrous system, iii. 75
myelon, iii. \(75,76,77,78\)
encephalon, iii. 79
macromyelon, iii. 81, 82, 83, 85
cerebellum, iii. \(88,02-97\)
prosencepbalon, iii. 124, 127-136, 138-141, 142
cerebrum, iii. 134
size of brain, iii. 141-146
membranes of tbe brain, iii. 145
nerves, iii. 146
ganglia, iii. 184
organ of touch, iii. 187

Homo: -continued.
organ of taste, iii. 190, 199-203
smell, iii. 206, 217
hearing, i1i. 210, 225, 237264
bones of ear, iii. 219, 237
muscles, iii. 240, 245
sight, iii. 246, 252
eyeball, iii. 248
appendages of the eye, iii. 25 B
parallel between the eye and the ear, iii. 281
-s seous systam, ii. 294, 553
skeleton, ii. 553
A. vertebral colımn, ii. 553
cervical, ii. 554,557
dorsal, ii. 554
lumbar, ii. 564
sacral, ii. 658
B. skull, ii. 558
form, ii. 658
bones of, ii. 559
ethnic fariety, ii. 563
C. bones of the limhs, ii. 572
elavicle, ii. 572
scapula, ii. 572
bumerus, ii, 673
radius, ii. 573
ulna, ii. 573
hand, ii. 573
ilimm, ii. 574
ischium, ii. 574
pelvis, ii. 575
foot, ii. 576
femur, ii, 577
tihis, ii. 577
patella, ii. 581
relations to archetype, ii. 581
pancreas, iii. 497
peritoneum and appendages, iii. 500 , 501
respiratory systom, iii. 572
lunge, iii. 573,582
larynx, iii. \(582,583,601,632\)
teeth, iii. 266, 322, 382, 376
tegumontary system, iii. 613
derm, iii. 613
epiderm, iii. 614,616
hair, ili, 619, 621
nails, iii. 623
urinary system, iii. 608
Homology, i. vii, xii, xviii, 243 ; ii. 310 ; iii. 787

Homopus, pectoral limb of, i. 173
Hoofs of Mummalia, iij. 623, 624
Hoplusus, tegumonts of, i. 556
Horso. Sce Equus caballus
Horse, alimentury cannl, iii. 458
brain, iii. 85, 120, 121
gestation, iii. 735
locomotion, iii. 67
month, iii. 391

\section*{HYL}

Horse-continued.
museles, iii. 27
organs of generation, iii. 664
organ of hearing. iii, 233
organ of sight, iii, 251
organ of smell, iii. 212
osseous systom of, ii. 447
salivary glands, iii. 403
teeth, Hii. 353
Hottentot, skull of the, ii. 564
Human anatomy (syn. Anthropotomy), i. viii
Hyæne crocuta, teeth of, iii. 329
rertebral column, ii. 492
Hyene vulgaris, anal glands of, iii. 637
development, iii. 744
limb-bones, ii. 510
mammary glands, iii. 780
nerves, iii. 177
skull, ii. 504
teeth, iii. 329, 330
tongue, iii. 198
urinary organs, iii. 805
vertebral column, ii, 492
Hyænodon, teeth of, iii. \(339,340,372,375\), 790
Hybodontidæ, cbaracters of, i. 13
Hybodus, teeth of, i. 378
Hydraspis, pelvic arch and limb of, i. 186
Hydrocoerus, limh-bones of, ii. 380
mammary glands, tii. 775
mouth, iii. 387
organs of generation, male, iii. 686
skull, ii, 369, 377
tceth, jit. 296, 298
Hydrocyon, skull of, i. 116
Hydromys, limb-bones of, ii, 382
teeth, iii. 285, 300
vertebral column, ii, 365, 368
Hydrophida, tegument of, i. 554
Hydrophis, alimentary canal of, i. sti4
teeth, i, 397
poison-gland, i, 563
Hydrosorex fodiens, alimentary canal, iii. 429
organ of hearing, iii. 229
teeth, iii. 306
Hydrosorex Hormanni, teeth of, iii, 305,306
Hyln, alimentary canal of, i, 434, 436
locomotion, i. 262
organ of taste, i, 327
Hyla rerrucosa, i. 527, 528
teguments, i. 5.58
Hylæosaurus, dermoskeleton of, i. 199
Hylide, characters of, i, 15
Hylobatos agilis, alimentary canal of, iii. 133
development, iii, 746
larynx, iii. 600
locomotion, iii. 71
lungs, iii. 582
muscles, iii. 53
prosencephalon, iii. 124

HYL
Hylobates leuciscus, osseous system of, ii. 520, 544
Hylobates syndectylus, characters of, ii. 291
osseous system, iii. \(520,533,552\)
Hylorana, teguments of, i. 552
Hyopotamus, teeth of, iii. 343, 375
Hyperanodon, teeth of, i. 403
Hyperoodon, alimentary canal of, iii. 453, 454
female organs of generation, iii. 691
heurt, iii. 521
limb-bones, ii. 429
Hypostoms, air-bladder of, i. 493
Hypsiprymnus, characters of, ii. 275
limb-bones, ii. 351, 354-361
mammery glands, iii. 769
organs of generation, male, iii. 648
prosencephalon, iii. 105
skull, ii. 336, 339-345, 347, 349, 350
teeth, iii. 290, 291
vertebral column, iii. \(329,331,333\)
Hypsiprymnus (Dendrolagus) doreocephalus, alimentary canal of, iii. 415, 419
limb-bones, ii. 363
tecth, iii. 290
Hypsiprymnus murinus, female organs of generation of, iii. 681
teeth, iii. 290
skull, ii. 345
Hypsiprymnus myosurus, skull of, iii. 338, 342
Hypsiprymnus setosus, alimentary canal of, ii. 420
skull, ii. 345
Hypsiprymnus (Dendrolagus) ursinus, limb-bones of, ii. 360, 363
organ of taste, iii. 191
skull, ii. 338, 342,345
teeth, iii. 290
vertebral column, ii. 332
Hyracotherium, geological remains of, iii. 792
teeth, iii. 375
Hyrax capensis, cbaracters of, ii. 284, 285
allimentary canal, iii. 461, 463
limb-bones, ii. 455
organ of hearing, iii. 233
organs of generation, male, iii. 664
prosenceplialon, iii. 114, 120, 121, 123, 133, 143
tocth, iii. 340, 342, 356
thymus, iii. 567
thyroid gland, iii. 565
skull, ii. 450
urinary system, iii. 606
vertebral colnma, ii. 446
Hystricida, vertebral column of, ii. 364
Hystrix alopha, vertebral column of, ii. 364
Hystrix cristata, characters of, ii. 269
liver, iii. 485
mammary glands, iii. 775

1Ns
Hystrix cristati-continued.
nerves, iii. 161
organs of generation, male, iui. 650
organ of taste, iii. 192
prosencephalon, iii. 110
scales, iiii. 623
skull, ii. 372, 373
vertebral column, ii. 384

TCHTHYOMORPHA (Urodola), charac.
ters of, i. 15
muscles, i. 215
skull, i. 89
Ichthyopterygia, characters of, i. Ixyviii, 15
pectorsl limb, i. 170
skull, i. 158
teeth, i. 388
vertebral column, i. 50
Ichthyossurus, characters of, i. 16
organ of sight, i. 339
organ of smeli, i. 330
pectoral limb, i. 170,171
pelvic arch and limb, i. 181
skull, i. 158
teeth, i. 364 ; iii. 281
Ichthyosaurus communis, vertebral column of, i. 50
Ichthyosaurus tenuirostris, skull of, i. 159
Ictides. See Arctictis
Iguana, skull of, i. 157
sternum, ii. 21
vertebral column, i. 67
Iguana tuberculata, organ of taste of, \(i\). 327
skull, i. 158, 159
teeth, i. 403
teguments, i. 556
vertebral column, i. 60
Iguanidæ, teeth of, i. 402
Iguanodom, characters of, i. xxuviii, 18
teeth, i. 387, 403
Implacentalia, characters of, ii. 270
development, iii. 715-722
Impregration in Mammalia, iii. 711
Incubation of Aves, ii. 256
exception to, ii. 256
periods of, ii. 257
Indri, bones of, ii. 515, et seq.
Ingluvies, or crop, of Aves, ii. 158
Inia, teeth of, iii. 282
Insectivora, alimentary canal of, iii. 427
characters of, ii. 277
development, iii. 730
heart, iii. 620
liver, iii. 483
muscles, iii. 17
organs of generation, iii. 855 male, iii. 655 female, iii. 887
organ of hearing, iii. 229

NB

\section*{Insectivora-contimued.}
organ of sight, iii. 246
organ of amell, iii. 209
osseous system, ii. 385
akaleton, ii. 385
A. vertebrate column, ii. 385 cervical, ii. 385 dorsal, ii. 385
lumbar, ii. 385-387
sacral, ii. 38j-387
caudal, ii. 385-387
B. skull, ii. 387
C. bones of the limbs, ii. 390
clavicles, ii. 390
scapula, ii. 390-392
humarue, ii. 390-392
radius, ii. 390-392
ulns, ii. 390
fibula, ii. 390
tibia, ii. 390
carpals, ii. 390
pancreas, iii. 494
salivary glands, iii. 390
spleen, iii. 562
tecth, iii. 301
thymus, iii. 588
tongue, iii. 192
Irrelative repetition, i. ix, x, Exxyi; iii. 789
Ivory, iii. 863
J AGUAR, nerves of, iii. 175
Jerhoa, bonos of, ii. 364, 376, 382 locomotion, iii. 68
Johnius lobutus, alimentary canal of, i. 418 artorics, i. 490
Julis, alimentary canal of, i. 410

K
ALOPHRYNUS, tegumente of, i. 552
Kungroo, development, iii. 718
locomotion, iii. 68
musclos, iii, 14
organs of generation, iii. 847
osseous system, i. 329
skeleton of, ii. 329
stomach, iii, 413
rumination, iii. 415
teeth, iii. 291

LABEOBARBUS, alimontary canal of, i. 410
Iabrax lupus, liver of, i. 428
Labrus, almentury canal of, i. 410, 421
changes accompanying growth, i. 812 teoth, i. 363, 370-372, 376, 377
Labrus turdus, liver of, i. 426
Labyrinthibrunchii, i. 487
Labyrinthodon leptognathus, tseth, i. 392, 303
Labyrintbodon salamandroides, dental tissues of, i. 363, 366

\section*{LAG}

Labyrinthodontis, characters of, i. xuriii, 14
Lacerta, alimentary canal of, i. 433
devslopment, i. 833
mals organs of generation, i. 579
myelencephslon, i. 292
pectoral limb, i. 174
teeth, i. 401
vertebral column, i. 58
Lacerta agilis, larynx of, i, 629
oviposition, i. \(617^{\prime}\)
orulation, i. 592
teeth, i. 401
Lacerta bilineata, female organs of genaration of, i. 586
Lacerta muricata, adranals of, i. 544
xsproducible parts, i. 567
teguments, i. 555
thyroid bedy, i. 565
Lacerta ocellata, adrenale of, i. 544
alimentary canal, i. 440
heart, i. 508
male organs of generation, i. 580
Lacertidæ, skull of, 1. 157
testh, i. 401
vertebralucolumn, i. 58
Lacertilia, artories, i. 519
absorbents, i. 461
charactere of, i, 17
fecundation, i. 615
oviposition, i. 617
development, i. 633
generative organs, i. 580
male, i. 680
female, i. 583
beart, i. 509
kidneys, i. 540
larynx, i. 528
liver, i. 448
locomotion, i. 262
lungs, i. 525
respiratory actions, i. 531
osseous system- .
vertobral column, i. 57
skull, i. 154
reproduction of parts, i. 567
teeth, i. 387, 392, 401
teguments, i. 555
scales, i. 555
thyroid body or gland, i. 585
veins, i. 504
Lectarius delicatulus, air-bladder of, i. 492
Lagomys alpinus, limb-bones of, ii. 385
orgsus of generation, male, iii. 650
skull, ii. 377
teotb, iii. 296, 299
Lagostomus, mmmary glands of, iii. 775
organs of generation, female, iii. 686, 687
spleen, iu. 660
teeth, iii. 299
Lagotie, organ of hearing of, iii. 230 vertebral column, ii. 365

LAM
Lamellirostratæ (syn. Anatidæ), characters of, ii. 9
air-passages, ii. 218
alimentary canal, ii. 164, 172
locomotion, ii. 112
myelencephalon, ii. 123
skull, ii. 61
sternum, ii. 26
tongue, ii. 151, 153
Lamna, alimentary canal of, i. 423
arteries, i. 490
heart, i. 474
muscles, i. 204
teeth, i. \(364,372,377,382\)
vertebral column, i. 33
Lamna cornubica, teeth of, i. 366
vertebral column, i. 33
Lamnidæ, characters of, i. 13
Lamplugus. See Coryphrena
Lamprey, cerebellim of, i. 287
Lampris, pectoral limb of, i, 166
Lancelet, nervous system of, i. 268-270
Lanius, beak of, ii. 146
osseous system, ii. 20
dorsal vertebre and sternmm, ii. 20 skull, ii. 57
-
Laplander, skull of, ii. 566
Larus, characters of, ii. 9
eggs, ii. 255
myelencephalon, ii, 119
Lates niloticus, liver of, i. 426
Lates nobilis, liver of, i, 427
Lathamus, skull of, ii. 58
Latissimus dorsi muscle in Aves, ii. 95
Leiodon, teeth of, i. 387
Lemmus, liver of, iii, 485
Lrmur, species, as compured with that of Cheiromys, \(i, ~ x u x p\).
Lemur albifrons, brain of, iii, 91
dovelopment, iii. 745
organ of smell, iii. 216
organs of generation, male, iii. 672
female, iii. 702
Lemur Catta, brain of, iii. 124, 125, 130
mammary glands, iii. 780
muscles, iii. 53
organ of bearing, iii. 235
vertebral column, ii, 512
Lemur macaco, brain of, iii, 146
Lungs, iii. 582
skull, ii, 529
Lemur mongoz, larynx of, iii. 597
lungs, iii, 582
mouth, iii. 395
spleen, iii, 562
tongue, iii. 198
Lemur niger, cæcum of, iii, 432
tongue, iii. \(199^{\circ}\)
Lemur nigrifrons, anal glands of, ỉi, 637 hair, iii. 619
vertebral column, ii. 513
Lemuride, brain, iii. 124
cbaracters of, i1. 290

\section*{LEP}

Jemuridæ-continued. alimentary canal, iii. 430
heart, iii. 525
larynx, iii. 597
mammary glands, iii. 780
mouth, iii. 395
organs of generation, male, iii. 672 female, iii. 701
organ of hearing, iii. 235
organ of smell, iii. 216
organ of taste, iii. 198
osseous system, ii. 512
prosencephalon, iii. 124
teeth, iii. 314
Lepadogaster, gills of, i. 484
Lepidoganoidei, characters of, i. 12
existing and extinct, i. 247
Lepidoidei, characters of, i. 12
Lepidopus argenteus, liver of, i. 426 pelvic arch and limb, i. 180
Lepidopus, characters of, i. xxxviii
Lepidosiren annectens, circulating and respiratory organs of, i. 475,498
Lepidosirem paradoxa, characters of, i. 5
air-bladder, i. 494, 499
alimentary canal, i. 415, 417
gills, i. 481
liver, i, 448, 451
locomotion, i. 249
myelencephalon, i. 277-280, 282-285, 290
nerves, i, 298
pectoral limb, i, 165
pyloric appendage and pancreas, i. 425
skull, i. 82, 83, 107
scapular arch, i. 163
teeth, i. \(370,378,383,385\)
vertebral column, i. 37, 38
Lepidosteus, air-bladder of, i. 499
dermoskeleton, i. 195
development of vertebræ, i. 33
gills, i. \(480^{\circ}\)
locomotion, i. 247
myelencephalon, i. 275
skull, i. 108
teeth, i. 378
teguments, i. 548, 549
Lepidosteus oxyurus, teeth of, i. 378
Lepidosteus platyrhinns, organ of hearing of, i. 348
Lepidosternon, skull of, i. 153
Lepidotus, locomotion of i, 247
Leporids, alimentary canal of, ixi. 426
adrenals, iii. 573
mammary glands, iii. 776
organs of generation, male, iii, 649 fcmale, iii. 686, 687
organ of hearing, iii. 231
organ of sight, iil. 248
organ of taste, iii. 192
procencephalon, iii, 110
skull, ii. 378

\section*{LEP}

Leporidx-continued.
spleen, iii. 560
tseth, iii. 296
veins, ini. 553
vertebral column, ii. 864
Leptobrachium, teeth of, i. 392
Leptocephali, probably larva of some larger figh, i. 611
Leptolepida, characters of, i. 12
dermoskeleton, i. 193
Leptolepis, characters of, i, 12
Lepus, alimentary canal of, iii. 423
locomotion, iii. 69
organs of generation, iii. 649
Bkeleton, ii. 364
teeth, iii. 300
Lepus cuniculus, alimentary canal of, iii. 423
development, iii. 711, 712, 714, 715, 724, 727
fat, iii. 784
larymx, iii. 685
skull, ii. 378
teeth, iii. 299, 301
Lepus palustris, mammary glands of, iii. 776
Lepus timidua, alimentary conal of, iii. 423, 426
anal glands, iii., 636
develspment, iii. 727
fit, iii. 784
limb-bones, ii. 379
mpsencephalon, iii, 98
organs of generation, male, iii. 649
female, iii. 686
organ of smell, iii. 208
prosencephalon, iii. 113
skull, ii. 300
teeth, iii. 296, 299, 300
vertobral column, ii. 364,367
Lestris, egge of, ii. 255
Letlirinns atlanticus, air-bladder of, i. 491
Louciscus cyprinus, myelencophalon of, i. 275, 286
nerves, i. 302
Lialis, teguments of, i. 557
Lichanotus indri, cranium of, iii. 528
tecth, iii. 314
vartebral column, ii. 612,515
Lichia, charseters of, i. xxxiii,
Licmetes, skull of, ii. 58
Limogth, dorsal vertebre and sternum of, ii . 23, 26
Lioness, generation of the, iii, \(7 \cdot 14\)
Lissencophah, charneters of, ii. 270, 276, 296
nelrenals, iii. 569
development, iii. 723
heart, iii. 519
mesenerplaton, iii. 98, 99
muscles, iii. 16
myelon, iii. 74
neryes, iii. 147, 152

\section*{LUT}

Lissencephala-continued.
organ of bearing, iii. 229
organs of generation, malo, iii. 641
prosencephalon, iii. 108, 111, 112, 113 , 125, 134, 141
spleen, iii. 560
urinary organs, iii. 604
Lissotriton punctatus, oviposition in, i. 616 ovulation, i. 597
Lizards. See Lacertilia
Liama, bones of, ii, 460, 470
Locomotion, Aves, ii. 112
Fighes, i. 243
Mammalia, iii. 63
Reptiles, i. 258, 262
Loncheres, mambary glands of, ini. 776
Longipennate, characters of, ii. 9
development and peculiarities of the chick, ii. 265
scapular arch and limbs, ii. 72
Lophiidæ, characters of, i. 11
Lophiodon, characters of, ii. 284
teetb, iii. 377
Lophius piscatorius, air-bladder of, i. 493
alimentary canal, i. 421
dermosleeleton, i. 196
female organs of geperation, i. 572
gills, i. 478, 481
growth, i. 612
heart, i. 472
kidneys, i. 636
muscles, i. 209
pertoral limbs, i. 166
pelvic arch and limb, i. 180
reproducible parts, i. 567
skull, i. 119, 124
teeth, i. \(374,376,378,381,383\)
vertebral column, i. 39
Lophobranchii, characters of, i. 12
skull, i. 149
Lophophorus, dorsal vertebræ and sternum of, ii. 27
Lophortyx, dorsal vertebre and sternum of, ii. 27

Lophyrus Basilicus, teeth of, i. 402
teguments, i. 556
Lorcaria, air-bladder of, i. 493
vertebral column, i. 38, 41, 42
Loris. See Stenops tardigradus
Lota, nerves of, i. 297
Loxia, skull of, ii. 57
beak, ii. 146
tongue, ii. 151
Lucioperca sandra, alimentary canal of, i. 416
myclenceplaton, i. 283 nerves, i. 297, 305
Lutra vulksitix, manmary glinds of, iii. 780 organ of hearing, iii, 234,235
skull, ii. ธ06, 009
teeth, iii. 333
thymus glancl, iii. 663
vertebral colnmn, ii. 491

Lyencephala, brain of, iii. 102, 141
development, iii, 723
generative organs, iii, 645
heart, iii. 516

MACACUS, characters of, i, xxxii
Macacus cymnologus, male organs of generation of, iii, 673
Macecus innuus, osseous system of, ii. 517, 532
Macacus nemestrinus, osseous system of, iii. 519, 533, 543

Macacus radiatus, characters of, ii. 273
alimentary canal, iii. 432
muscular system, iii. 53
prosencephalon, iii. 124, 126
vertebral column, iii 517
Macacus rhesus, development of, iii, 746 prosencephalon, iii. 131 vertehral column, ii. 517
Macacus silenus, female organs of generation of, iii. 703
Machairodus, teeth of, iii. \(329,339,370,374\)
Machetes, external sexual characters of, ii. 258
Mackerel, myocomma of the, i. 3
Macrauchenia, limb-bones of, ii. 454, 459 skull, ii. 451
vertebral column, ii. 446, 448
Macrocercus, skull of, 1i. 28,63
Macropoma, alimentary canal of, j. 424
Macropus, limb-bones of, ii. 353-365, 363 organ of hearing iii. 221
prosencephalon, iii. 111
skull, ii. \(335-345,350\)
teeth, iii. 266, 291
vertebral column, ii. 329
Macropus Brunii, development of, iii. 721 skull, ii. \(34 \bar{\sigma}\)
Macropus major, characters of, ii. 266
alimentary canal, iii. 411, 413, 414, 420, 446
development, iii. 752
limb-bones, ii. 354,359
lungs, iii. 576
mammary glands, iii. 770, 772
organs of generation, femyle, iii. 681, 683
prosencephalon, iii. 105
skull, ii. 345,349
saleen, iii. 560
teeth, iii. 291
Macropus Parryi, alimentarycanal of, ili. 415 development, iii. 718
lungs, iii. 576
organs of generation, female, iii. 680 urinary system, iiq. 606
Macropus pencillatus, ulimentary canal of iii. 415

Mucropus psilopus, teeth of, iii. 291
Macropus rufiventer, mouth of, iii. 385 teeth; iii. 291, 379

\section*{MAM}

Macroscelides, alimentary canal of, iii, 428
cuudal scent-gland, iii. 637
teeth, iii. 307
vertobral column, ii. 385
Macusi Indian, skull of, ii, 566
Mena, skull of, i. 119
Mænidæ, skull of, i. 119
Malacopteri, charactors of, i. 9
Malapterurus beninensis, electric organs of, i. 350

Malpaterurus electricus, air-bludders of, i. 496
electric organs, i, 350, 355
Mallotus, fecundation of, j. 600
Malthæa, gills of, i, 489
organ of touch, i. 326
pyloric appendage and panernas, i. 430
Mammalia, absorhent system, iii. 504
lacteals, iii, 504
lymphatics, iii, 507
disposition, iii. 508
ganglions, iii. 508
modifications, iii. 511
adipose suhstances, iii. 784
adremals, iii. 570
alimentary canal, iii. 383
mouth, iii. 383
salivary glands, iii. 396
stomach, iii. 411
intestinal canal, iii. 417
charecters and primary groups of the class, ii. 266
character of Mammalian sub-classes, ii. 270
stages of complexity of the hrain, ii. 270
characters of the Orders of Mammalia, ii. 274
Monotremata ii. 275
Marsupialia, ii. 275
Rodentia, ii. 276
Insectivora, ii. 277
Cheiroptera, ii. 278
Bruta, ii. 278
Cetacea, ii. 280
Sirenia, ii. 281
Proboscidia, 1i. 282
Perissodactyla, ii. 283
Artiodactyla, ii. 283
Carnivora, ii. 288
Quadrumana, ii. 290
Bimana, ii. 292
table of the subclasses and orders:
according to Cuvier, ii. 295
according to the corcbrsl sys-
tom, ii. 296
circulating system, iii. 613
blood, tii. 613
blood-dises, iii. 513
heart, iii. 516
arteries, iii. 632
strueture, iii. 533

MAM
Mammalis-circulating sy作m-oontinued. anrta, iii. 634 carotids, iii. 536 in the abdomen, iii. 640 brachial, iii. 545
Feine, iji. 549 structure, iii. 550
dental system, iii. 265
general characters of the teeth, iii, 265
homologies of teeth, iii, 366
generative sybtem, iii. 641
male organs, iii. 641
female organs, iii. 676
generative products and development, iii. 709
ovnlation, iii. 709
ovipont, iii. 711
corpus luteum, iii. 712
impregnation, iii. 713
development of Mammalia, iii. 715-747
development of Mammulian brain, iii. 761
modifications of foetal formation, iii. 751
development of Mammalian skeleton, iii. 753
membra pupillaris, iii. 752
fortal circulation, iii. 755
definition of male and female organa, iii. 757
descent of testes, iii. 756
liver, dii, 476
locomotion, iii. 63
in water, iii. 65
on land, iii. 66
mammary and marsupial organe, iji. 760-760
muscular system, iii. 1
muecular tiesue, iii. 1
diaphragm, iii. 1
nerves, iii. 146
olfactory, iii. 146
optic, iji. 147
oculo-motor or third, iii. 147
fourth, iii. 148
fifth or trigeminal, 146, 164
ninth, iii, 161
development, iii. 163
ganglia, iji. 167
sympathetic system, iii. 161
nervous aystem, iii. 73
myelon, iii. 73
oncephalon, iii. 79
primary divisions, iii. 79
mesencephalon, iii. 97
prosencephalon, iii. 99
archencephaln, iii. 127
cerebral folds in the order of their constancy in Mammuls, iii. 137
size of brain, iii. 143

\section*{MAM}

Mammalia-nervons systenl-continued. membranes of the brain, iii. 145
organs of touch, iii. 166
taste, iii. 190
smell, iii. 204
hearing, iii. 219
eight, iii. 246
eyeball, iii. 246
of nocturnal Mammals, iii. 247
oeseous system, i. 20 ; ii. 297
general characters of the sleleton, ii. 297
general characters of the ekull, ii. 300
general characters of the limbs, ii. 305
special homologies, ii. 311-553
eynonyms of the bones of tho head, according to their general homologies, ii. 687
proportion of hard and aoft matter, i. 20
pancreas, iii. 492
fungtion of, iii, 499
peculiar glands, iii. 632
opening upon the head, iii. 632
opening upon the trunk, iii. 634
opening on the tail, iii. 637
opening on the limbs, iii. 636
peritoneum and appendages, iii. 500
respiratory system, iii. 672
lungs, iiit. 572
larynx, iii. 582
spleen, iii. 667
teeth, ili. 265
general characters, iii. 265
homologies of teeth, iii. 366
tegumentary system and appendages, iii. 610
derm, iii. 610
epiderm, iii. 613
callosities, iii. 616
hair, iii, 616
wool, iii. 616
epines, iii. 621
seales, iii. 622
nails, claws, and hoofs, iii. 623
horns, iii. 624
thymus, iji. 566
thyroid, iii. 563
urinary aystem, iii. 604
kidneys, iij. 604
texture, iii. 604
colour, iii. 604
ureter, iii, 605
tubuli ariniferi, iii, 605
modifications, iii, 605
of the subelasses of Mammalia, iii. 605
developmental charscters, i. 6
Mammary organs, iii. 760

Man. See Bimana. Homo.
Manatee, hones of, ii, 433,435
diaphragm, iii. 2
Manatus, diaphagm of, iii. 2
hoart, iii. 521
organ of hearing, iii. 226
organ of taste, iii. 194
skull, ii. 373, 433
teuth, iii. 284
vertehral column, ii. 430, 432
Mandrill, bones of, ii. 518 , et seq.
Manis longicaudata, derm of, jii. 612
claws, iii. 623
limb-bones, ii. 409
organ of hearing, iii. 232
skull, ii. 404
teeth, iii. 265
Manis pentadaetyla, characters of, ii. 279
alimentary canal, ii. 447
scales, iii. 622
skull, ii. 403
vertehrate column, ii. 396
Marmot, hones of, ii. 382
Marsupial bone in Monotremata, ii. 326
bones in Marsupialia, ii. 356
organs, iii. 770
pouches of Fishes, i. 613,614
Marsupialia, characters of, ii, 275
alimentary canal, iii, 411
stomach, iii. 411
intestines, iii. 417
tahle of lengths, iii. 420
brain, iii، 104
development, iii. 718
heart, iii. 816
liver, iii. 481
locomotion, iii. 68
mouth, iii. 385
muscles, iii. 8
nervous system, iii. 74
organ of hearing, iii. 227
organs of generation, iii. 645
male, iii. 645
female, iii. 680
osseous system, ii. 328
skeleton, ii. 328
A. vertehral column, ii. 328
B. skull, ii. 334
frontal, ji. 342
lacrymal, ii. 343
malar, ii. 343
nasal, ii. 343
rostral, ii. 344
premaxillary, ii, 344
maxillary, ii. 344
jaws, ii. 348
C. hones of the limbs, ii. 350
* scapula, ii. 350
clavicle, ii. 351
humerus, ii, 352
radius, ii. 353
ulna, ii. 353
carpus, ii. 354

MEL
Marsupialia-osseous system-continued. pelvis, ii. 355
ilium, ii. 365 ischia, ii. 356 marsupial, ii. 356 fernur, ii. 358 knee-joint, ii. 358
tibia, ii. 358
fihula, ii. 359
tarsus, ii. 360 astragalus, ii. 360 pedes saltatoxii, ii. 361
respiratory system, iii. 576
salivary glands, iii. 398
skeleton of, ii, 328
skull, ii. 334
spleen, iii. 560
teeth, iii, 285
thyeoid, iii. 564
tongue, iii. 191
urimary system, iii. 606
veins, iii, 552
vertehral column, ii. 328
Marsupium, or pecton, of Aves, ii. 138 functions, ii. 140
Martin cats, teeth of, iii. 833
Mastodon, bones of, ii, 441
Mastodon, characters of, ii. 282
teeth, ini. 343, 378
vertebral column, i. 441
Megaceros, characters of, ii. 285
horns, iii. 628
limb-bones, ii. 483
teeth, iii. 351
Megaderma, alimentary canal of, iii. 424 derm, iii. 613
Megalichthys, alimentary canal of, i. 424 teeth, i. 378
Megalnnyx, limh-hones of, ii. 411
Megalosaurus, characters of, i. 18 teath, i. 387, 400, 405
Megalotis Lalandii, organ of hearing of, iii, 234
Megapodius, scapular arch and limbs of, ii. 74
Megatherium, characters of, i, zxxii.
locomotion, iii. 66
nerves, iii, 162
osseous system, ii. 297
limb-hones, ii, 307, 408, 411, 414
skull, ii. 402
teeth, i. 361, 363 ; iii. 274, 275
Meleagris, characters of, i. 26 dorsal pertebræ and sternum, ii. 27 generative system, ii. 258
Meles taxus, limb-bones of, ii. 509
mammary glands, iii. 780
organ of hearing, iii. 234
organs of generation, male, iii. 669
skull, ii. 501
toeth, iii. 333, 334
rertohral column, ii. 491

MES
Menobranchus, arteries of, i. 516
pills, i. 514
heart, i. 606
pancreas, i. 453
skull, i. 88
Menopoma (syn. Cryptobranchus)-
alimentary canal, i. 440, 446
arterices, i. 517
gille, i. 515
heart, i. 506
kidneys, i. 537
Larynx, i. 527
Ziver, i. 451
male organs of generation, i. 576
pencreas, i. 463
pectoral limb, i. 170
teeth, i. 390
thymus body, i. 565
vertebral column, i. 48, 49
Mephitis zorille, anal gland bage of, iii. 637,
Mergus cucullatus, external sexual characters of, 11, 257
Mergus mergenser, trachea of, ii. 220
Mergus serrator, beak of, i1. 149
lower larynx, ii. 225
trachea, ii. 220
Meriones, teeth of, iii. 296
Merlangus vulgaris, pyloric appendugos and pancreas of, i. 428,431
Merluccius, female organs of generation of, i. 572
gills, i. 514
perves, i, 300
Meropide, claracters of, ii. 11
Merops, eggs of, ii. 256
Merula dactyloptora, scapular arch and limbs of, it. 74
Merycopotamus, characters of, ii. 286
Metamorphoses of Batrachinns, i. 628, 629 Fishou, i. 611
Metopoceros, teeth of, i. 403
Microcobus pusillus, organ of taste of, iii. 199
Microdus, locomation of, i. 248
Microglossus, skull of, ii. 58
Micropogon, air-bladder of, i. 491
Microscopical anatomy, i. viii.
Microtherium, characters of, ii. 286, 287 skull, ii. 472
Midus, rufimanus, nlimentary canal of, iii. 432
osseous system, ii. 612
prosencephalon, iii, \(114,124,125,129\), 131
teoth, iii. 315
Milsus, locomotion of, ii. 116
Mincopies, the, of tho Andanian Islands, orgens of smoll of, iii. 219
Molo See Talpa
Molossus, mouth of, iii. 387
Monitor, nlimentary canul of, i. 445
dovelopmont, i. 638
Monochir, charneters of, i. xaxiii.

MOR
Monodon, teeth of, iii. 265,279, 280 vertebral column, ii. 416
Monophyllns, organs of taste of, iii. 192
Monophyodonts, teeth of, iii. 271
Monopnoa, characters of, i. 9
Monopterus, gills of, i. 481, 486
Monotremata, development of, iii. 715
bones of the limbs, ii. 323
charucters of, ii. 275 ; iii. 89,99
beart, iii. 516
liver, iii. 481
muscles, iil. 2
nervous system, fiid. 73
organs of generation, iii. 643 male, iii. 643 female, iii. 677
organ of hearing iii, 226
osseous system, ii. 316
skeleton, ii. 316
A. vertebral column, ii. 316
B. skull, ii. 318
C. bones of the limbs ii. 323
scupula, ji. 323
coracoid, ii, 323
clavicle, ii. 324
humerus, ii. 324
radius, ii, 324
ulna, ii. 324
carpus, ii. 325
pelvis, ii. 326
ilium, ii. 326
ischium, ii. 326
pabis, ii. 326
marsupial, ii. 263
femur, ii. 327
patella; ii. 327
tibia, i1. 327
fibula, ii. 327
tarsus, ii. 327
astragalus, ii. 328
pancreas, iii. 492
respiratory system, iii. 575
salivary glands, iii. 397
skoleton of, ii. 316
skull, ii. 318
spleen, iii. 560
teeth of, iii. 265
thymus, iii. 067
thyroid, iii. 564
urinary systom, iii. 605
veins, iii. 552
vortebral column, ii. 316
Mormoops, month of, iii. 387
Mormydæ, chatacters of, i. 10
Mormyrus, characters of, \(i .10\) skull, i. 118
Mormyrus dorsalis, electric organs of, i. 350
Mormyrus longipinns, electric organs of, 1. 350,355
alimentary canal of, i, 416, 417
arteries, i. 488
Marmyrus oxyrhynchus, electric organs of i. 350

\section*{HOIR}

Mormyrus Petersii, alimentary canal of, i. 410
Morrhua vulgaris, air-bladder of, i. 495
alimentary canal, i. 421
gills, i. 480
male organs of generation of, i. 669
myelencephalon, i. 271-274, 276, 278-. 280, 282, 284
nerves, i. 208, 301 - \(303,305,306,308\), 309
pectoral limb, i. 164-166
pelvic arch and limb, i. 179
skull, i. 73, 93, 05-100, 107, 109-113, 115, 117-121, 123-126
Mosasaurus, characters of, 1. xzxriii
skull, i. 157
teetb, i. 401, 402
Moschidæ, cbaracters of, ii. 286
limb-bones, ii. 486
memmary glands, ini. 779
Moschus aquaticus, alimentary canal of, iii. 472
limb-bones, ii. 486, 487
liver, iii. 483
Moschus moscbiferus, preputial glands of, iii. 635
limb-bones, ii. 484, 486
liver, iii. 48 I
skull, ii. 471
teeth, iii. \(348,349,351\)
vertebral column, ii. 460
Motacilla, eggs of, ii. 257
Mouth of Aves, ii. 156
Fishes, i. 409
Mammalia, ii. 267 ; iii. 383
Reptiles, i. 434
Mugil, alimentary canal of i. 418
pectoral limb, i. 166
rertebral column, i. 37
Mugil cephalus, teguments of, i. 550
Mugil labrosus, alimentary canal of, i. 410
Mugilidæ, cbaracters of, i. 11
alimentary canal, i. 420
Mullus, myelencephalon of, i. 283 nerres, i. 300
Murena, alimentary canal of, i. 421 arteries, i. 489
scapular areb, ii. 65
skull, i. 122
teetb, i. 370
Muræna helena, skull of, i. II3
vertebral column, i. 45
Murænidæ, characters of i. 10
alimentary canal, i. 411
nerves, i. 315
skull, i. 118
vertebral column, i. 41
Murenophis, arteries of, i, 479
gills, i. 478
skull, i, 125
teeth, i. 370
Muridæ, adrensls of, iii. 570

MYL
Muridx-continued. limb-bones, ii. 382
organs of generation, male, iii. 655
female, iii. 686
organs of smell, iii. 209
skull, ii. 378
teetb, iii. 299
Mus decumanus, alimentary canal of, iii. 421
liver, iii. 485
mammary glands, iii. 776
organs of hcaring, iii. 230
organs of smell, iii. 209
pancreas, iii. 493
Mus messorius, brain of, iii. 143 mammary glands, iii. 776
Mus musculus, brain of, iii. 143 mammary glands, iii. 776
Mus rattus, alimentary canal of, iii. 420 limb-bones, ii. 382
Muscle, structure of i. 200
Musk-deer, blood-discs of, i. 4 bones of, ii. 460, 471
Musophagidæ, cbaracters of, ii. 12 alimentary canal, ii. 173 osseous system, ji. 28, 56
Mustela martes, development of, iii. 744 organs of generation, male, iii. 670 pancreas, iii. 495
Mustela zibellina, vertebral column of, ii. 491
Mustelidx, limbubones of, ii. 509
mammary glands, iii. 780
organ of hearing, iii. 234
skull, ii. 502
teeth, iii. 333
urinary system, iii. 608
vertebrate column, ii, 492
Mustelines, bones, ii, 491
Mustelus, gills of, i. 486
beart, i. 474
vertebral column, i. 35
Mustelus levis, development of, i. 610
female organs of generation, i. 575
Mutilata, characters of, ii. 280, 296, 299 development, iii. 732
Mycetes seniculus, cecum of, iii. 432
cranium, ii. 529, 531
development, iii. 745, 746
larynx, iii. 598
Mycteria, beak of, ii. 147
Mydaus meliceps, anal gland-bag of, iii. 637 limb-bones, ii. 509
vertebral column, ii. 491
Myelencephala. See Vertebrata, i, ix, \(\mathbf{x}\),
xi, xxi, 1-4, 19, 29, 359, 640
Mygale. See Myogalea.
Myletes, teetb of, i. 369
Myliobatidx, characters of, i. 13
Myliobatis, characters of, i. 13
heart, i. 474
skull, i. 81
teeth, i. \(369,370,373,375,378\); iii.
273

MYI
Mylodon, limb-hones of, ii. 414, 415
дerves, iii. 182
skull, ii. 407
vertebral column, ii. 401, 402
Myohatrachus paredoxis, development of, i. 829
skull, i. 91
teeth, i. 388,392
Myocomma (syn, myomere, myotome), i. 203
Myogalea (syn. Mygale) moechata, caudal scent-gland of, iii. 637
teetb of, iii. 304
Myopotamus, alimentary canal of, iii. 423
adrenals, iii. 670
lunge, iii. 677
memmary glande, iii. 775
organ of taste, iii. 192
teeth, jii. 377
Myozus, alimentary canal of, iii. 422, 423
bybernation, i. 4
mammary glands, iii. 778
Myripristis, organ of sight in, i. 331
Myrmecobius, skull of, ii. 335, 338, 342, 343, 349
toeth, iii. 287, 288, 204, 302
Myrmecophagn didactyla, limb-bones of, ii . 410
male organs of generation, iii, 658
prosencephalon, iii. 110
salivary glands, iii. 402
vertebrel column, ii. 398
Myrmecoplagu jubnta, characters of, ii. 270
alimentary canal, Hii. 448
brain, iii. 143
fomale organs of generation, iii. 691
larymx, iii. 586
limb-bones, ii. 410
liver, iii. 484
month, iii. 383
muscles, iii. 20-24
nerves, iii. 151
organ of hearing, iii. 231
organ of smell, iii, 210
pancreas, iii. 404
salivary glande, iii. 403
skull, ii. 388, 403
teeth, iii. 265
vertebrel colmmn, ii. 397
Myxine, characters of, i, 9
gille, i. 476
beart, i. 171
norves, i. 200
ovulation, i. 508
teoth, I. 360
vaine, i. 468
vertobre, i. 31
11.1. mineles of, i. 225, 231

Nain tripudians, lunge of, i. 524
tecth, i. 307
tegument, i. \(65 \overline{0}\)
vortobral colnma, i. 54, 58

NOD
Naidæ, tegument of, i. 555
vertebral column, i. 56
Nails of Mammalia, iii, 623
Nandus, arteries of, i. 489
Namnemys, oyiposition in, i. 818
Narcine, skull of, i. 78
Narwhal, tusks of, iii. 280
Nasalis larvatus, alimentary canal of, iii. 433
development, iii. 746
orgen of smell, iii. 216
osseoue syetem, ii. 519
Naseus, Sigamus, pectoral limb of, i. 164
Naseus unicornis, ekull of, i. 114
Nasua, limb-bones of, 7i. 501,508
mammary glands, iii. 780
prosencephalon, iii. 117
teeth, iii. 334
Natantia, cbaracters of, i. 17.
Natatores, characters of, i. \(\theta\)
Natricidse, teeth of, i. 394
teguments, i. 555
Natrix torquata, arteries of, i. 520
development, i. 834,635
kidneys, i. 539
lungs, i. 620
oviposition, i. 616
ovulation, i. 592.
teguments, j. 555
Naucrutee, changes with growth, i. 612
Negro, skull of the, ii. 564,565
Nelomye, mammary glands of, iii. 775
Nervous tiesues, i. 266
centres and nervee, i. 266
eeusations and reflexactions, i. 266
myelencephalon, or cerebrospinal syetem, i. 266
tubes altered by re-agente, i. 267
diameters in the different vertebrate clusses, i. 267
neurilemma, i. 267
myelencephalon of Fishes, i. 268
of Reptilee, i. 290
of Aves, ii. 117, 118
of Mammalia, iii. 73-140
Nervous system of Hrematocrya, i. 266
appendages, i. 323
Pacinian corpusclee, i. 323
Savian corpuscles, i. 324
Nesodon, teeth of, iii. 266
Nestor, sexual cbaracters of, ii. 258
Nevts of Aves, ji. 257
Fishee, i. 611
Neuricity, i. 318
Nourilemma, i. 267
Nourocommi (syn, neuromere, nerve-segment) i. ix. 203, 270, et seq.
Newt, brain of, i. \(290^{\circ}\)
Nictitantee, characturs of, i. 13 orghn of sight, i. 336
Nocthora trivirgata, derelopment of, iii. it 4
Noctilio, month of, iii. 38;
Nodulus in Fishes, i. \(97 \%\)

NOM
Nomogeny (syn. Heterogeny, Spontaneous Generation), iii. 814
Notidanidæ, characters of, i. 13
Notidanus cinereus, ovulation of, i. 598 teeth, i. 373
vertebral column, i. 32, 35
Notornis, characters of, i. xxxiii
dorsal vertebre and sternum, ii. 21, 23, 24 skull, ii. 57
Nototherium, skull of, ii. 335 teeth, iii. 393
Nothosaurus, characters of, i. 16 pelvie arch and limb, j. 182
vertebral column, i. 53
Nototrema marsupiatum, development of, i. 606
female organs of generation, i. 581 tegument, i. 551
Numenius, dorsal vertebre and sternum, ii. 26
skull, ii. 61
Numida, beak of, ii. 150
lower larynz, it. 220
Nycteris, derm of, iii. 613 mouth, iii. 387

0
CLODON, mammary glands of, iii. 775, 776
teetb, iii. 299
CEdicnemus, dorsal vertebra and sternum, ii. 26 pelvic limbs, ii. 82
Oligodon bitorquatus, teeth of, i. 395
Ommatophoca, teeth of, iii. 337
Omnivora, characters of, i. xxix. ; ii, 296
Ophidia, absorbent system of, i, 459
adrenals, i. 543
alimentary cenal, i. 434
blood, i. 501
characters of, i. 17
fecundation, i, 615
oviposition, i. 616
development, i. 634, 635
generative organs, i. 579
male, i. 579
female, i. 585
hearing, organs of, i. 348
heart, i. 507
larynx, i. 528
liver, i. 448
locomotion, i. 259
lungs, i. 524
respiratory actions, i. 531
kidneys, i. 538
muscles of the, i. 224
osseous system-
skull, i, 146
vertebral column, i. 53
poison-glands, i. 563
secretion, the poison-glazd, i. 563

ORT.
Ophidia-continued. scent-glands, i. 563 sight, organs of, i. 338 sympathetic dervous system, i. 321 teeth, i. 393
teguments, i. 553
epiderm, i. 553
periodical shedding, i. 553
scales, i. 554
claws or hooks, i. 554
pigment cells, i. 555
secreting follicles, i. 555
thymus body or gland, i. 565 thyroid body or gland, i. 565 veins, i. 503
Ophidiidx, characters of, i, 10
Ophidium, characters of, i. 10
Ophidium barbatum, vertebral column of, j. 43

Ophiocephalus, aix-bladder of, i. 491
Ophiomorpha, characters of, i. 15 rertebral column, i. 49
Ophisaurus, skull of, i. 158 teguments, i. 555
Opisthoceelia, characters of, i, 17 vertebral column, i, 69
Opisthodelphis ovifera, arteries of, i. 515 female organs of generation, i. 588 oviposition, i. 616 teguments, i. 551
Opossum, generation of, iii, 721 osseous system, ii. 337
Orang-œtan. See Pithecus satyrus.
Oreophasis, osseous system of, ii. 27, 32, 36, 65
Ornithorhynchus, alimentary canal of, iii. 410
beak, iii. 383 brain, iii. 102
crural gland, iii. 639
generative organs, iii. 644
male, iii. 644
female, iii. 678
derelopment, iii. 717
eye, iii. 246
heart, ini. 516
jaws, iii. 384
mammary organs, iii. 761
muscles, iii. 2
nervous system, iii. 73
olfactory nerve, iii, 208
osseous system, ii. 317
sahivary glands, iii. 397
spleen, iii. 560
thyroid, jii. 564
Ortalida, lower larynx of, ii. 220
Orthagoriscus, alimentary canal of, i. 422
gills, i. 480
kidneys, i. 536
muscles, i. 212
myelencepbalon, i. 271
organ of sight, i. 331,334-336
Orthorhynchus, haak of, ii. 1:7

OHT
Ortyx, dorsal vertebre and eternnm of, ii. 26, 27
Orycteromys, teeth of, iii. 296
Orycterus, alimentary canal of, iii. 423 lungs, iii. 577
Orycteropus, characters of, ii. 279, 376 heart, iii. 520
limb-bones, ii. 409
liver, iii. 484
mouth, iii. 386
organ of hearing, iii. 231
organ of smell, iii. 210
skull, ii. 404
teeth, i. 367,369 ; iii. \(272,273,366\)
vertebral columa, ii. 395
Osphranter, organ of smoll of, iii. 205
Ospbromenua, organ of touch of, i. 326
Ossification, tendoma of, in A vos, ii. 83
Osteocomma (sym, bone-segment or osteomers), i. 27, 203
Ontracion, alimentary canal of, i. 421
bones of, i. 26
muscler, i. 212
Ostraciontidæ, characters of, i. 11
Ostrecostei, characters of, i. 12
Otaria leoninu, aen juhata, liver of, iii. 486
skull, it. 496, 497, 498
teetb, iii. 336
Otaria lohata, hair of, iii. 618
Oturia ursina, bair of, iii. 618
limb-boues, ii, 507
organ of learing, iii. 234
organ of smell, iii. 216
Otis, organ of bearing of, ii. 133
osseous system, ii, \(23,26,82\)
Otocryptis, teeth of, i. 402
Otodus, teeth of, i. 372
Otolicnus crassicaudatus, slimentary canal of, iii. 431
mammery glande, iii. 780
orghns of generation, male, iii. 672 osseous system, \(\mathrm{i} 1,612,542\)
Owlienua Peli, osseous system of, ii. 512 organs of generation, female, iii. 701 foeth, iii. 315
Otomys, teeth of, iii. 296
Otoops, moutb of, iii. 387
Otter, bones of tbe, ii. 501
Oudenodon, teeth of, i. 385, 400
Ourux, osse.ous system of, ii. 27, 6.5
Ovide, horna of, iii. 624
mammary glands, iii. 779
Oripont in Mumnulia, iii. 711
Oyis ammon, huir of, iii. 616 skull, ii. 474
Oris uries, characters of, ii. 286
derolopment, iii. 738
macomyelon, iii. 67
skull, ii. 474, 475
Opis mathrn, akull of, ii. 474
rertebral volumn. ii. 462
Oyis musimen, luir of, iii, 618

PEG
Ovis Vigmei, hair of, iii. 616
skull, ii. 474
Orulation in Mammalia, iii. 709
Ovum, development of, in vertehrates, i. 1
Ox, alimentary canal of, iii. 471
hones, ii 461, 472
horns, iii. 625
muscles, iii. 42
orgens of generation, iii, 668
organ of bearing, iii, 233
salivary gland, iii. 404
organ of sigbt, iii. 251
organ of smell, iii. 213
Oxyglossus, alimentary canal of, i. 436
teetb, i. 392

DAORUS, changes accompanying growth, i. 612

Palreontology, i. viii ; iii. 790
Palæosaurus, teetb of i. 405
Palæotherium, characters of, i. xvii, xxxi; ii. 284, 309
geological remains of iil. 789
teeth, ili. \(340-343,356,375,377\)
Palamedea, scapular areb and limbs of, ii. 74 tegumentary system, ii. 232
Palapteryx, characters of, ii. 12
pelvic limbs, ii. 82
Paloplotherium, geological remains of, iii. 179
l'ancreas of Aves, ii. 178
Fishes, i. 428
in Mammalia, iii, 492 pancreatic fluid, ï̈. 498
Reptiles, i. 453
Pandion, bones of, ii. 21
Pangasius, air-bladder of, i. 491
Pangolin, hoaes of, ii. 403
Panician corpuscles, i. 323
Papio Mormon, hrain of, iii. 91
organs of generation, male, iii. 673
fomale, iii. 703
osseous system, ii. 517, 531
prosencephalon, \(1 i 1.131\)
tecth, iji. 316
Paradisia, charscters of, ii. 10
Puradoxnrus typus, alimentary canal of, iii. 445
mammary glands, iii. 760
teeth, iii. 33 i
vertebral column, ii. 492
Paraziplius, limb-bones of, ii. 427
skull, ii, 426
Parra, scapular arch and limbs, ii. 74
rggs of, ii. 256
Parus, characters of, ii. 10
Passerita, organ of taste of, i, 327
Patagoniar, skull of, ii. 568
Pavo, osseous gystem of, ii. \(27,74,61\)
Pearly vosicle covoring the spinel nerres
of the Frog, i. 31,
Pecesci, bones of, if. 4is. tion

PEG
Pegasus draco, dermoskeleton of, i, 195
Pelagius monachus, limb-bones of, ii. 507 vertebral columan, ii. 495
Pelamys, liver of, i. 448 tegument, i. 5 s. 4
Pelecanus, beak of, ii. 148
cervical vertebræ, ii. 40
heart, ii. 188
muscles of the legs, ii, 103
pelvis, ii, 34
seapular arch and limbs, ii. 70
skull, ii. 64
sternum, ii. 23, 24
tongues, ii. 153
Pclobates fuscus, semination and ovalation of, i. 591, 592
Penelope cristata, alimentary canal of, ii. 171
Penelope mirail, lower larynx of, ii. 220
Perameles, alimentary canal of, iii. 412,420
limb-bones, ii. \(351,352,363\)
lungs, iii. 576, 577
mammary glands, iii. 774
mouth, iii. 385
muscles, iii. 13, 16
organ of hearing, iii. 228
organ of smell, ili. 208
organ of taste, iii. 191
skull, ii. \(336,337,342\)
tecth, iii. 287
Peramoles Gunnii, limh-bones of, ii, 352
mouth, iii. 388
Perameles lagotes, larynx of, iii. 584
limh bones, ii. \(352,359,363\)
muscles, iii. 14
organs of generation, male, iii. 647, 648
organ of hearing, iii. 228
skull, ii. \(335,338,340,343,346,347\)
vertebral column, ii. 333
Perameles nasuta, alimentary canal of, iii. 420 hlood, iii. 513
tkull, ii. 339
teeth, iii. 288
Perameles obesula, female organs of generation of, iii. 683
teoth, iii. 288
Perca, characters of, i. 11
skull, i. 107
vertebral column, i. 43
Perea fluviatilis, alimentary canal of, i. 416 female organs of generation, \(i_{1} 571\)
heart, i. 472
myelencephalon, i. 277,278
myology, i. 202, 205-211
nerves, i. 297, 304-306
organ of hearing, i. 342
organ of sight, i. 336
ovalation, i. 590
pyloric appendage and pancreas, i. 430 , 432
skull, i. \(94,105,106,109,125\)
teeth, i. 969
veins, i. 467

PET
Percidx, characters of, i. 11 teeth, i. 378
Percis, air-bladder of, i. 493
Percophis, air-bladder of, i. 493
Perdix, dorsal vertebræ and sternum of, ii. \(21,22,26,27\) sacral vertebre, ji. 29
Periophthalamus, myelencephalon of, i. 275
Perissodartyla, characters of, ii. 283, 296
alimentary canal, iii. 458
muscles, iii. 26
organs of generation, male, iii. 660
female, Hi .693
prosencephalon, iii. 121
teetb, iii. 352
vertebral column, ii. 444
Perissodactyla, alimentary canal of, iii. 458
braid, iii, 121
organ of sight, iii. 251
organs of generation, iii. G61
male, iii. 661
female, iii, 693
osseous system, ii. 444 skeleton, ii, 444
A. vertebrate column, ii. 444
cervical, ii. 444-448
dorsal, ii. 444-448
lumbar, ij. 444-448
sacral, ii. 444-448
caudal, ii, 444-448
B. skull, ii, 448
frontals, ii. 449
lacrymal, ii, 449
nasal, ii, 449
premaxillaries, ii. 449
jaws, ii. 449
C. hones of the limbs, ii. 454
seapula, 21,454
humerus, ii. 454
radius, ii. 454
ulna, ii. 454
ilium, ii. 454
ischia, ii. 454
carpus, ii. 455
tibia, ii. 456
fibula, ii. 456
astragalus, ii. 457
teeth, iii. 353
urinary system, iii. 606
Perodicticus potto, cacum of, iii. 431
organs of generation, male, iii. 672 female, iii. 701
osseous system, ii. \(512,528,541\)
tongue, iii. 198
Perurian, skull of, ii. 567
Petalodus, teeth of, i. 371
Petaurus, derm of, iii, 612
limb-bones, ii. \(353,355,356,358,359\), 361, 362
mammary glands, iii. 770
skuli, ii. \(344,347,350\)
vertebral column, ii. 329

\section*{PET}

Petaurus (Acrobates) pygmaus, alimentary canal of, iii. 418
feraals organs of genstation, iii. 881
bkull of, ii. 335
testh, iii. \(290,338,338,340,343,349\)
Pstanrus Bennettii, skull of, iii. 337, 338
Petaurus flaviventer, rkull of, iii, 338, 345
Petaurus macrurus, limb-bones of, ii. 352 vertsbral column, ii. 331, 332
Petsurus sciureus, limb-bones of, ii. 352 Ekull, 1i. 338, 337, 342, 343, 345 vertebral column, ii. 332
Petaurus Taguanoides, alimentary canal of, iii. 418
femalc organs of generation, iii. 682, 883
limb-bones, ii. 352, 360, 362
ekull, ii. 343
Petrodomus, mouth of, iii. 384 teeth, iii. 307
Petronyzon (syn. Ammoceten), characters of, i. 7, 9
alimentary canal, i. 412
gilfe, i. 475
growth, i. 811
beart, \(i, 471\)
kidneys, i. 534, 536
liver, i. 425
muscles, i. 212
noryes, i. 328
organs of generation, male, i. 568
female, i. 571
osscous s.whem. i. 32
v-rtiluare, de wlopmiolt of, i. 32
skill, i. 72,114
s.4nimalient, i. 590

 ii.


orgath at mall iii. P14;
orgall uf tiate, iii. 141.5
skitl, ii. 169
जkwn, iii. 561
firth, iii. \(3.4 j\)
Phroniontorus, fhataclery of, ii, 9
mlimutisry (anlal, ii. 167
bank, ii. ils
 fultic limbs, in. 82
(1) はir, ii. 152

Plinaton, charucters of, ii, 9
Phalangista, mammary glands of, iii. 769
Jimb-bones, ii. \(351,355,359,360,361\)
muncles, iii. 8
skull, ii, 338, 337, 341-34-4, 347,348 , 349, 350
treth, iii. 200
rertebrul column, ii. 328-33.t
Phulangista Cookii, limb-bones of, ii. 352 . 35.5, 362
*Knll, ii. 315

PHO
Phalangista Cookï-continued.
teetb, iii. 289, 290
vertsbral column, ii. 331
Phalangista fuliginosa, lungs of, iii. 576
thyroid gland, iii, 565
Phalangista gliriformis, limb-bones of, ii. 355, 359
teetb, iii. 290
Phalangista ursina, limb-bones of, iii، 382 teeth, iii. 380
Phalangista vulpina, alimentary canal of, iii. 420
musclees, iii. 16
salivary glands, iii. 398
skull, ii. 347
teeth, iii. 289, 290
urinary system, iii. 606
vertebral column, ii. 332
Phalcrocorax carbo, alimontary canal of, ii. 157,163
skull, ii. 61
Phaleris, osseous system of, ii. 19, 25
Pharyngognathi, characters of, i. 10, 11
skull, i. 120
Phascogale, alimentary canal of, iii. 411, 412, 430
larynx, iii. 584
mammary glands, iii. 774
tecth, iii. 288
Phasenlarctos, alimentary canal of, iii. 420
developnent, iii. 749
limb-bones, ii, 351, 353, 357, 359
organs of generation, male, iii, 648
skull, ii. 342
teeth, iii. 200
vertebral column, ii. 334
Phascolomys, characters of, ii. 269
alimentary canal, iii. 420
limb-bones, ii. 350-356, 358-362
mammary glands, iii. 769
megencepbalon, iii. 98
organs of generation, male, iii. 648
female, iii. 682
prosencephalon, iii. 107, 111
skull, ii. 335-345. \(3 \pm 7\)
teeth, iii. 292, 313
vertebrol columa, ii. \(328-330,331\), 333, 334
Phascolotherium, characters of, i. Ixxi
dentition of, iii. 790
skull, ii. 350
Pbasianus, alimentary canal of, ii. 171
dorsul vertebree and sternum, ii. 27
generative system, ii. 257
Philedon, wattles of, ii. 129
Phoce (Calocephalus) Fitulinus, characters of, i. xix ; ii. 289, 296
ulimentary canal, iii. 446
development, iii. 745
herrt, iii. 524
limb-loones, ii. 507
livor, iii. 486
lungs, iii. 581

PHO
Phoca (Calocephalus)-continued.
organs of generation, male, iii. 669 female, iii. 698
pancreas, ii, 494
prosencephalon, iii. 118, 119
teeth, iii. 337
thymus gland, iii. 561
urinary system, iii. 605
Phoer grenlandica, limb-bones of, ii. 507
prosencephalon, iii. 115
skull, ii. 498
vertebral.columa, ii. 488, 489, 494
Phocæдa communis, alimentary canal of, iii. 452
arteries, iii. 536
female organs of generation, iii. 691
heart, iii. 521
lagynx, iii. 587
myelon, iii. 75
nerves, iii. 152, 168
organ of hearing, iii. 225
skull, ii. 424
veins, iii, 554
vertebrate column, ii. 418
Phocena orea, teeth of, 281
Phocidæ (syn. Pinnigrada), echaracters of, ii. 288
locomotion, iii. 65
mammary glands, iii. 780
nerves, iil. 147
organ of hearing, iii, 234
terth, iij, 336.
Fertebral colimn, ii. 490, 494
Phocidæ, orgun of hearing of, iii. 234 teeth, iii. 336
Phrynosoma, teguments of, i. 555 teeth, i. 403
Phycis, pelvic arch and limb of, i. 180
Phyllonycterit, mouth of, iii, 387
organ of taste, iii. 192
Plyyllostoma, derm oŕ, iii. 613
mouth, iii. 387
teeth, iii. 310
Phyllurus, teguments of, i. 556
Physeter macrocephalus, larynz of, iii. 558
limb-hones, il. 426
organ of bearing, iii. 231
skull, ii. 422
teeth, i, 362, 363 ; iii. 363
vertebral column, ii. 415, 419
Physeteridse, skull of, ii. 418
Physiological anatomy, i, vii
Picidz, characters of, ii. 12
locomotion, ii. 116
osseous system, ii. 37
Picus, digestive system of, ii. 152
tongue, ii. 152
salivary glande, ii, 155
pancreas, ii. 158
osseous system, ii. 19, 28, 58, 60
Pimelodus, air-bladder of, i. 491
liver, i. 427
locomotion, i. 247

\section*{PIS}

Pimelodus-continued. organ of sight, i. 335 teeth, i. 374
Pinnigrada. Sée Phocidz
Pipa, characters of, i. 15
development, i. 528
larynz, i. 628
lungs, i. 523
organ of hearing, i. 347
organ of sight, i. 337
organ of smell, i, 330
organ of taste, i. 327
pelvic arch and limb, i. 183, 184
teguments, i. 551
vertebre, i. 34
vertebral column, i. 46, 49,50
Pipidz, organs of taste of, 1. 327
Pisces, absorbent systom of, i. 456
lacteal system, i. 456
lymphatic system, 1. 456
chyle and lymph, i. 458
adrenals, i. 542
yariation of structure, i. 343
air-bladder, i. 5, 255, 491, 494
form, i. 491
walls, i. 492
variation in respect to the \(a b-\) sence or presence of the airbladder, i, 493
vascular systom, i, 494
contents, i. 494
function, i. 495
homology of the swim-bladder with the lungs, i, 497
alimentary canal, i. 409
abdominal cavity, i. 400
mouth, 1. 409
tongue, i. 411
salivary system, i. 412
©sophagus, i. 414
stomach, i. 416
cardiac orifice, i. 416
forms, i. 416
cxcal, i. 416
siphonial, 1. 416
modifications, i. 416-418
muscular action, i, 419
intestinal canal, i. 420
large, i. 420
small, i. 420
tunies, i. 421
muscular fibres, \(i\). 421
mucous mombrane, i. 421
spiral valve, \(\mathrm{i}, 422\)
cloacal outlet, i. 424
armour-plates, i. 246
arteries, i. 488
blood, i. 463
colour, i. 463
blood-dises, i. 463
organic matters, i. 463, 464

\section*{PIS}

Pibcos-continuad.
cerebellum, i. 274
brain, i. 275
developmental characters, i. 4
electric organs of, i. 350
generative products and derelopment, i. 589
sperm-cells, spermatos, and sperm. atozoa, i. 589
ovulation in Osseous Fishes, \(i\). 592
stages of development, i. 593
outer coat of the roe, i. 594
ovulation in Cartilaginous Fishes, i. 597
fecundation, i. 599
development, i. 601
growth snd nests, j. 611
metamorphoses, i. 611
marsupial pouches, i. 613, 814
generative system, i. 568
male organs, i. 568
female organs, i. 571
varieties of forms, i. 576
hearing; urgans of, i. 342
heart, i. 470
kidneys, i. 538
shape, i. 634
tiesue, i. 534
circulation, i. 537
liver, i. 425
texture, i. 425
Bize, i. 425
forms, i. 426
gall-bladder, i. 427
locomotion, i. 243
effects of cutting off fins, i. 259
muscular system, i. 202
nerree, i. 297
nervous system, i. 268
myelencephalon, i. 268
osscous system-
dermoskeleton, i. 193
pectorel limb, i. 163
pelvic arch and limb, i. 179
skull, i. 92
vertehrul column, i. 34
pancreas, i. 284
proportion of hard nud soft matter, i. 19
pyloric appendages, i. 428
reproduction of parts, i. 567
respiratory systom, i. 475
gills, i. 475
purpose, i. 479
modifications, i, 481
mechanism of branchial respiration, i. 488
views respecting homologips and namlogies of respiratory organs, 498
sight organs of, i. 381
umell, organs of. i. 328

Pisces-continucd.
spleen, i. 490
treth, i. 368
togumente, i. 546
gkin, i. 546
scales, i, 546, 547
lubricating mucus, i. 550
thyroid body or gland, i. 564
tonch, organs of, \(\mathbf{i}, 325\)
urinuzy bladder, i. 535
veins, i, 464
why turn upside down in death, i. 258
Pithecia crysocephala, teeth of, iii. 315
Pithecus satyrus, characters of, i. Ix ; ii. 272, 273
alimentary canal, iii. 434
arteries, iii. 536
brain, iif. 127, 131
fept, it. 553
larynx, iii. 600
locomotion, iti. 70
lungs, iii. 582
mammary organs, iii. 780
osseous system, ii. 520
skull, ii. 534
clavicle, Mi. 544
teeth, iii. 316
Placentalia, iii. 285
Placodus, characters of, i. 16
teeth, i. 387
Placoganoidei, characters of, i. xuxviii, 12
Plagiaulax, dentition of, iii. 790
skull, ii. 350
teeth, iii, 294, 314
Plagiostomi, characters of, i, 7,8
locomotion, i. 253, 255
Plagiostomi, charecters of, i. 8, 13
skull, i. 76
Planirostra (sym. Spatularia) spatula, alimentary canal of, i. \(410,411,415\), 416, 421
gills, 1. 482, 486
skull, i. 75
Platnlea, dorsal vertebræ and sternum of, ii. 23
beak, i.i. 148
pelvic limbs, ii. 82
Platanisth, limb-bones of, ii. 427, 428
skull, ii. 425
Platax, changes accompanying growth of, i. 612
terth, i. 371
vertebral column, i. 39
Platurus, teguments of, i. 5.54
Platycephalus, vertebral column of, i. 43
Platydactylus guttutus, larynx of, i. 629
liver, i, 449
Platydactylus rittane, larynx of, i. 529
Platymantis plicitera, tegnmeuts of, i. \(\overline{0} 52\)
Platypeltis ferox, alimentary canal of, i. \(4 \pm 0\) fecundation, i. 615
Platyrhina, characters of, ii. 201, 205
slimentary canel, iii. 432

PLA
Platyrhina-continued.
crabium, ii. 529
dorso-lumber rertebre, it. 515
larynx, iti, 598
mammary glands, iii, 780
organ of smell, iii. 216
organs of generation, male, iii. 672 female, iii. 703
prosencephalon, iii. 125
tail, prehensile, iii. 71
teetb, iii. 315
Plectognathi, characters of, i. 11
Pleoctus alimentary canal of, iii. 429
Plesiosaurus, charmetors of, i, 16
organ of smell, i. 330
pelvic arch and limb, i. 181
vertebral columa, i, 51, 52
Plestiodon, teguments of, i. 552
Plethodon, teguments of, i. 552
Pleurodeles, vertebral column of, i. 49
Pleuronectes, ebaracters of, \(\mathrm{i}, 10\)
alimentary canal, i, 421
veins, i. 468
Plouronectes platessa, myencophalon of, \(\frac{1}{2}\). 278
ovulation, i. 596 *
pyloric appendages and pancreas, \(i\). 431, 432
vertebral column, i. 46
Pleuronectos solea, myencephalon of, i. 278 teguments, i. 546
vertebral column, i. 45
Pleuronectidæ, characters of, i. 10
myelencephalon, i 275
organ of sight, i. 331, 334
organs of generation, male, i. 569
female, i. 574
skull, i. 109, 110, 112
Pleurosternon, vertebral column of, i. 64
Pliolophus, characters of, ii, 284
geological remains of, iii. 792
teeth, iii. \(341,343,375,377\)
Pliosaurus, characters of, i. xxxvili, 16
pectoral limb, i. 171
teeth, i. 387
vertebral column, i. 53
Ploceus, egers of, ii. 257
Plotus, characters of, ii. 9
Plyctolophus, osseous system of, ii. 58, 63
Podargus, osseous system of, ii. 28
dorsal vertebree and sternum, ii. 28
sacral vertebre and tail, 1i. 34
skull, ii. 51, 53
pelvic limbs, ii. 81
Podiceps, alimentary canal of, ii. 174
dorsyl reatebre and sternum, ii. 25
heart, ii, 188
pelvic limbs, ii. 82
sacral vertebre, pelvis, and tail, ii. 31, 34, 36
skull, ii. 54
Podocnemys, skull of, j. 134

PRI
Pceilia, teeth of, i, 373
Poison-fangs of serpents, i. 305
Poison-glands of Reptiles, i. 563
Polychrus, lungs of, i. 525
Polynemus, air-bladder of, i, 493
myelencephalon, j. 271
organ of toucb, i. 326
Polypedates, alimentary canal of, i. 435
absorbents, i. 458
arteries, i. 516,518
development, i. 619-624, 629, 640
fecundation, i. 615
female organs of generation, i. 585
gills, i, 513
kidneys, i. 538
larynx, i. 527
lunge, i. 523
male organs of generation, i, 679
pancreas, 1,454
reproducible parts, i. 567
semination, i. 592
teguments, i. 552, 553
veins, i. 502
Polyplectron, dorsel vertebre and sternum of, ii. 27
Polyprion, skull of, i. 108, 120
Polypterus, characters of, i. xxvii.
air-bladder, i. 491, 494
alimentery canal, i. 417, 422
blood, i. 500
dermoskeleton, f. 195-197
gills, i. 480
liver, i. 427
locomotion, i. 247
pectoral limb, i. 167
scapular arch and appendages, i. 162
skull, i. 107, 108, 111, 118, 120, 129, 156
teguments, i. 549
vertebral column, i, 37-39, 43, 44
Polyptychodon, characters of, i. xuxyiii teeth, i, 387
Pomacentrus, cbaracters of, i. 11
Porcupine, lower jaw of, jii. 151
organs of generation, iii. 650
skull, ii. 374
spines, iii. 622
Porphyrio, skull of, ii. 57
Porpoise, arteries of, iii. 538
bones, ii. 418 , et seq.
nerves, iii. 152, 168
Potamogale, teeth of, iii. 305
Præcoces, cbaracters of, ii. 7
development of, ii. 265
Priodon, teeth of, i. 372, 377,378; ii1. 266, 273
Prionitidme, cbaracters of, it. 11
Prionodon, teeth of, i. 377, 378
Prionotus, air-bladder of, 1. 491
Pristidx, cheracters of, i. 13
Pristipomatidx, alimentary canal of, i. 415
Pristis, growth, and nests of, i. 611
liver, \(4.426,427\)

PRI
Pristis-continued.
locomution, i, 252
organ of smell, i. 329
skull, i. 81
teeth, i. 373, 378, 383
Proboscidia, alimentary canal of, iii. 455
charasters, ii. 283
organs of generation, iii. 660
male, iii. 660
female, iii. 698
osseous syetem, ii. 437
skoleton, ii. 437
A. vertebral column, ii. 437
cervical, ii. 437
dorsal, i1. 437
lumbar, ii. 438
sacral, ii. 438
caudal, ii. 438
B. skull, ii. 438
vomer, ii. 439
frontal, ii. 440
nasals, ii. 440
premaxillary, ii. 440
maxillary, ii. 440
jaws, ii. 440
C. bones of the limbs, ii. 441
scapula, ii. 441
humerua, ii. 442
radius, ii. 442
ulna, ii. 442
femur, ii. 443
tibia, ii. 443
fibula, ii. 444
patella, ii. 444
foot, ii. 444
teeth of, iii. 369
Proboscis of elephant, iii. 390
Procellaria, charactors of, ii. 9
alimeatary cunal, ii. 165
organ of mmell, ii. 131
pelvis, ii. 31
sternum, ii. 23
Procolia, charactors of, i. xxxviii, 17
vertebral column, i. 69
Procyon lotor, limb-bones of, ii. 501, 503, 508
teeth, iii. 334
vertebral column, ii. 491
Propithecus diadema, limb-bones of, ii. 642
Proteus, characters of, i. xxxii
arteries, i. 516
gills, i. 614,515
heart, i. 500
male organs of generntion, i. 576
organ of heuring, i. 347
organ of sight, i. 337
organ of smell, i. 330
pectoral limb, i. 170
pelvic arch and limb, i. 181, 182
thymus body, i. 565
Protopteri, churucters of, i. 14
organ of mmell, i. 330
akulu, j. 82
vertobral column, i. 46

PTE
Protopterus annectens, characters of, i. xxxii
air-bladder, i. 491, 498
alimentary canal, i. 413, 415, 417
development, i. 610
gills, i. 475 , \(477,482,485,486\)
heart, i. 474
liver, i. 451
myelencophalon, i. 277, 282-285
nerves, iii. 163
pelvic arch and limb, i. 181
scapular arch, i. 162; ;iii. 165
skull, i. 108; 1i. 302, 306
vertebral column, i. 41, 47
Protorosaurus, teeth of, i. 405
Proventriculus of Aves, ii. 160
Prycnodon, teeth of, iii. 334
Psammodus, teeth of, i. 378
Psammophis, alimentary canal of, i. 446 liver, i. 450
Psammosaurus griseus, arteries of, i. 519
oviposition, i. 617
thyroid body, i. 565
Psettus, characters of, i. xxxinii
Pseudopus, absorbents of, i. 458
lungs, i. 525
vertobral column, i. 57
Psittacidæ, characters of, ii. 12
alimeatary canal, ii. 173
external sexual characters, ii. 258
liver, ii. 177
lower larynz, ii. 224
nervous system, ii. 119
osseous system, ii. 55, 78, 81
Psittacus, lower larynx of, ii. 224
obseous system, 1i. 28, 30, 32, 51
Psophia, osseous system of, ii. 21, 23, 32, 67
Pterichthys, characters of, i. 12
dermoskeleton, i. 197
Pterocles, dorsal vertebree and pelvis of, ii. 27
generative system, ii. 256
Ptcrodactylus, characters of, i. xxrriii, 18
locomotion, i. 265
pectoral limb, i. 176, 177
skull, i. 158, 161
tceth, i. 405, 406
vertebral column, i. 70
Pterodon, teeth of, iii. 338
Pteromys volucellu, charactors of, ii. 276
derm, iii. 612
linu-bones, ii. 384
organ of henring, iii. 231
organ of sight, iii. 247
Pteropus, characters of, ii. 278, 296
development, iii. 730
laryax, iii. 586
limb-boues, ii. 393
lungs, iii. 577
mammary glands, iii. 776
organ of hearing, ;ii. 229
organs of generation, mn!f, iii. 657

PTE
Pteropus-continued.
organs of generatiou, female, iii. 689
organs of taste, iii. 192
orgens of touch, iii. 190
pancreas, iii. 484
skull, ii. 389
spleen, iii, 562
teeth, iii. 311
vertebral column, ii. 387
Pterosauria, characters of, i. xxxyiii, 6, 18
pectoral limb, i. 175
skull, i. 161
vertebral column, i. 70
Ptilonorhynchus, nest of, ii. 258
Ptychognatus, teeth of, i. 400
Ptychemys rugosa, lungs of, i. 526
Ptyodactylus fimbriatus, lungs of, i. 525
Putorius, bones of the limbs of, ii. 509 prosencephalon, iii. 116, 120
skull, ii. 501
teeth, iii. 333
Putorius ermineus. organ of sight of, ii .143 vertebral column, ii. 491
Putorius furo, development of, iii. 744
Pycnodontidx, characters of, i. 12 teoth, i. 378
Pyencdus, characters of, i. \(12^{-}\)
Pygopus lepidopus, teguments of, i. 557
Pyrgita, generative system of, ii. 243, 245
Pyrrhula, eggs of, ii. 267
skull, 1i. 422
Python, absorbents of, i. 459
arteries, i. 520
liver, i. 451
myelencephalon, i. 292
myology, i, 225
skul!, i. \(1 \pm 8\)
teguments, i. 554
rertebral column, i. 60
Python amethystinus, teguments of, i. 558
thymus body, i. 565
Python bivittatus, oviposition in, i. 617
Python Schlegellii, teguments of, i. \(\mathbf{6} 55\)
Python tigris, arteries of, i. 519
kidneys, i. 539
lungs, i. 524
muscles, i. 224, 228
nerves, i. 316
organ of sight, i, 338
pancreas, i. 453
skuil, i. 147
teeth, i. 394
teguments, i. 554
thymus body, i. 565
vertebral column, i. 58

Q
UADRUMANA, adrenals of, iii. 570
alimentary canal, iii. 429
characters, ii. 290
brain, iii. 129
development, iii. 745
ear, iij, 235

RA1
Quadrumana-continued. locomotion, iii. 70
mouth, iii. 395
muscles, iii. 52
nerves, iii. 154, 162
organ of sight, iii. 252
organ of smell, iii. 216
organs of generation, iii. 672
male, iii. 672
fernale, iii. 701
osseous system, ii. 511
akeleton, ii. 511
A. vertehral column, ii, 512
dorsal, ii. 512-525
lumbar, ii. 512-520
sacral, ii. 512-525
cervical, ii. 512-525
B. skull, ii. 025
hones of the, ii. 525-538
C. hones of the limbs, ii. 538
scapula, ii. 539-5áz
clavicle, ii. 539-553
humerus, ii. 539-553
radius, ii. \(539-5053\)
wrist-hones, ii. 539-5̄53
ilium, ii. 540-553
ischin, ii. 540-553
pubic hones, ii. 540-5̄53
femur, ii, \(540-553\)
tibia, ii. \(540-553\)
fibula, ii. 541-553
tarsal, ii. 541-553
respiratory system, iii. 582
salivary system, iii. 405
sympathetic system, iii. 181
teeth, iii. 313
tongue, iii. 199
urinary system, iii, 608
veins, iii. 555

DABBIT, alimentary canal of, iii. 423
generation of, iii. 724
locomotion, iii. 69
ovum, i. 2
stages of development, i. 3
genus, i. 3
Rachiodon. See Deirodon.
Racoon, bones of, ii. 601
Raia batis,
heart, i. \(4^{7} 4\)
muscles, i. 201
myelencephalon, i. 271
nerves. i. 299, 302
orulation, i. 598
skull, i. 80
sympathetic nervous system, i. 319
teguments, i. 549
thyroid body, i. 564
Raia clavate, myelencephalon of, i. 271
rertebral column, i. 36
Raia maculata, female organs of generation
of, i. 575

BAL
Raia oryrhytachns, semination of, i. 690
Raiidæ, characters of, i. 13
Rallus, locomotion of, ii. 113
Ramphorynchus, characters of, i. 18 vertebral colnmn, i. 70
Rans boans, vertebral column of, i. 49
Rans catesbitna, alimentary canal of, \(i\). 446
liver, i, 450
puncress, i. 454
Rana esculenta, development of, i. 622
vertebral column, i. 47
Rana temporaria, characterg of, i. 15
alimentory canal, i. \(43{ }^{5}\)
nerves, i. 316
organ of sight, i. 337
pelvic arch and limb, i. 183
skull, i. 88, 89, 175
sympathetic nervous system, i. 319
teetb, i. 392
vertebral column, i. 49
Raniceps trifurcatus, pelvic arch and limb of, i. 180
Renine, chaructors of i. 15
Raptores, characters of, ii. 11
pelvis, ii. 32
sternum, ii. 27
Rasores, characters of the order, i. 10
Rat. See Mus
Ratelus mellivorus, female organs of generation of, iii, 700
limb-bones, ii. 509
skull, ii. 601
Rittlesnake, muscles of the, i. 227
Rays, absence of air bladder in, i. 255
Recurvirostra, skull of, ii. 61
Regenia ocellota, lungs of, i. 525
Roindeer, bones of, ii. 464, 478 stumach, iii. 472
Repentia, characters of, i. 17
Reproducible parts in Hematocrya, i. 566
Batracbiu, i. 566
Reptilia, 1, 567
Tishes, i. 567
Reptilia, absorbents, i. 458
lactouls, i. 458
lymphatics, i. 459
alimentury canal, i. 433
abdominal carity, i. 433
moutb, i. 434
tongue, i. 435
anlivary npparatus, i. 439
esophigus, i. 410
atomach, i, 440
intestinal caunl, i. 412
forms, i. 443
muscular tissue, i. 441 y
mucous membmne, \(\mathbf{i} . \$ 14\)
spiral valve, i. 416
cloacal orifice, i. \(\$ 18\)
liver, i. 4.48
gall-bladder, i. 451
purerens, i. 463

\section*{THE}

Reptilia-continued.
arteries, i. 516
distribution of arterial blood, i. 520
blood, i. 500
dises, i. 500, 501
quantity, i. 501
colour, i. 501
developmental cbaracters, i. 5
fecnndation, i. 614
oviposition, i. 616
devolopment of Batracbia, i. 619 of scaled Reptiles, i. 630
generative systern, i. 579
male, i. 583
female, i. 585
ovulation in scaled reptiles, \(i\). 587, 509
gills of Batracbia, i. 512
haring, organs of, i. 347
herm, i. 510.3
killner-, i. 537
liryne, i. 527
locom+1 ion, i. 2.54
in lumbed reptilue, i. 262
hnges, ㄷ. 5 2 1,534
нихсы!
urrem, i. 309
nervous system, i. 290
myelencephulon, i. 290
osseous system : proportion of hard and soft mattor, i. 20
dermoskeleton, i, 198
pectoral limb, i, 169
pelvic arcb and limb, i. 181
poison-glands, i. 563
reproduction of parts, i. 567
respiratory system, i. 516, 521
actions, i. 530
scent-glands, i. 562
sight, organs of. i. 337
smell, organs of, i. 330
teetb, i. 385
tegumonts, i. 550
skin, i. 550
mucous follicles, i. 552
periodical shedding of tho epiderm, i. 553
thymus body or gland, i. 665
thyroid body or gland, i. 564
touch, organs of, i. 327
veins, i. 501
Rlimphastos, fauces and tongue of, ii. 130 , 151
liver, ii, 151
organ of smell, ii, 130, 13 t
osseous system, ii. 28
Rbamphastidue, cbaracters of, ii. 12
alimentary cacel, ii, 173
osseous system, \(\mathbf{i i}, 67\)
Rhea, alimentary canal of, ii. 161
generative system, ii, 2.57
osseous systein, ii. 19, 23, 35, 49, 52, \(54,61,66,311\)

RHI
Rhinelepis, air-bladder of, i. 493
-Rhinobates, heart of, i. 474
pectoral limh, i, 169 -
vertehral column, i, 36
Rhinobatidæ, characters of, i. 13
Rhinoceros, characters of, ii. 283
habitat of the, iii. 784
muscles, ii, 49
Rhinoceros indicus, characters of skeleton of, ii. 284,285
brain, size of, iii. 143
cerehellum, iii. 90
female organs of generation, iii, 693
glands opening on the feet, iii. 638
heart, iii. 522
horms, iii. 624
limb-bones, ii. 455
lungs, iii. 580
organ of sight, iii. 260
organ of hearing, iii. 233
peculiar glands, iii. 638
peritoneum, iii. 503
prosencephalon, iii. 120-122
skull, ii. 450
teeth, iii, 340, 342, 356, 377
tongue, iii. 195
Rhinoceros Ketloa, horns of, ili. 824
Rhinoceros leptorhinus, alimentary canal of, iii. 450
Rhinoceros minutus, horns of, iii. 624
Rhinoceros Orwellii, horas of, iii. 624
Rhinoceros sondaicus, horns of, iii, 624
Rhinoceros sumatranus, female organs of generation of, iii. 684
Rhinoceros tichicornis, alimentary canal of, iii. 450
hair, iii. 618
Rhimolophue, alimentary canal of, iii. 429
derm, iii. 613
organ of smell, iii. 209
organ of touch, iii, 189, 190
skull, ii, 388
spleen, iii. 562
Rhinophis, organ of hearing of, i, 348
Rhinophrynus, alimentary canal of, i. 436
Rhinopoma, alimentary canal of, iii. 429
derm, iii. 613
mouth, iii. 387
Rhinoptura, skull of, i. 82
Rhizodus (prohahly a Ganocephale), teeth of, i. 378
Rhombopholis, characters of, i. 15
Rhombus maximus, liver of, i. 427
myelencephalon, i. 278
pyloric appendage and pancreas, i. 430
vertebral column, i, 42
Rhombus zanthurus, alimentary canal of, i. 415

Rhynchocephalus (syn. Hatteria), skull of, i. 154,159
teeth, i. 388
vertehral column, i. 57
Rhynchæa australis, ii, 220

RUM
Rhynchosaurus, teeth of, i, 385, 400
Rhynchotus, skull of, ii. 55
Rhyncocyon, alimentary canal of, iii , 427, 428
mesencephalon, iii. 98
mouth, iii. 384
nerres, \(i i i .151\)
organs of generation, male, iii. 657 female, iii. 688
prosencephalon, iii. 109
skull, ii. 390
spleen, iii. 560
teeth, iii. 306
Rhyncops, characters of, ii. 9
heak, ii. 147
skull, ii. 57
Rhytina, female organs of generation of, iii. 692
beart, iii. 521
organ of sight, iii. 250
organ of taste, iii. 194
skull, ii. 433
urinary systom, iii. 107
Tertebral column, ii. 430, 432
Rhyzæna tetradactyla, alimentary canal of, iii. 444
limh-bones, ii. 510
male organs of generation, iii. 670
Rodentia, alimentery canal of, iii, 420
characters, ii, 276
liver, iil. 484
locomotion, iii. 68
muscles, iii. 18
pancraas, iii. 493
organs of generation, iii. 649
male, iii. 649
female, iii. 687
organ of hearing, iii, 231
organ of smell, iii. 209
osseous system, ii. 364
skeleton, ii. 364
A. vertehral column, ii. 364
cervical, ii. 364
dorso-lumbar, ii. 364
sacral, ii. 365
caudal, ii. 365
B. skull, ii. 367
in various species, ii. 367
C. bones of the limhs, ii. 378
in various species, ii. 378-384
respiratory system, iii. 577
salivary glands, iii. 398
teeth, iii. 294
tegumentary system, jii. 609
tongue, iii. 191, 193
Rostral hones in Marsupialia, ii. 344
Sus, ii. 468
Ruminantia, alimentary canal, iii. 470
arteries, iii. 547
development, iii. 737
heart, iii. 522
horns, iii. 624
moutl, iii. 392

RUM
Ruminantia-continued.
nerves, iii. 153
organs of generation, iii. 667
organ of hearing, iii. 233
organ of sight, iii. 251, 252
organ of amell, iii. 214
peculiar glends, iii. 832
spleen, ili. 661
teeth, iii. 349, 350
thyroid, iii. 565
tongre, iii. 198
urinary system, iii. 807
Rumination of Kangaroo, iii. 415

\(S^{A}\)ACCOBRANCHUS, gills of, i. 488
Saccolnimus, mouth of, iii. 387
Succomys, mouth of, iii. 386
Saccoptoryx, derm of, iii. 613
glandular cutaneous sac of, iii. 638
Saccostomus, month of, iii. 386
Salamandre, atria, absorbents of, i. 458, 462 arteries, 1. 616
gille, 1. 515
heart, i. 508, 507
lungs, i. 521
muscles, i, 216-218
organ of sight, i. 337
veins, i. 502
vertebral columa, i. 49
Salamandra glutinosa, teeth of, i. 386
Salamandra japonica (byn. unguiculata), fecundation of, i, 615 teguments, i. 561
Salamandra meculosa, characters of, i. 15 fecundation, i. 614 fomale organs of generation, i. 584,585 lungs, i. 621
muscle.e, 1. 215, 222
pelvic arch and limb, i. 182
teguments, i. 5 ธू2
vertebral column, i. 49
Salamandridx, characters of, i. 16
pelvic arch and limb, i. 182
Salemandroidei, characters of, i. 12
skull, i. 111
Salarias, fecundation of, i, 599
Saliva, analysis of, iii. 409
Salmo, alimentury canal of, i. 421
gille, i. 481
nerves, i. 297, 306
osseous systam, i. 38
vertebral column, i. 38, 44
pelric arch and limb, 1.179
orulation, i. 592, 595
pancreas, i. 432
teguments, i. 647
roins, i. 468
Sulmo eriox, pectoral limb of, i. 165
pelvic arch and limb, i. 180
vertobral colimn, i. 4t
Sulmo fario, nest of, i. 614
felvic arch and limb, 1. 179
gCL
Salmo salar, growth and migrations of, i. 812, 613
liver, i. 429
organ of sight, i. 333
pelvic arch and limb, i. 179
Salmon, development and growth of, i. 612
Salmonide, characters of, i. 10
locomolion, i. 254
osseous system, i. 37
vertebral column, i. 37
skull, i. 114
pelvic arch and limb, i. 180
tceth, i. 372
Sarcoramphus, lower larynx of, ii. 221
osscous system, ii. 27, 81
Sargus, alimentary canal of, i. 417
development of bones, i. 21
myelencephalon, i. 283
teeth, i. 377, 382, 390
Sartorius muscle in Ares, ii. 102
Samropterygia, characters of, i, xxxviii, 16 tecth of, i. 388
rertebral column, i. 51
Saurus, characters of, i. 10
Savian corpuscles, i. 324
Scales of Aves, it 232
Fishes, 546-549 calcification, i. 549
Mammalia, iii. 622
Scalops, teeth of, iii. 303,304
Scansores, characters of, ii. 11 pelvis, ii, 32 stornum, ii. 28
Scarus, pectoral limb of, i. 166 teeth, i, 369-372, 377, 378, 382
vertebral column, i. 34
Scelidoseurus, characters of, i. 18, 19
Scent-glands of Mammalia, iii. 637
Reptiles, i. 562
Scimna, alimentary canal of, i. 421
air-bladder, i. 492
liver, i. 427
Sciænidæe, charactors of, i. 11
Scincidæ, dermoskoleton of, i. 198
pectoral 1 imb , i. 175
teeth, i. 388
Scincus officinalis, teeth of, i. 401
Sciuridre, limb-hones of, ii. 383
female organs of generatiou, iii. 686
Sciurus cinereus, alimentary canal of, iii. 421
limb-bones, ii, 383
Sciurus maximus, limb-bones of, ii. 383
liver, iii. 483
Sciurus palmarnm, mummary glands of, iii. 775
Sciurus vulgaris, alimentary canal of, iii. 421,424
orgens of generation, male, iii, 649
Sclerodermi, chumeters of, i, 11
Sclerogenidx, characters of, 1. 11.
pectoral limb, i. 166
skull, i. 123

SOO
Scoliodon, alimentary canal of, i. 422 lungs, i. 525
Scolopaz, dorsal vertebre and sternum of, ii: 23,26
sacral vertebræ, pelvis, and tail, ii. 32 sโcull, ii. 64
pelvic limbs, ii. 82
Scomher scombrus adrenals of, i. 542
alimentary canal, i. 418, 421
mpology, i. 204
nerves, i. 297, 306
Scomber trachinus, myelencephalon, i. 283
Scomberesox, characters of, i. 10
Scomheridæ, characters of, i, 11
locomotion, i. 254
Scopelidx, characters of, i. 10
Scops, osscous system of, ii. 32
Scorpmos, gills of, i. 480
pyloric appendages and pancreas, \(i\). 430
Scorpæ口а scrofa, heart of, i. 473
Scyliidæ, characters of, i. 13 alimentary canal of, i, 423
Scyllium, development of, i. 609, 610
female organs of generation, i. 575
beart, i. 474
organ of touch, i. 325
semination, i. 590
vertebral column, i. 33, 35
Scyllium canicula, development of, i. 610
fecundation, i. 598
Scymniidæ, characters of, i. 18
Scymnus, heart of, 1. 474
vertebral column, i. 35
teeth, i. 373
Scymnus lichia, skull of, i. 78
Scymnus nicæensis, semination of, i. 590
Sea-lion, hones of, ii. 497
Seal, alimentary canal of, iii. 415
hones, ii. 488, 494
salivary gland, iii. 404
Sebastes, gills of, 1. 480
liver, i, 427
Selache maxima, alimentary canal of, i. 415, 417,423
growth, i. 611
kidneys, i, 534
liver, i. 426
male organs of generation, i. 570
myelencephalon, i. 273
organ of sight, \(\dot{i}_{1} 334\)
vertehral column, i. 33
Selachii, characters of, i. 13
Semiophorus, teguruents of, i, 556
Semnopithecus entellus, alimentary canal of, iii. 432, 446
osseous system, ii. 519, 533
Semnopithecus fascicularis, alimeutary canal, iii. 433, 446
Semnopithecus melalophis, osscous system of, ii. 519
Seps, teeth of, i. 401
Serpents. Sec Ophidia

SIR
Shark, corebellum of, i. 287
locomotion, i. 245
pectoral fins of, i. 257
skeleton, i. 245
Sheep, alimentary canal of, uii. 471
hones, ii. 462, 474
organ of smell, iii. 214
Shrews, teeth of, iii, 301
Siamang, bones of, ii, 520 , et seq,
skeleton of, ii, 291
Sieboldia, male organs of generation of, i. 576,577

Sillago, air-hladder of, i, 491
Siluridæ, alimentary canal of, i. 421
dermoskeleton, i. 193
liver, i. 425
locomotion, i. 268
nerves, i. 299
organ of touch, i. 325
osseous dermal plates of, i. 248
Silurus, organ of sigbt, i. 355
pectoral limb, i. 166, 167
teeth, i. 371
Silurus glanis, absorbents of, i, 457
arteries, i. 489
teeth, i. 369
reins, i. 468
Siredon. See Axolotes
Siren, blood-dises of, i. 4
characters of, i. 6
adrenals, i. 543
female organs of generation, i. 583
gills, i, 514, 515
heart, i. 506
kidneys, i. 537
larynz, i. 527
liver, i. 448, 451
pelvic arch and limb, i. 179
teeth, i. 391
teguments, i. 552
thymus body, i. 565
vertabral column, i. 47
reins, i. 501
Sirenia, alimentary canal, iii. 454
characters, ii. 281
heart, iii. 521
liver, iii. 478
nervous system, iii. 75
organs of generation, iii. 660
bearing, iii. 226
sight, iii. 250
smell, iii, 210
respiratory system, iii. 579
teeth, iii, 283
tongue, iii. 194
osseous system, ii. 429
skeleton, ii. 429
A. vertebrate column, ii. 430
eervicals, ii. 430-432
clorsal, ii. 430-432
lumho-caudal, ii. 430
sacral, ii. 430-432
B. skull, ii, 433

\section*{8 IR}

Sirenis-skeleton-continued.
rostral, il. 433
maxillary, ii. 434
mandible, ji. 434
C. bones of the limbs, ii. 435
gcapula, ii. 435
humerus, ii. 436
radian, ii. 436
ulna, ii. 436
carpals, ii. 438
Sitta, characters of, ii. 10
Sivatherium, horns of, iii. 825 skull, ii. 473
Skate, blood-disce of, i. 4
Skeleton, archetype, i. 29
Sloth, alimentary canal of, iii, 450
three-toed, bones of, ii. 399, 405
Smaris, air-bladder of, i. 491
Solenodon, alimentary canal of, iii, 427,428 organ of hearing, iii. 229 teeth, iii. 304, 305
Soleotelupa, characters of, i. xxxiii
Sorcider, characters of, ii. 277, 296 alimentary canal, iii, 427
musky glands, iii. fi34
teeth, jii. 305, 313
Sorex aranous, orgun of hearing of. iii. 220
Spalacothorium, teeth of, iii. 302, 303, 700
Spalax typhlus, mouth of, iii. 386
organ of sight, iii. 246
skull, iii. 376
Sparide, charactors of, i. 11
alimentary cenal of, i. 421
Sparus (Epilulus) insidiator, locomotion of, i. 2 200
skull, j. 119, 122
Spatularia. See Planiroatra.
Spermophilus, mouth of, iii. 386
Sphagobranchus, gille of, i, 478
Sphurgis, oviposition of, i. 618 teguments, i. 657, 559-561
vertebral column, i. 61, 62
Species, definition of, iii. 792 extinction of, i. xxxiv; iii. 797
origin of, i. \(x x x\) xii ; iii. 793 висееssion of, iij. 789
Spheniscus, egga of, ii. 256
Sphenosaurue, vertebral colnmn of, i. 53
Sphyreda, alimentary canal of, i. 420 air-bladder, i. 491
teeth, i. 372, 376, 377, 378, 382
Sphymenide, churacters of, i. 11
Spider-monkey, bones of, ii. \(5 \mathbf{1 6}\), et seg.
Spinachorhinus, vertebral column of, i. 36
Spinacidme, characters of, i. J3 ulimentary canal of, i. \(\$ 23\)
Spinax, ulimentary canal of, i. 413, 423 development, i. 610 mulo organs of genoration, i. 570 semination, i. 590
Spinax menathius, ulimentary canal of, i. 415 fomale orgens of gencration, i. 573 pretoral limb, i. 168
sTE
Spermaceti, where lodged in the skull, ii. 421
Sperm-cells of Fishes, i. 589
Spars nf Birde, ii. it
Squalodon. Ske Zenglodon
Squamipindes, charucters of, i. 11
Squatina, heart of, i. 474
skull, i. 76-78, 81, 82
vertebral column, i. 33, 36
Squatinidæ, characters of, i. 15
Squirrel, alimentary canal of, iii. 421
cecum, iii. 424
Squirrel, climbing, bonea of, ii. 383
Squirrel, flying, bones of, ii. 384
Stellio, alimentary canal of, i. 445 larynx, i. 529
Stenops gracilis, larynx of, iii. 597 organs of generation, male, iii. 672 osseous system, ii. 512, 542 teeth, iii. 314
Stenops javanicus, cæcum of, iii. 431
Stenops tardigradus (Loris, syn.), arterics of, iii. 545
сгесим, iii. 431
organs of generation, female, iii. 701, 702
talivary glands, iii. 405
tongue, iii. 193
Steuorhynchuy leptonyx, vertebral column of, 495
Stenorhynchus serridens, teeth of, iij. 336, 337, 369
vertebral column, ii. 489, 495
Sterna, characters of, ij. 9 scapular arch aud limbe, ii. 70
Sterrink, boues of, ii. 495
Stoat, bones of, ii. 501
Strepsirhina. Sec Lemuridæ
Streptospondylus, characters of, i. 17 derelopment of vertebra, i. 34 vertebral column, i. 69
Strigidxe, air-cells of, ii. 214
alimentary canal, ii. 171
kidneys, ii. 227
organ of hearing, ii. 134
organ of sight, ii. 130-141, 143
osseous system, ii. 27, 49
Strigops, osseous system of ii. 28
dorsal vertebre and sternum, i .28
akull, ii. 58
Strix praticola, osseous system of, ii. 28
Stromateus, characters of, i, xxxii
Stromateus fatola, ulimentury canal of, i, 415 changes with growth, \(\mathrm{i}, 612\)
Struthio, characters of, ii. 6, 12, 13 adrenals, ii, 229
air-cells, ii. 214, 215
air-passages, \(\mathrm{ii}-219\)
ulimentary canal, ii. \(158,161,167\),
169, 170, 171, 173
blood, ii, 184
generative system, ii. 242. 215, 251, 256, 257

STE
Struthio-continued.
heart, ii. 185
liver, ii. 177
muscles, ii. \(96,98,101,102,103,104\), 113
organ of sight, ii. 139, 140
osseous system, ii. \(16,18,21,22,24\), \(29,33,35,43-51,53,54,64,73,80\), 81, 83
tegumentary system; ii, 235
veins, ii. 206
Strix flammea, characters of, i. 25
alimentary canal, ii. 171
osseous system, ii. 28
tegumentary system, ii. 232
Sturgeon, dermal bony plates of, i. 246
locomotion, i. 252
velocity of, i. 255
Sturionidæ, charecters of, i. 12
gills, i. 478
locomotion, i, 246
vertebral columa, i. 41
Sturnus, charecters of, ii. 10 eggs, ii. 257
Subursidæ, limh-kones of, ii. 509
urinary system, iii. 608
Subursus ornatus, limb-bones of, ii. 508
Subursus thibetanus, organs of taste of, iii, 197
Sudis (syn, Arapaima) gigas, locomotion of, i. 247
organ of hearing, i, 372
skull, i. 118, 120, 123
vertebral column, i. 41
Suidxe, lungs of, iii. 583
organ of taste, iii, 203
prosencephalon, iii. 122
skull, ii. 469
Sula, alimentary canal of, ii. 157, 161
scapular arch and limbs, ii. 71
skull, ii. 54
sternum, ii. 23
tongue, ii. 130
Supra-spinatus muscle in Aves, ii. 95
Surnia ulula, scapular arch and limbs of, ii. 67

Sus babyroussa, spleen of, iii. 661
Sus larvatus, skull of, ii. 469, 470
Sus gerofa, characters of, ii. 286
alimentary canal, iii. 465
arteries, iii. 547
limb-bones, ii. 480, 481
liver, iii. 479
mouth, iii. 391, 392
nerves, iii, 172, 174
organ of hearing, iii. 232
organ of sight, iii. 213
organ of smell, iii. 213
organ of taste, iii. 195
prosencephalon, iii. 123
salivary glands, iii. 403
skull, ii. 467, 469
sympathetic system, iii. 181

TAP
Sus scrofa-continued.
teoth, iii. \(340,343,344,345\)
tusks, iii. 344
vertebral colvmn, ii. 458
Sweat-glands, iii. 613
Swimming, iii. 65
Sword-fish, locomotion of, i. 255
Sympathetic, or ganglionic system, i. 267
Synaptura, characters of, i. xxxiii.
Synbranchids, characters of, i, 10
Synbranchus, gills of, i. 478, 482, 486 akull, i. 96
Syngnathidæe, characters of, i. 12
Syngnathus, alimentary canal of, i. 421
dermoskeleton, i. 195
male organs of generation of, 1.569, 573
vertehral column, i. 39
Syngnathus acus, fecundation of, i. 613
Syngnathus aphiodon, fecundation of, i. 614
Synodontis, organ of sight of, i. 335 skull, i. 108
Syrnium, blood of, ii. 184
liver, ii. 175
Syrihaptes, osseous system of, ii. 27, 49
'TACHYDROMUS, locomotion of, i. 263
teeth, i, 401 pelvic limbs, ii. 82
Tachypetes, characters of, ii. 9
osseous system, ii. 21, 23, 34, 63, 67, 68,70-72,75
Tænioidei, characters of, i. 11
Tahitian, skull of, ii. 666
Talpa eeeca, organ of sight wanting in, iif. 246
Talpa europea, charactel's of, ii. 297
adrenals, iii. 570
alimentary canal, iii. 428
development, iii, 729
hair, iii. 620
heart, iii. 520
lungs, iii. 577
mammary glands, iii. 776
mesencephalon, iih. 98
muscles, iii. 17
nerves, iii. 147, 152
orgaus of generation, male, iii. 650
female, iii. 688
organ of sight, absent in, iii. 246
skull, ii. 389, 390
spleen, iii. 560
teeth, iii. 301, 303, 304, 309
vertebral column, ii. 380
Talpidse, characters of, ii. 296
mesencephalon, 7 iji .98
nerves, hil. 152
teeth, iii. 304, 310
Tantalus, skull of, ii, 57
Tanystopheus, rertehral column of, i. 53
Tapirus, characters of, ii. 283, 285, 296
arteries, iii. 534

TAP
Tepirus americanns, alimentary canal of, iii. 408, 464
development, iii, 736
beart, iii. 522
bahitat, iii. 704
laryax, iii. 503
lnngs, iii. 581
limb-bones, ii. 455
mouth, iii. 391
organe of generation, male, iii. 684
fomale, iii. \(68 \pm\)
organ of hearing, iii. 232, 233
organs of sight, iii. 251
organs of amell, iii. 211
skull, ii, 449
teeth, iii. 343, 357
urinary systom, iii. 606
vertohral column, ii. 444
Tapirus malayanus, ulimentary canal of, iii, 458
organs of generation, male, iii. 684
vertehral column, ii. 448
Tarsipes, teeth of, iii, 285, 289
Tersius upectrum, alimentary canel of, iii. 431
lunge, iii. 582
organs of generation, male, iii. 872
muscles, iii. 53
osseous system, ii. 512, 528, 542
teeth, iii, 314
Taxidea lahradorea, mnmmary. glands of, iii. 780
tceth, Hii, 333
Teeth; dental tissues, i. 3 ñ
dentine, i. 359
coment, i. 359,360
enamel, i. 350, 380
chemical composition, i. 362
Tegumentary system. See Aves; Mammalia; Pisces; Reptilia
Tcjus nigropunctntus, skull of, i. 166,158 teeth, i. 388
Teleolopy (synt finnl purpose), i. vi, xxr ; iii. 787

Teloosaurus, charactars of, i. 17 dermoskeleton, i. 108
Teleostei, i. 248
Telcostomi, charecters of, i. 7
female organs of generation, \(i, 672\)
Tenuirostres, charncters of, ii, 177 heak, ii. 147
Terrapenes, characters of, i. 17
Testudo, chnracters of, i. 17
liver, i. 4,51
myelencephalon, i. 292
organ of hearing, i, 3.4-4
pretornl limb, i, 17.t
pelvic arch and limh, i. 186
skull, i. 157
treeth, i. 385
togumente, i. \(558,5,59,660\)
vertelmal colnmn, i. 61, 64
Trefudu Couci, lurynx of, i. 690

THY
Testudo elephantopus, larynu of, i. 523
liver, i. 452
skull, i. 88
vertebral column, i. 65
Testudo greca, absorhents of, i. 459
alimentary canal, i. 445
heart, i. 509
laryna, i. 529
liver, i. 452
nerves, i. 313, 314
organ of sight, i, 340
ovulation, ii. 592
pelvic arch and limh, i. 188
Testudo indjca, alimentary canal of, i. 445
organs of touch, i, 327
scent-gland, i. 562
Testudo polyphemus, alimentary canal of, i. 446
ahsorhents, i. 526
liver, i. 450
pancreas, i. 454
Testudo tabulata, alimentary canal of, i. 44.5
kidneys, i. 541
larynx, i. 520
pelvic arch and limb, i. 187
Tetraceros. Spe Antilopo quadricornis
Tetragonufis, alimentrry canal of, i. 415
Tetrao, osseous sygtem of, ii. 27, 57, 66
Tetrao urogallus, generative system of, ii. 257
organ of taste, \(\mathrm{Hi}, 129\)
skull, i1. 57
Tetrodrodon, air-hladder of, i. 491
alimentary cannl, i. 415
development of vertebre, i. \(41,42,43\)
electric organs, i. 350
gilss, i. 481
myolencephalon, i. 272
skull, i. 83
Tetronyx, skull of i, 130, 131
Thalassidroma, sternum of, ii. 21
Thalassorhinus, nlimentary canal of, i, 422
Thalicynus, alimentary canal of, iii. 420
mammary glands, iii. 774
organ of smell, iii. 208
prosencepbelon, iii, 104, 105
skull, ii. 342
teeth, iii. 285, 286
vertebral column, iii. 343
Thamnophilus, lower larynx of, ii. 224
Thumatogeny, iii. 814
Therimorphn (syn. Anoura), characters of, i. 15
dorelopment, i. 629
respiratory actions of, i. 532
Theutididse, characters of, i. 11
Thylacoleo, dentition of, iii. 790
skull, ij. 343, 350
teeth, iii. 293, 204
Thylacotherium (syn. Amphitharinm), cha* ractars of, i, xxxi
teeth, iii. 287, 294, 302
Thyranlus, vertebrel column of, i. 43

THY
Thynnus rulgaris, artories of, i, 498
skull, i. 107
teguments, i, 548
veins, i. 468
vertehral column, i. 38, 43
Thyrsites, changes accompanying age in, i. 612
Tiger, skull of, ii. 505
Tiliqua scincoides, dermoskeleton of, i. 198 larynx, i. 627
male organs of generation of, i. 580
Tinamus, osseous system of, ii. 16, 32, 34, \(36,49,53,65\)
Tince, arteries of, i. 488
development, i. 602
nerves, i. 297
teeth, i. 370
Toad, locomotion of, i. 262, 263
Todus, dorsal vertehre and sternum of, ii. 28
Torpedinidz, characters of, i. 13
Torpedo Galvanii, alimentary canal of, i, 415 eleetric organs, i. 213, 350
heart, i, 474
nerves, i. 273
Torpedo marce, muscles of 1.213
organ of touch, \(1,325^{-k}\).
semination, i. 590, 591
Torpedo marmorata, ovulation in, j. 593
Tortoise, hrain of, i. 290, 295
characters of, i. 17
Tortrix, teath of, i. 395
Totamus, steraum of, ii. 26
Totipalmatex, characters of, ii. 9
Toxodon, teeth of, iii. 293
Trachinus draco, myelencephaton of, i. 288
Trachypterus, alimentary canal of, i. 417
air-bladder, i. 493
Trachysaurus, teguments of, i. 555
Tragulus, development of, jii. 787
limb-bones, ii. 483
organs of generation, female, iii. 696
osseous system, ii. 298
prosencephalon, iii. \(114,120,121,122\), 123
skull, ii. 471, 472
teeth, iii. 351
Tragulus jaraniculus, limb-benes of, ii. 484
Tragulus kanchil, alimentary canal of, iii. 467
blood, iij. 515
limb-bones, ii. 486
liver, ini. 481
Tragulus napu, limh-honcs of, ii. 486
Tragulus pigmeus, brain of, iil. \(1 \$ 3\)
Tribonolonotus, thyroid body of, i. 565
Trichechus rosmarys, characters of, ii. 289
heart, iii. 524
limb-bones, ii. \(50{ }^{6} 7\)
mammary glands, iii. 780
skull, ii. 498
teeth, iii. 338
rertebral column, ii. 490

7RO
Trichiurus, charncters of, i. xxxiii teeth, i. 370
Trichodon, teeth of, i. 377
Trichogaster, organ of touch of, i. 320
Trigeminal nerve, Fishes, i. 302
Trigla, alimentary canal of, i. 421
myelencephalon, i. 271, 28*
neryes, \({ }^{\text {j }} 208\)
organ of touch, i. 326
Trigla cucalus, air-hladder of, i. 491
Trigla hirundo, air-hladder of, i, 491, 407
Trigla Leyra, gills of, i. 478
liver, i. 426
male organs of generation, i. 569
pyloric appenduges and pancreas, i. 430
skull, i. 101
Trigonocephalus, teeth of, i. 398
tegument, i. 555
Tringa, sternum of, ii. 26
Trionyx, characters of, i. 17
fecundation, j. 615
female organs of generation, i. 588
kidnoys, i. 541
liver, i. 448
lunga i. 526
organ of sight, i. 331
organ of taste, i. 327
pelvic arch and limb, j. 186, 187, 180
respiratory actions, i. 530
skull, i. 131, 134
teeth, i. 385
teguments, i. 557
vertebral column, i. 61, 62, 63
Triton, characters of, i. 15
alimentary canal, i. 434
arteries, 3. 518
derelopment, i. 625-628
fecundation, i. 614
gills, i. 513, 514
heart, i. 507
kidneys, i. 638
lungs, i. 521
myelencephalon, i. 290
organ of sight, i. 337
reproducible parts, i. 666
semination, i. 591
veius, i. 502
vertebral column, i. 48
Triton cristatus, derelopment of, 629
fecundation, i. 615
oriposition, i. 616
Triton marmoratus, reproducible parts in, i. 566

Triton tæniatus, male organs of generation of, i. 578
Trochilidæ, characters of, ii. 11
beak, ii. 147
muscles of the wings, ii. 96
myelencephalon, ii. 117
osseous system, ii. 21
dorsal vertebre and steruum, ii. 21, 28
scapular arch and limhe, ii. 7

TRO
Trochilma, onseous system, ji. 22
dorsal vsrtebree and sternnm, ii. 22
wacral vertehyo and tail, ii. 32
kkull, ii. 69
acapnlar arch and limbs, ii. 66 pslvic limhs, ii. 81
tongus, ij, 161
Troglodytes, characters of, i. xxxii, xxy
Troglodytes, eggs of, ii, 257
Troglodytes Gorilla, characters of, i. xix, xixv; ii. 291
alimentary canal, iii, 434
hrain, iii. 144
locomotion, iti. 71
lungs, iii. 562
mouth, iii. 393
muscular system, iii. 54-68
nexrous system, iii. 127
prosencephalon, iii. 127, 138
organ of hsaring, iii. 238
organ of smell, iii. 216
skeleton, ii. \(523,536-536,546-553\), 672 ; iii. 622
testh, iii. 317-322
voies, iii. 601
Troglodytes niger, characters of, i. zxxii; ii. 273
alimentary canal, hii. 434
laryne, tii. 600
lungs, iii. 582
male organs of generation, iii, 673
muscles, iii. 52
organ of hearing, iii. 238
prosoncephalon, iii. 127, 130, 131
akeleton, ii. 521, 622
skull, ii. 535, 645
teeth, iii. 317, 321
Trogonidæ, characters of, ii, 11
Tropidolepis, teeth of, i. 403
Tropidurus, tegumente of, i, 656
Trygon, dermoskeleton of, i. 194
heart, i. 474
Trygonidx, characters of, i. 13
Tupaia (syn. Glysorex, Cladohates), alimentary canal of, iii. 427, 426
female organs of generation, iii. 669
organ of taste, iii. 192
teeth, iii. 307
Tupinmmbis teguexin, teeth of, i, 401
Turacus, osseons system, ii. 32
'Turdus musicus, charecters of, ii, 11
devslopment of feathers, ii. 237
gensrative system, ii. 247
Turdus pilaris, tongue of, ii. 153
Turtion, hrain of, i. 290, 201, 295
characters of, i, 17
Turtle, mud, characters of, i. 17
Turks of l:og, iii. 344
walrus, iii. 336
olephant, iii. 359
Typhlops, organ of hearing of, i. 348
Tyranmus, togumentary organs of, ii. 233
VOL. 111.

\section*{VAN}

U
NGUICULATA, characters of, ii. 268
prosencephalon, iii. 128
gkelston, ii. 128
Ungulata, characters of, i. xxvili-xxx; ii. 260-266, 295, 296
developmsnt, ini. 732
beart, ili. 522
limb-hones, 11. 467
mammary glands, iii. 776
muscular system, iii. 1
organs of touch, iii. 168
peculiar glands, iii. 836
prosencephalon, iii. 126
spines, ifi. 823
teeth, iii. 340
A. homologies of the parts of ths grinding snrface, iii. 340
B. Artiodactyla, iii. 343
C. Perissodactyla, iii, 352
D. Prohoscidia, iii. 359
veins, iii. 555
Upeneus, Jiver of, i. 427
nerves, i. 308
skull, i. 120
Uperoleia, teeth of, i. \(392^{\circ}\)
tegumexto i. 10.52
Upupa, pancreas of, ii. 178
sesnt-follicles, ii. 230
Uranoscopus, organ of aight of, i. 331
organ of touch, i. 326
skull, i. 119
Uria, ossoous syatsm of, ii. 19, 25, 31, 34, \(36,57,82,63\) external sexual characters, ii. 257
Urinary system of A ves, ii. 226
Fishes, i. 533
Reptiles, i. 637
Mammalia, iii. 604
Urodela. See Ichthyomorphe
Ursidæ, hones of the limbs of, ii. 606
mammary glands, iii. 760 skull, ii. 499
vertehral column, ii. 490, 494
Ursus americanus, development of, iii. 745
Ursus aretos, larynx of, iii. 695
organs of generation, male, iii. 669
organ of hearing, iii. 234
prosencephalon, iii. 118
skull, ii. 499
teeth, iii. 329, 335, 371
Ursus ferox, brain of, jii. 143
skull, ì. 600
Ursus lahiatus, vertehral column of, ij. 490
Ursus maritimus, femals organs of generation of, iii. 699
hair, iii. 818
skull, ii. 500
vert ehral column, ii. 490

TAGINA, human, iii. 708
Vanollus, skull of, ii. 49,38

VaN
Vanga, beak of, ii. 146
Varanus bivittatus, teeth of \({ }^{2} .404\)
Varanus niloticus, organ of sight of, i. 339
pectoral limb, i. 174
pelvic arch and limb, i. 190, 191
skull, i. 155
teeth, i. 386, 404
Vaxanus vaxiegatus, teetb of i. 404
Varanus, vertebral column of, i. 58
Vegetative repetition. See Irrelative repetition
Vertebra, type segment or, i, 27
Vertebrates, cbaracters of, i. 1 developmental characters, i. 3 Piscine modi6eation, i, 4 Reptilian madification, i, 5 Avian modifcation, i. 6 Mammalian modification, i. 6 geneticand thermal distipetion, i. 6
orders of Hzmatocrya, i, 7
osseous system, i. 19
classes of bone \(, i, 26\)
composition, i. 19 development, i. 21 growth, ai. 23
sub-classes of Hrexatonrya, or coldblooded Vertebrates, 1.7
Vespertilio, hybernation of, ii, 4
muscles, iii. 4
organ of hearing, iii, 229
skull, ii. 387
spleen, iii. 562
Vespertilio emarginatus, development of, iii. 730

Vespertilia murinus, bones of the limbs of, ii. 392
alimentary canal, iii. 429
organ of taste, iii. 192
teetb, iii. 310
Vespertilio noctula, development of iii. \(730_{2}\) 731
myelon, iii. 74
organ of bearing, iiin 74
Vespertilio scrotinus, male organs of generation of, iii. 657
Vinago, characters of, ii. 10
Fipera (Echidna) arietans, lungs of, i. 624
Vipera berus, female organs of generation, i. 586
development, i. 636,63\%
organ of sigbt, i. 338
poison-glands, i, 563
teetb, i, 397
Vipera cerastes, ovulation in, i. 599
teguments, i. 554
Viperidxe, lunge of, i. 524
oviposition, i. 616
Vital force in Reptiles, i. 315
Viverra civetta, anal glands of, iii. 637
fomale organs of generation, iii. 700
limb-bones, ii. 509
skull, ii. 502
vertebral column, ii. 492

218
Viverra genetta, anal glands of, iii. 637 limb-bодев, ii. 510
mammary glands, iii. 780
Vivensa zibetta, mala argans of generation of, iii, 670
Viverridæ, teetb of, jii. 330
Vocal organ in Aves, ii. 221-223
Voice in Mammalia, iii. 683
Vole, musk, skull of, ii, 375
Vole, water, osseous system of iii. 381
Volitorss, characters of, ii. 10
alimentary canal of, iii. 421
pelvis, ii. 32
sternum, ii. 28
Vomer, characters of, i, xxyiii.
Vulture, beart of, ii. 185
liver, ii. 174
organ of sight, ii. 139
osseous system, ii. 19, 68,89
scent-follicles, ì. 230
spleen, ii. 230

WALRUS bones of, ii. 490, et seq.
teeth, iii. 338
tusks, iii. 338
Weasel, teeth of, iii. 333 bones, ii. 501
Whale, skeleton of, ii. 280
bones, ij, 415
brain, hiil 119
Wings of Aves, ii. 94
Wolf, bones of, ii. 492 et seg.
Wombat, brain of, iii. 104, 106
osseous system, ii. 330

YENODERMUS, teguments of, i, 654 Xipbodon, cbaracters of, ii. 286
Xiphosurus velifer, dexmoskeleton of \(i\). 198
Xipbias, slimentary cangl of, i. 420
gills, i. 479
liver, i. 427
locomotion, i. 252
organ of sigbt, i. 332, 334
pelvie arch and limh, i. 179
skull, i. 107, 118 ; ji. 64
vertebral column, i. 38
\(7 E B R A . S e e\) Equus zebra
Zeuglodon (syn. Squalodon), skeleto of, ii. 424
teeth, iii. 266, 284, 369
Zeus, gills of, i. 480
skull, i. 119
Zipbius, limb-bones of, ii. 427, 428
teeth, iin. 265
vertebral column ii. 419

ZOA
Toarces, fecundation of, i, 800
fomale organs of gonsration of, i, 574 teguments, i. 646
Zonosaurus, tegumsnts of, i. 666
Zonurus, teguments of, 665
Zootoka, characters of, i. 6; ii. 286
Zootoca muralis, femals organs of gsneration of, 1. 683, 687
ovulation, i. 699

ZYG
Zygæna, alimentary canal of, i. 423
development, i. 609
liver, i, 426, 427
organs of sight, i. 336
skull, i. 81
vertebral column, i. 36
Zygæaide, characters of, i. 13
organs of sight, i. 336

THE END.

\section*{ORIENTAÇÕES PARA O USO}

Esta é uma cópia digital de um documento (ou parte dele) que pertence a um dos acervos que fazem parte da Biblioteca Digital de Obras Raras e Especiais da USP. Trata-se de uma referência a um documento original. Neste sentido, procuramos manter a integridade e a autenticidade da fonte, não realizando alterações no ambiente digital - com exceção de ajustes de cor, contraste e definição.
1. Você apenas deve utilizar esta obra para fins não comerciais. Os livros, textos e imagens que publicamos na Biblioteca Digital de Obras Raras e Especiais da USP são de domínio público, no entanto, é proibido o uso comercial das nossas imagens.
2. Atribuição. Quando utilizar este documento em outro contexto, você deve dar crédito ao autor (ou autores), à Biblioteca Digital de Obras Raras e Especiais da USP e ao acervo original, da forma como aparece na ficha catalográfica (metadados) do repositório digital. Pedimos que você não republique este conteúdo na rede mundial de computadores (internet) sem a nossa expressa autorização.
3. Direitos do autor. No Brasil, os direitos do autor são regulados pela Lei n. \({ }^{\circ} 9.610\), de 19 de Fevereiro de 1998. Os direitos do autor estão também respaldados na Convenção de Berna, de 1971. Sabemos das dificuldades existentes para a verificação se uma obra realmente encontra-se em domínio público. Neste sentido, se você acreditar que algum documento publicado na Biblioteca Digital de Obras Raras e Especiais da USP esteja violando direitos autorais de tradução, versão, exibição, reprodução ou quaisquer outros, solicitamos que nos informe imediatamente (dtsibi@usp.br).```


[^0]:    2 r.xxx: p. 289 (18s6): the muscle is termed 'dorso-épitrochlien' by Duvernoy in tho Gorilla, $i^{\prime \prime}$. p. $80(1855)$, whese it is inserted into the inner condyle of the humerus.

[^1]:    ' xevir. p. 234.

[^2]:    ${ }^{1}$ xCFII. p. 232.

[^3]:    ${ }^{1}$ c11. p. 30, pl. xi. Gg. 1, 22 d.
    ${ }^{2}$ CII'. p. 34, pl. xi. fig. 4 , e

[^4]:    "Scansorius,' Trail, xxxp". 'Invertor femoris," xxxiv". p. 68.

[^5]:    ${ }^{1}$ vol. i. pp. 272. 296.
    

[^6]:    ${ }^{1}$ The severance of the 'pons,' and raising it, in association with parts of another segment, to tho rank of a distinct primary division as 'mesocephalon,' and the severanco of the "medulla oblungata" from the cerebellum, as $n$ co-equal division, called ' motoncephalon,' indicate the warping of the judgment throngh habituat contemplation of the characteristically modified and developed parts of the human brain.

[^7]:    The progress of chemistry has lent new and valuable aids to the muraveling of the minute, but physiologically most interesting, structures of the myelon and macromyelon. A solution of chromic acid is one of the best for preliminary immersion of slices of their tissues for a few weeks; these, if afterwards put into alcohol, are hardened, but become less brittle than if kept longer in the acid.

[^8]:    * LXI: pl. v, figs. 3 and 4 . xLI*.

[^9]:    ' $\mathrm{Lr} \mathrm{v}^{\prime}$. and Lexiv.

    * LVI".

[^10]:    - This difference $I$ exempled in the preparations, nos. 1326 A and $1326 \mathrm{~B}, \mathrm{xx}$. vol. iii. p. 30.

[^11]:    Thesc fibres arc shown at $x$, fig. 4 , pl. vii. Lxx'., which gives a view of the bippo enmpal fold from the veatricalar or 'laternl' side, as 'part of a thin stratum of medula lary fibres arching over tbe hippocampos mejor, and continoed therefrom into the internal wall of the ventricle,' p. 95.

    - If we could examine tho brains of Dinosauria or Dicynodonta, the actaal gap in the serics of cercbral structures might be better filled.
    - From this point in the lowest (Lycncepbalous) mammals, as in the embryo of tho highost, the growth of tbo great supraventricular body of transverse commissural fibres forming the 'corpus callosum' begins: "Anterior fibres of the "twnia bippon campi " continaed into the anterior lobes of tbe hemispheres." lxx'. p, 95, pl. vi, figs. 4 and 6, $o^{\prime}$ : and pl. vii. fig. $4, x$.
    - Tbe part masked in in the Echidna has become the part marked is in Man. Pls. zxxyi. and xxxviii. of xLif".

[^12]:    My observntions on this stato of the "corpora qundrigemina " in Monotremes necord with thoso of Laurent and Eydonx on the Echidnn, and of Meckel on the Ornithorhynchus. 'En comparnot les tubcrcules quadrijumeaux de léechidné à ceux do l'Ornithorhynque, nous avons faciloment constaté co que l'n déjà été par Mcekel pour ce dernier, e'est-d-diro qu'on ne peut pus distinguer les tubercules postérieurs dos antéricurs, ot que ce que Meckel a remarqué choz l'Ornithorhynque et exprimé en ecs tormes: " Eminontin quadrigemina magnn, posterior tamen verè percipienda, ut fers̀ bigomina essut," est encoro plus prononeé dans les tuhercules du cerveau de l'Echidné, qui sont réclloment bijumeaux simploment.' Lvin". p. 164.
    ${ }^{2}$ Well givon in $\mathrm{Lvu} \mathrm{m}^{\prime}$. plo ix. fig. 4: omitted in the diagram of a similar section in $x \leq 1 m^{\prime \prime}$. pl. xxxvii. fig. i.

[^13]:    
    ${ }^{2} \mathrm{~Tb}$. fig. 3.
    ${ }^{5} \mathrm{Ib} . \mathrm{fig} .6$.

    - Ib. fig. 5.

[^14]:    Lxx'. pl. vi. figs. 4 and 6, $q, q$.

[^15]:    ricated homispheres is left entirc, and whether the fibres diverge into the subatance of the roof of the ventricles is not shown. In Lxx'. pl. vi. figs. 4 and 6, the requisite dissectiou is made and figured, and the transverse fibres are shown to he lost beneath the 'lahia hippocampi'-that is, to be continued into the hippocampi, not into the supraventricular substance. Other dissectors of the hrain of a Macropus Benettii and of Phascolomys might compare the appenrances with those fignred in the 'Philosophical 'Transactions,' 1837, pl, vi. figs. 4 and 6, and in the 'Philosophical Transactions,' 1865, pl. xxzyi. fig. 4.

[^16]:    'Haller showed his appreciation of the essential nature of these fere fornicis ipsius cruribus.'
    ${ }^{2}$ Lxx'. pl. r. fig. 8, la. ${ }^{3}$ Ib. $1 c$.
    4 No. 1323 D, Xx. vol. iii. (1835), p. 29 ; and see xlin'f. pl. xxxvif. fig. 7.
    

[^17]:    ' 'Ourlet ' and 'internal convolution' of Foville, $x \times x y^{\prime}$.

[^18]:    'Pat of the 'natiform protuberance' or 'lobe of tho hippocampus' of some anthropotomists.

    VOL. 11 I.

[^19]:    
    "This mote of nutntion has been reversed by a subseqnent author, but no advantage from the innovation is poiated out, or seens to be gained thereby.

[^20]:    * The preliminary sketch of the history of this part of cerebral anatomy is from the 13 th Leclure of the Iunterian course for 1842
    ${ }^{2}$ xır". vol. i. p. 380.
    ${ }^{3}$ xxv'". (1844).
    ${ }^{4}$ "Mudical Times,' Nov. 12, 1842, vol. vii. p. 101.

[^21]:    - The preparation of tho Porpoisn's brain, by which I showed this structure in the *Hunterian Course' of 1842, is pr. bubly still presurped in the Muscum of the Royal Cullege of Surgeons : the primary convolution $g$ is removed.

[^22]:    cut. This hus also the eharacter of the 'supereallosal,' 7 ', fig. 117.

[^23]:    - The judicious and painstaking anatomist Graprolet seems to have forescen some late misconceptions of the nature of the hind part of the primitive ventricular cavity in the Quadrumanous brain, in the following note:- "Tontefois, il pe peut être consideré comme un signe d'elévation, car il est beaucoup plus grand en égard à la partie enroulée du ventricule dans les singes, où son dévcloppement est énorme, que dans l'homme, où la partie enroulée l'emporte évidemment sur lui. Cette remarque, he justly adds, 'est d'unc haute importance.' $\mathbf{x l y}$ ". vol. ii. p. 75.

[^24]:    mammalian brains was summarised by the Reporter for the 'Medical Times,' as follows :-'A symmetrical arrangement, more or less regular or complex, can always be traced between tbe foldings of the two bemispheres, and the more regular in proportion to the simplicity of the convolutions: the foldings of the cerebral sabstance follow likewise, hoth in the ombryonic development of a complex brain, and in the progressive permaneat stages presented by the mammalian series, a regular determinate lav: some couvolutions being moro constant than others, aad these being traceablo tbrough the greatest number of brains, and recognisable even in the haman brnin, where, at first sigbt, they are obscared by so many accessory convolutions.?
    "Tho Lecturer then demonstrated, in a considerablo number of prepared brains of different animals, and in a large series of diagrams, in which tbe corresponding convolutions in the brains of different animals were marked by the same colours, tbe fncte establishing this important generalisation.'-7he Medical Times, Nov. 12, 1842, vol. vil. p. 101. Report of 13 th Lecture, delivered May 16 tb , 1842.

[^25]:    ' т. $\times \times \mathrm{v}^{\prime}$, p. 347, pl. vii. figs. 9-12.
    ${ }^{2}$ Scoregny, in a Balena mysticetus of 65 feet in length, found the weight of the brnin to be 3 lbs. 120 oz.
    sxcvir". ${ }^{\circ} \nabla^{\prime \prime}$.

[^26]:    1 If the capacity of a cranium in cubicinches be ascertained, a fair and instructive notion of the weight of the brain may be obtained by estimating that of a cubic incb
    

[^27]:    1 Tables of size and woight of Mammalian brains will be found in xat, xet ${ }^{\prime \prime}$, Ixxil"。

    VOL. III.

[^28]:    ${ }^{1}$ xliv. p. $442 . \quad{ }^{2}$ Ih. No. 2500, p. 453.

[^29]:    homotypo of tho eyc-ball, on tho ground taken, in $\mathbf{~ L x I f}$ for viewing the olfactory bulbs as aorves, and not as cacopbalic lobes. The grand old anatomists had truer views of these 'processes of the brain,' as on some otber points, than their successmys

[^30]:    There have been cases, however, where the tract of the same side as the atrophied nerve showed more wasting than that of the opposite side.

[^31]:    1 xx. vol. i. p. 103, prep. no. 357 в.

[^32]:    - See dissection of the trigeminat of $B o s$, in $m v$, pl. xxxii. fig. 3 .

[^33]:    ${ }^{1}$ uv. pl. xxxi, fig. 3, 5. SWAN also shows it in the calf, pl. xxxyi, fig. 3, 11. Arcock found the spheno-palatine ganglion in a rabbit, dog and horse, as well as in the cat and cow. ccrimi p. 286.

[^34]:    1 One of the obscrrations and experiments on which Huater founded this conclusion, is given, in Latin, by Sir C. Bell, in his original Essay, Lwiv', p. 11 (1811). So, also, Sir Charles writes:- The key to the natural system of the nerves will be found in the simple proposition, that each filament or tract of nervous matter has its peculine endowments independently of the others which are bound ap along with it, and that it continues to lave the same epdowment throughout its whole length.' $\operatorname{Lxv}^{\prime \prime}, \mathrm{p} .70$.

[^35]:    Lrv. pl. xxx. fig. 3.
    Tb. fig. 2.
    ${ }^{3}$ In reference to the expression of Hunter, relative to the chorda tympani, "I am almost certain it is not a branch of the seventh pair of nerves, but the last described branch from the fifth pair.' $\mathbf{x c I V}$. (1837) p, 194, and 'Note $a$.'

[^36]:    For the homologue of this nerve, see, in Fishes, vol. i. p. 307; in lieptiles, ib. p; 313 ; in Birds, vol. ih. p. 125.

[^37]:    - For the light which may be derived from both nervous and arterial foramina in the interpretation of fossil bones, see $\mathrm{xcv}^{\prime}$, pp. 37, 57. pls. vi. vii. xvi. fig. 2, c.
    ${ }^{2}$ A grood view of the distribution of the 'ninth' in the Jaguar is given in LIv, pl.

[^38]:    ${ }^{1}$ Measrs. Secloy and Spencer dispute the priority of such explanation and don't give it. xor" und xcu,"
    licspect for tho conductora and editor of $\operatorname{cxxp}$ - has led me into the ahove digression; and as they mect wbat they consider tbe 'main defect ' (ib. p. 123) of the present work by an "argnmentun ad verecundinm,' I would observe that the individual wbo first perceives, or discovers, the general homology of the basioccipital, tbe scapula, or nthor part of the hindmost segment of the skull of a cod-fish, puts himself in advance of, and noro or less in antagonisun with, others. If his perception he trac, hut not accepted, it is not his fault tbat 'ho be right nud everybody else wrong;' Sucb a state of things has happened more than once in the history of science, hut it is happily transitory; tbe many moving one-ward, the one ouward.

[^39]:    Swan well notes the difference between the mode of supply to the aatatory tail, i.e. by a fow trunks in Cetacea derived from a remotely situated myelon, and that in Fishes, by many derve-pairs from a contiguous myelon: also the great proportion of motory as compared with seasory filaments; the tail being not only the main motive instrument in Whales, but capable of 'giving hard blows without feeligg much pain.' Liv. p. 165.
    ${ }^{2}$ Liv, 2d ed. pp. 153, et, seq.

[^40]:    ${ }^{3}$ See vol. ii. p. 30s, fig. 193, Hippopotamus, which resembles the foot of the IIog.

[^41]:    1 Vol. ii. p. 306, fig. 191, Hycna, i, which also serves to exemplify the homology of the digite of the fore-paw in the Dog and Cat.

[^42]:    ${ }^{1}$ Liv. p. 193. Much of the foregoing description is abridged from tbis rich storehoule of Comparative Nourology.

    - This trus ides of the series of ganglions and nerves, called 'sympathetic' in Man, once clearly attained, will leave litte ronm for speculations as to whether the nerroun system of insecta answers to the myeleacephalic or sympathetic part, exclusively, of that of Vortehrates.

[^43]:    Liv. p. 115.
    ${ }^{2}$ Ib.
    s 'Prolongations,' Swan. riv. passim.

[^44]:    ${ }^{1}$ Liv. p. 115.
    ${ }^{2}$ Ib. p. 113.

[^45]:    xx rol. iii. (1835), pl, xliii., fig 7 . $f$. 'intermal theen. ${ }^{\text {. }}$ Ib. e, "exturnal theca." ${ }^{1} \mathrm{Ib}$. fig. 10.

    - The analogy of this nction in nquatic mammals to the impressions conveyed by vilrations contimued from the surrounding medinm along the gelatinous contents of

[^46]:    the tubes whose buried base receives the sensitive nerve, in certain Fishes (vol.i p. 325), was first appreciated by Honter. xx. vol. iii. p. 55.
    ${ }^{1}$ For further details and gradations see lxyili". vol. ii. p. 516, and lxix'。
    ${ }^{2}$ xx. vol. ili. p. 58, preps. nos. 1410-1413.

[^47]:    ${ }^{1}$ xx. vol. jii. p. 57, nes. 1403-1405.

[^48]:    'Daubenton stateg that he saw not any papillw even with a strong marnifer, oxxu', vol. $\mathrm{x} . \mathrm{p} .242$; and Do Blainville appears to have been led by this statement to affirm of the 'glands calycinales des Edentés,' that 'quelquefois elles sont nulles'- Lxxx", p. 255, - of which, however, I linve seen no instance.

[^49]:    ' גx. vol. iii. p. 83, nos. 1514 (Ifyana), 1514A (Jackal). * Lxxxim. p. 122.

[^50]:    xx. vol. iil. nos. 1509-1513.
    ${ }^{2}$ The corresponding modification of the hyoid arch in Felides is noticed in vol. ii.
    p. $506 .{ }^{5}$ coxnxpl. vol. ii. p. $29 . \quad{ }^{4}$ xx. vol. iii. p. 84.
    ${ }^{5}$ Lxxxini", to LxXivin". ${ }^{6}$ Cir*. p. 41, pl. xil. figs. 8 and 9, a. LxExy". pl. 8, figs. 8 and 9.

[^51]:    ${ }^{1}$ r.xxxy", pl, 3, fig. 7.

[^52]:    ' For further and more minnte details of this cxquisite arrangement of the muscular tiasue for the functions of the tongue, reference should be made to the admirable article cexi., in which the necomplished author, Hyde Saleter, first deseribed it.

[^53]:    1 ke", cxu*

[^54]:    'Corncts inférieurs,' De Bl.; cıv'. Gravigrader, p. 39.

[^55]:    1 xLIV. p. 557.

[^56]:    This wis pointed out to me by the estimable and justly famed water-colour artist and animsl painter, Robert Ilills, F.L.S.

[^57]:    * xx. vol. iii. p. $100 . \quad$ cur'. p. 18, pl, viii. fig. 6.

[^58]:    ' xxxynt.

[^59]:    vers. p. 3s2 (17:7)
    Y०1. 111.
    " Sec Carlisle's experiment in cu", p. 207.
    Q

[^60]:    - xilv. Nos. 2044, 2093, $2166 . \quad 2$ xriv. p. 365, no. 2012.

[^61]:    - According to the careful admensurements in cvi".

[^62]:    ${ }^{1}$ For Huntor's excellent remarks on 'the use of the Oblique MIuscles,' see scrv. p. 24.
    vot., ins. *s 2

[^63]:    xlev. f. 5in.
    ${ }^{5}$ xcvi" [. 562.

[^64]:    'Vol. î. p. 268.

[^65]:    caviri", vol. ii.
    U 2

[^66]:    clxxx, p. 431.

[^67]:    1 Vol. if. p. 276.

[^68]:    ${ }^{1} \mathrm{cxx}^{\prime \prime}$, and cxxt".

[^69]:    Lxxxiv', p. 106.

[^70]:    - In honest argument as to Man's place in Nature, his zoological characters are to bo compared with those of the brute that comes ncarest to him; the differences so established should be contrasted with those between such brute, the gorilla, e.g., and the gext step in the scale, the chimpazzee, e. g.; and so on, step by step, through the order which Zoology forms of the serics of species so gradually differcatiated. No doubt a gorilla differs more in its dentition from a lemur, and still more from a mole or a mouse, than it differs from Man. Take another character-the hinder or lower limbs, -.g.; contrast the Negro in this respect with the gorilla, and, next, that ape with any otbor quadramamel. Much as the aye-aye differs as a whole, from tbe gorilla, it does resemble it more in such quadrumanal structure than the gorilla resembles Man. Between the two extremes of the four-handed series there is greater organic conformity in the main ordinal charneter than exists between the bigbest ape and the lowest man. Or take tbe cereliral test. Man's place in tbe Natural System is to be indged, not by the degree of difference between tbe brain of an ape and tbat of a mammal one handred links removed; bat by the degree of difference between the human hrain and tbat of the brute which comes neareat to bim, as contrasted with tbe degree of difference between the brains of tbe gorilla and chimpanzee, or between thase of any other two conterminous species constituting links in tbe quadrumanous cbain. Tbe difierace between figs. 147 and 148-9 may be greater than between 149

[^71]:    and 150 (vol. ii.); but truth compels the remark that the lemur and ape are separated by numerous gradational species; whilst between the ape and man there is no known connecting or intermediate link. Logicians have long ago exposed and branded the sophism which has of late been propounded to persuade men that they are of the
    order of apes.

[^72]:    ${ }^{1}$ ClXXIII' ${ }^{\circ}$, p. 495.

[^73]:    ${ }^{2} \mathrm{In}_{\mathrm{n}} \mathrm{r}$. is deseriled (p. 569) and figured (pl. 142), the lower tusk of a Hippopotamus which, ufter fracture, had been united again ly a mass of 'ostcolentine.'

[^74]:    The homologue of $d$ fig, 2. 287. ${ }^{2}$ Ib. $d$ 3. Ib. $d$ 1. Ib. $d 4$.

[^75]:    The homologous teeth in the young Hyrnx, f.g. 287, are indicated by the sarme symbols, and the sole dovelipmelital difference from the IIorse is the displacement of dI by n $p$ L of functiunal sizu.

[^76]:    - clexx ${ }^{\prime \prime}$, p. 401 ; and cxini". Tab. 1.

[^77]:    In my "Odontocraphy' I was led to conjecture that 'this molar, if it makes its appesrance about the fifticth year, would, from its superior depth and length, continue to do the work of mastication until the ponderous Pachyderm had passed the cen. tury of its existence: ' but I would now nerely suggest, to all who may have the opportunity, the desirability of making and recording observations supplementary to those in the text nade on captive Asiatic elephants in European menageries.

[^78]:    I had the lusk and pulp of an clephant at the Zoological Gardens longitudinally divided, soon after the death of that animal in the summer of 1847. Although the pulp could bo eusily detnched from the inner surface of the pulp-cavity, it was not without a certain resistance; and when the edges of a co-adapted pulp and tooth were examined by a strong lens, the filamentary processes from the outer surface of the pulp could bo seon stretching as they wero withdrawn from tho dentinal tubes hefore they broke. They are so minutc that, to the naked cye, the detached surface of the pulp soems to he entire, and Cuvier was thus deccived in conclading that there was no organic comection between the pulp and the ivory. cxxxix. Ed. 1834, tom. i, p. 535.

[^79]:    exx". nnd cxarit. The line ' Blainville' runs through that tooth in fig. 293.

[^80]:    cxixi". p. 109.

[^81]:    If this tooth have not displaced a minute milk-molar, it may be reckoned a d 1 , which is longer retained than tho rest of the deciduous molars; in this degree the type dentition is departed from.

[^82]:    ${ }^{1}$ cxav". p. 80.

[^83]:    ${ }^{1}$ cxxyli". p. 144. The preparations which exemplify this modification of the salivary system are Nos. 772 I , and m, in xx, vol. i. p. 238 (1831). Prof. Rapp, in cxarx". (1843), refers, for this structure, to Wriwer, Dissert. sistens observationes anatomicas de Tatu novemeincto. Tubing. 1826, pp. 10, 11: Rapp, preses; who adds:' Nachdem Prof. Jüger, in Stuttgart, sie schon vorher bemerkt hatte.' This inaugural Thesis I had not seen at the date of viri", and I became aware of its existence only through the reference thereto in Prof. Rapp's work.
    ${ }^{2}$ viris'. pl. 40.

[^84]:    Voll. III.
    D D

[^85]:    - Inoraqu'it n'y a point de parotidos, commo cela a lien dans Cechidné et le fourmílier, ln proportion des maxillairee nugmente considérablement.' xu. vol. iv. p. 421. ${ }^{\prime}{ }^{\prime} \mathrm{cxx}{ }^{\prime \prime}$. p. 417.

[^86]:    - xx. vol. i. p. 181, No. 590 A.

[^87]:    " cxxil". xxul. p. 134, pl. xp. "ccexxyr. rol. ij. p. 242.

[^88]:    'cxixx". p. 70, ot seit. for further details of the alimentary canal of this rare rodent.
    "xx. rol. i. p. 215, No. 723 , c. cxum". p. 22, pl. I.

[^89]:    -Il est généralement dibposé en travera, plus ou moins alongé dans ce sons, arec lew nifficen distants," xis, tome iv, p. 34. Seve also Lxim", p, 1002.

    * Hunter notes that he found in the stomachs of Hedgehogs, in April, grmbs, with a little unchewed gotiss ; in May, June, July, and August, ' the insects of the gensm,' and catorpillars of tho cnbbage (Pieris Brassice); in September and Octobera

[^90]:    elytrex, wings and legs of insects, including those of the Scarabeus and of Geotrupes stercorarius; from Nosember onward to March-the hybernating season-there was no food in the stomach, only a little creamy mucus. cexsmor. vol. ii. p. 193.
    ${ }^{1}$ Ib. p. 187.

[^91]:    ' A good fgure of this modification, first observod by Peters, will be found in exxxvit. p. 3 ss .

[^92]:    ' In several shot ou the hills at Pinang, the stomach contained vegetable matter, but no remains of insects. In confinement plantains constitute the farourite food.' LxxXift p. 8.

[^93]:    
    " ixxxiv". "exxxy". $\operatorname{lxyxyl}^{\text {. }}$
    laxxvar". pl. xi. flg. I. "cexxiv", and exxxy". p. 329, fig. 9.

[^94]:    ${ }^{1}$ This type of quadrumanous atomach was discovered in an undetermined kind of monkoy by Wurnb, in 1785 ; and, independently, by Otto, in a supposed Cercopithecter in 1824, and described in cxxxva" . it was dotormined to be characteristic of thi patural group, including the genern Senmopithecus, Nasdis, and Colottes, in cxaxvil", cxxxax", cxle", and cexil".

[^95]:    ' cxvvitit. ก. 16 .
    oxusx' . p. 16.
    Cxlymo. p. 182, Ňo. 590 c.

[^96]:    ${ }^{1} \mathrm{VITI}^{\prime \prime}$. p. 121, pls. li, lij, and liii.
    'There are two cæca, as in birds;' cexxxyn. vol. ij. p. 181.

[^97]:    1 The fig. 354 has been taken by the writer of $\mathrm{cL}^{\prime \prime}$. from cxan'. rol. xili. pl. nlu., fig. 2. The foregoing description is from dissection of the specimen of Cholopus difactylus which died at the London Zoological Gardens, in 1851, alld in which the arteries were preriously injected. See cxı.vir'. p. 167, No. $\overline{5} 3 \mathrm{c}$.

[^98]:    ${ }^{1}$ xx. vol. i. p. 17 \%. no. 660 c . This description I appended, together with the other paragraphs between brackets, to the Art. Cctacsa (cxi'), the translation of which wae confided to me by tho Editor.

[^99]:    The stomach of the now extinct boreal Mhytina nppears from the record left by Stoller to have mueh resembled that in the Manntee: be was struck by its surprising siro, ' 6 feet in length and 5 feet in breadth,' distended with masticated sea-rreed.
    "cxYis". p. 30. A peculiar species of Nematoid worm (Ascaris Halicoris, Ow.) was found in this spiral gland.

[^100]:    ${ }^{1}$ The species dissected wero the common one (Tapirus Americanus, Gmolin), curi". p. 161, and the Tapirus Sumatranus.

[^101]:    Vomiting is ratre and diffeult ; but has been observed in sea-sick lorses slung on board traumport-vessels.

[^102]:    At certain seasons the stomach of the Horse is infested with the larva of a gaid-fly (Estrus equi). Daubenton figures the cavity in this state. cxxi'. pl. $\mathrm{v}, \mathrm{fig} .2$.
    

